
Unidad 9
Descargar estos apunte en pdf o html

Índice
Índice
Tipos Enumerados

Introducción
Sintaxis
Conversiones con enumeraciones
Métodos de utilidad para enumeraciones
Enumeraciones NO excluyentes (Máscara de Bits de estado o Flags)

1/13 Programación 1º DAM Unidad 9 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u9_enumerados/u9_enumerados.pdf
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u9_enumerados/u9_enumerados.html

Tipos Enumerados

Introducción
Internamente se gestionan como objetos de tipo entero. Por tanto, son tipos valor y esto
significa que en las asignaciones haremos una copia de su valor.
Son útiles para auto-documentar el código y evitar números mágicos.
Los utilizaremos siempre que queramos definir un conjunto finito de objetos o estados, en lugar
de definir constantes numéricas.
Solo podrán tomar valores, mútuamente excluyentes, dentro del rango definido, por lo que nos
evitará errores derivados de valores inesperados.

Sintaxis
El identificador del tipo se escribirá en PascalCasing y debería estar en singular.
Los identificadores de la enumeración se escribirán en PascalCasing.
El si no lo especificamos por defecto es un int aunque podemos especificar otro tipos base
enteros como: byte , ushort , etc.
Para acceder a los valores pondremos: NombreDelEmun.Identificador

enum <NombreEnumeración> : <tipoBase>

{

 <Identificadores que definen el conjunto enumerado por extensión>

}

Ejemplos:

enum Tamaño

{

 Pequeño, Mediano, Grande

}

Tamaño tamaño = default; // Equivale a hacer tamaño Pequeño

tamaño = Tamaño.Grande;

2/13 Programación 1º DAM Unidad 9 IES Doctor Balmis

https://en.wikipedia.org/wiki/Magic_number_(programming)

enum EstadoOrdenador

{

 Encendido, Apagado, Suspendido, Hibernado

}

enum Estación

{

 Primavera, Verano, Otoño, Invierno

}

Si no se especifica valor inicial para cada constante, el compilador les dará por defecto valores que
empiecen desde 0 y se incrementen en una unidad para cada constante, según su orden de
aparición en la definición de la enumeración. Así, el ejemplo del principio del tema es equivalente a
escribir:

enum Tamaño : int

{

 Pequeño = 0, Mediano = 1, Grande = 2

}

Es posible modificar el tipo base entero y los valores iniciales de cada constante indicándolos
explícitamente, como en el código recién mostrado. Otra posibilidad es alterar el valor base a partir
del cual se va calculando el valor de las siguientes constantes, como en este otro ejemplo:

enum Tamaño : ushort

{

 Pequeño, Mediano = 5, Grande

}

En este último ejemplo mis enumerados ocuparán menos espacio en memoria por ser entero
subyacente ushort . El valor asociado a Pequeño será 0, el asociado a Mediano será 5, y el asociado
a Grande será 6, ya que como no se le indica explícitamente ningún otro, se considera que este valor
es el de la constante anterior más 1.

Se puede especificarse el valor de un identificador en función del valor de otros como muestra este
ejemplo:

enum Tamaño

{

 Pequeño, Mediano, Grande = Pequeño + Mediano

}

3/13 Programación 1º DAM Unidad 9 IES Doctor Balmis

Conversiones con enumeraciones
1. enumerado.ToString()

Pasa un enum a cadena.
2. Enum.Parse(Type typeofDelEnum, string id, bool ignoraMayúsculas)

 Enum.Parse(Type typeofDelEnum, string id)

Pasa una cadena a enum.
3. bool Enum.TryParse(string? id, , bool ignoraMayúsculas, out <MiTipoEnum> valorDelEnum)

Intenta asociar una cadena a uno de los id definidos en el enum. Si lo consigue devuelve true y
el enum a través de valorDelEnum .

Ejemplos:

En los siguiente ejemplos vamos a ver cómo convertir entre un enum y una cadena, entre un
enum y un entero, y viceversa...

