Unidad 9

Descargar estos apunte en pdf o html

indice

= indice

V¥ Tipos Enumerados
= |ntroduccion

Sintaxis

Conversiones con enumeraciones

Métodos de utilidad para enumeraciones
» Enumeraciones NO excluyentes (Mascara de Bits de estado o Flags)

113 Programacion 1° DAM Unidad 9 IES Doctor Balmis


file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u9_enumerados/u9_enumerados.pdf
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u9_enumerados/u9_enumerados.html

Tipos Enumerados

Introduccion

Internamente se gestionan como objetos de tipo entero. Por tanto, son tipos valor y esto
significa que en las asignaciones haremos una copia de su valor.

Son utiles para auto-documentar el cédigo y evitar numeros magicos.

Los utilizaremos siempre que queramos definir un conjunto finito de objetos o estados, en lugar
de definir constantes numéricas.

Solo podran tomar valores, mutuamente excluyentes, dentro del rango definido, por lo que nos
evitara errores derivados de valores inesperados.

Sintaxis

El identificador del tipo se escribira en PascalCasing y deberia estar en singular.

Los identificadores de la enumeracion se escribiran en PascalCasing.

El si no lo especificamos por defecto es un int aunque podemos especificar otro tipos base
enteros como: byte , ushort , efc.

Para acceder a los valores pondremos: NombreDelEmun.Identificador

enum <NombreEnumeracién> : <tipoBase>

{

2/13

<Identificadores que definen el conjunto enumerado por extensién>

Ejemplos:

enum Tamafio

{

Pequeno, Mediano, Grande

Tamafio tamafo = default;

tamano = Tamaho.Grande;

Programacién 1° DAM Unidad 9 IES Doctor Balmis


https://en.wikipedia.org/wiki/Magic_number_(programming)

enum EstadoOrdenador

{

Encendido, Apagado, Suspendido, Hibernado

enum Estaciédn

{

Primavera, Verano, Otono, Invierno

Si no se especifica valor inicial para cada constante, el compilador les dara por defecto valores que
empiecen desde 0 y se incrementen en una unidad para cada constante, segun su orden de
aparicion en la definicion de la enumeracion. Asi, el ejemplo del principio del tema es equivalente a

escribir:

enum Tamano : int

{

Pequefo = 0, Mediano = 1, Grande = 2

Es posible modificar el tipo base entero y los valores iniciales de cada constante indicandolos
explicitamente, como en el cédigo recién mostrado. Otra posibilidad es alterar el valor base a partir
del cual se va calculando el valor de las siguientes constantes, como en este otro ejemplo:

enum Tamafio : ushort

{

Pequeno, Mediano = 5, Grande

En este ultimo ejemplo mis enumerados ocuparan menos espacio en memoria por ser entero
subyacente ushort . El valor asociado a Pequefio sera 0, el asociado a Mediano sera 5, y el asociado
a Grande sera 6, ya que como no se le indica explicitamente ningun otro, se considera que este valor
es el de la constante anterior mas 1.

Se puede especificarse el valor de un identificador en funcidn del valor de otros como muestra este
ejemplo:

enum Tamano

{

Pequefo, Mediano, Grande = Pequeio + Mediano

3/13 Programacién 1° DAM Unidad 9 IES Doctor Balmis



Conversiones con enumeraciones

1. enumerado.ToString()
Pasa un enum a cadena.
2. Enum.Parse(Type typeofDelEnum, string id, bool ignoraMayisculas)
Enum.Parse(Type typeofDelEnum, string id)
Pasa una cadena a enum.
3. bool Enum.TryParse(string? id, , bool ignoraMayisculas, out <MiTipoEnum> valorDelEnum)
Intenta asociar una cadena a uno de los id definidos en el enum. Si lo consigue devuelve true y

el enum a través de valorDelEnum .

Ejemplos:

En los siguiente ejemplos vamos a ver cdmo convertir entre un enum y una cadena, entre un

enum y un entero, y viceversa...

Supongamos que tenemos el siguiente enum con los dias de la semana:

public enum DiaSemana

{

Lunes, Martes, Mircoles, Jueves, Viernes, Sabado, Domingo

Caso 1: Pasar de