Supongamos que tenemos el siguiente enum con los días de la semana:

public enum DiaSemana

{

 Lunes, Martes, Mircoles, Jueves, Viernes, Sábado, Domingo

}

Caso 1: Pasar de enum a cadena

DiaSemana dia = DiaSemana.Domingo;

string textoDia = dia.ToString();

Console.WriteLine(textoDia);

Console.WriteLine(DiaSemana.Martes);

Mostrará por la consola:

Domingo

Martes

Caso 2: Pasar de cadena a enum

4/13 Programación 1º DAM Unidad 9 IES Doctor Balmis

DiaSemana dia;

if (Enum.TryParse("Viernes", true, out dia))

 Console.WriteLine(dia);

dia = (DiaSemana)Enum.Parse(enumType: typeof(DiaSemana), value: "lunes", ignoreCase: true);

Console.WriteLine(dia);

dia = (DiaSemana)Enum.Parse(enumType: typeof(DiaSemana), value: "Monday", ignoreCase: true); // ❌ ERRO

Console.WriteLine(dia);

Mostrará por la consola:

Viernes

Lunes

Unhandled exception. System.ArgumentException: Requested value 'Monday' was not found.

Fíjate que al convertir de cadena a enum, si la cadena no está en el enum se producirá un error,
por lo que es recomendable usar Enum.TryParse para evitar excepciones.

Caso 3: Pasar de enum a entero

DiaSemana dia = DiaSemana.Sábado;

int valorDia = (int)dia;

Console.WriteLine(valorDia);

Mostrará por la consola:

5

Caso 4: Pasar de entero a enum

DiaSemana dia;

dia = (DiaSemana)5;

Console.WriteLine(dia);

Mostrará por la consola:

Sábado

5/13 Programación 1º DAM Unidad 9 IES Doctor Balmis

Métodos de utilidad para enumeraciones
 static Array Enum.GetValues(Type enum)

Me devuelve un array del valor enumerado del tipo.
 static string[] Enum.GetNames(Type enum)

Me devuelve un array de cadenas con los valores posibles del enum.
 static bool Enum.IsDefined(Type enum, object value)

Me dice si value está en el enum en alguna de sus formas (enum, int, string).

Ejemplo 1:

Supongamos que tenemos el siguiente enum con los días de la semana donde hemos asignado
un valor explícito a cada día empezando por 1.

public class Ejemplo

{

 public enum DiaSemana

 {

 Lunes = 1, Martes = 2, Miércoles = 3, Jueves = 4, Viernes = 5, Sábado = 6, Domingo = 7

 }

 public static void Main()

 {

 DiaSemana[] diasSemana = (DiaSemana[])Enum.GetValues(typeof(DiaSemana));

 foreach (DiaSemana dia in diasSemana)

 Console.WriteLine($"{dia} = {(int)dia}");

 string[] nombresDiasSemana = Enum.GetNames(typeof(DiaSemana));

 Console.WriteLine(string.Join(", ", nombresDiasSemana));

 string diaBuscado = "Juernes";

 bool existe = Enum.IsDefined(typeof(DiaSemana), diaBuscado);

 Console.WriteLine(

 $"El día '{diaBuscado}' {(existe ? "sí" : "no")} está definido en el enum DiaSemana.");

 }

}

Mostrará por la consola:

6/13 Programación 1º DAM Unidad 9 IES Doctor Balmis

Lunes = 1

Martes = 2

Miércoles = 3

Jueves = 4

Viernes = 5

Sábado = 6

Domingo = 7

Lunes, Martes, Miércoles, Jueves, Viernes, Sábado, Domingo

El día 'Juernes' no está definido en el enum DiaSemana.

Ejemplo 2:

Vamos a implementar un método denominado PresupuestoAnual, que devuelva el presupuesto
anual en euros, de los diferentes departamentos de una empresa ficticia.
Los posibles departamentos serán Marketing, Compras, Ventas, RRHH, Administración y su
presupuesto será un valor literal de tu elección.

class Ejemplo

{

 public enum Departamento

 {

 Marketing, Compras, Ventas, RRHH, Administración

 }

 public static double PresupuestoAnual(in Departamento d) => d switch

 {

 Departamento.Marketing => 30000d,

 Departamento.Compras or Departamento.Ventas => 40000d,

 Departamento.RRHH => 10000d,

 Departamento.Administración => 25000d,

 // Si en el futuro añadimos un nuevo departamento a nuestra enumeración

 // nos avisará con un error.

 // Nota: El tratamiento de errores lo veremos más adelante.

 _ => throw new NotImplementedException("Falta por tener en cuenta un departamento")

 };

7/13 Programación 1º DAM Unidad 9 IES Doctor Balmis

 public static void Main()

 {

 Departamento departamento;

 bool enumCorrecto;

 do

 {

 Console.Write("Departamento: ");

 enumCorrecto = Enum.TryParse(Console.ReadLine(), true, out departamento);

 if (!enumCorrecto)

 Console.WriteLine("Prueba otra vez con " +

 $"{string.Join(", ",Enum.GetNames(typeof(Departamento)))}");

 } while (!enumCorrecto);

 Console.WriteLine("El presupuesto anual para " +

 $"{departamento.ToString().ToLower()} es de " +

 $"{PresupuestoAnual(departamento)} euros.");

 }

}

Mostrará por la consola:

Departamento: Finanzas

Prueba otra vez con Marketing, Compras, Ventas, RRHH, Administración

Departamento: Compras

El presupuesto anual para compras es de 40000 euros.

8/13 Programación 1º DAM Unidad 9 IES Doctor Balmis

🚀 Ampliación opcional:

Aunque el tipo enumerado como entero de C# es equivalente al de C y C++. En otros lenguajes
se implementa de otras formas de forma conceptual. Por ejemplo en Kotlin y Python son clases
con un conjunto de constantes, y por tanto se comportan como objetos. Pero la palabra enum
sigue apareciendo y solo tendremos que averiguar cómo se definen y usan. Veamos pues cómo
definir el enum del ejemplo anterior y la función PresupuestoAnual en otros lenguajes como
Kotlin y Python para que puedas reconocer equivalencias con C#.

Kotlin:

enum class Departamento {

 Marketing, Compras, Ventas, RRHH, Administracion

}

fun presupuestoAnual(d: Departamento): Double = when (d) {

 Departamento.MARKETING -> 30000.0

 Departamento.COMPRAS, Departamento.VENTAS -> 40000.0

 Departamento.RRHH -> 10000.0

 Departamento.ADMINISTRACION -> 25000.0

}

Python:

from enum import Enum, auto

class Departamento(Enum):

 Marketing = auto()

 Compras = auto()

 Ventas = auto()

 RRHH = auto()

 Administracion = auto()

def presupuesto_anual(d: Departamento) -> float:

 match d:

 case Departamento.Marketing:

 return 30000.0

 case Departamento.Compras | Departamento.Ventas:

 return 40000.0

 case Departamento.RRHH:

 return 10000.0

 case Departamento.Administracion:

 return 25000.0

 case _:

 raise NotImplementedError("Falta por tener en cuenta un departamento")

9/13 Programación 1º DAM Unidad 9 IES Doctor Balmis

Enumeraciones NO excluyentes (Máscara de Bits de estado o
Flags)

El concepto es muy similar al de flag que vimos con booleanos. Por tanto,
es una forma compacta y muy rápida de guardar varios flag de estado asociándolos a un bit en
memoria en lugar de a una variable booleana.

Por ejemplo, el valor binario de un byte en memoria puede ser 01100111 y cada bit puede ser un
'flag' con un significado donde el 1 significa que se cumple y el 0 que no.

Además, para nombrar o identificar el significado de los 'flags' asociados a un bit utilizaremos
una enumeración.

Veamos la sintaxis y uso a través de un ejemplo...

Supongamos la siguiente enumeración no excluyente para gestionar los extras en cierto modelo de
coche...

[Flags]

enum Extra : byte

{

 None = 0b_0000_0000, // 0

 Climatizador = 0b_0000_0001, // 1

 Navegador = 0b_0000_0010, // 2

 FullLed = 0b_0000_0100, // 4

 LlantasDeportivas = 0b_0000_1000, // 8

}

Fíjate que hemos añadidos el atributo o 'anotación' [Flags] sobre la definición de la enumeración
para indicar que vamos a definir los nombres de los flags.

Además, hemos hecho que el entero subyacente sea de tipo byte y hemos definido por extensión
con un literal binario (0b_), los valores de cada byte a las potencias de 2 de tal manera que
realizará la asociación entre el valor enumerado y el 'flag' que representa en la byte.

En un principio la byte estará todo a ceros, a trevés de la asignación y para cambiarlo utilizaremos
operaciones de bit.

Enlaces

Enumeraciones como bits de estado o flags



10/13 Programación 1º DAM Unidad 9 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u9_enumerados/%22https:/docs.microsoft.com/es-es/dotnet/csharp/programming-guide/concepts/attributes/%22
https://es.wikipedia.org/wiki/Operador_a_nivel_de_bits
https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/builtin-types/enum#enumeration-types-as-bit-flags

Extra extras = default; // default equivale a Extra.None

1. Si queremos añadir uno o varios extras al coche usaremos el or de bit |

extras |= Extra.Climatizador | Extra.FullLed;

Console.WriteLine(extras);

Console.WriteLine("{Convert.ToString((byte)extras, 2).PadLeft(8, '0')}");

Estaremos haciendo la operación:

 00000000 (None)

 00000001 (Climatizador)

OR 00000100 (FullLed)

 00000101 (Climatizador | FullLed)

Mostrará por la consola:

 Climatizador, FullLed

 00000101

2. Si queremos ver si hemos establecido algún extra al coche usaremos el and de bit &
Fíjate que al usar enumerados la operación es mucho más legible.

// Hay que tener cuidado con la prioridad de & y por eso ponemos paréntesis.

bool tieneClimatizador = (extras & Extra.Climatizador) == Extra.Climatizador;

Console.WriteLine(tieneClimatizador);

Estaremos haciendo la operación:

 00000101 (Climatizador | FullLed)

AND 00000001 (Climatizador)

 00000001 (Climatizador)

Mostrará por la consola:

 True

3. Si queremos quitar algún extra al coche usaremos el and de bit & y la negación de bit ~

extras &= ~Extra.Climatizador;

Console.WriteLine(extras);

Console.WriteLine("{Convert.ToString((byte)extras, 2).PadLeft(8, '0')}");

11/13 Programación 1º DAM Unidad 9 IES Doctor Balmis

Estaremos haciendo la operación:

 00000101 (Climatizador | FullLed)

AND 11111110 (~Climatizador)

 00000100 (FullLed)

Mostrará por la consola:

 FullLed

 00000100

Ejemplo:

En el siguiente código vamos a definir una enumeración no excluyente para almacenar los
estados combinados de un juego de plataformas. De tal manera que la primera letra del 'flag'
me va a activar o desactivar dicho estado (El enumerado del estado debería empezar por una
letra diferente). Mostrándome tras cada pulsación como se encuentran los flags, tanto el valor
de enumerado como el valor interno en binario del enum.
Además, indicaremos que teclas activarán o desactivarán un deteminado estado.

📌 Nota: Fíjate como el código se ha implementado para que funcione,
independientemente del nombre que hemos asignado al flag en la enumeración y del
número de flags que tengamos definidos.

public class Ejemplo

{

 [Flags]

 public enum PlayerState : byte

 {

 None = 0b_0000_0000, // 0

 PowerUp = 0b_0000_0001, // 1

 Walking = 0b_0000_0010, // 2

 Jumping = 0b_0000_0100, // 4

 Attacking = 0b_0000_1000, // 8

 Shield = 0b_0001_0000, // 16

 }

12/13 Programación 1º DAM Unidad 9 IES Doctor Balmis

 public static string GameOptions()

 {

 string options = "Game keys (";

 foreach (PlayerState playerState in Enum.GetValues(typeof(PlayerState)))

 options += $"'{playerState.ToString()[0]}' = {playerState} ";

 options += ") Press E to Exit.";

 return options;

 }

 public static PlayerState StateAccordingToKey(char key)

 {

 PlayerState stateForKey = PlayerState.None;

 foreach (PlayerState s in (PlayerState[])Enum.GetValues(typeof(PlayerState)))

 {

 if (s.ToString()[0] == key)

 {

 stateForKey = s;

 break;

 }

 }

 return stateForKey;

 }

 public static void Main()

 {

 Console.CursorVisible = false;

 char key;

 PlayerState state = default;

 string gameOptions = GameOptions();

 do

 {

 Console.WriteLine($"PlayerStarte = {state} ({Convert.ToString((byte)state, 2).PadLeft(8, '0

 Console.WriteLine(gameOptions);

 key = char.ToUpper(Console.ReadKey(true).KeyChar);

 PlayerState stateToSwitch = StateAccordingToKey(key);

 if ((state & stateToSwitch) == stateToSwitch)

 state &= ~stateToSwitch;

 else

 state |= stateToSwitch;

 }

 while (key != 'E');

 }

}

13/13 Programación 1º DAM Unidad 9 IES Doctor Balmis

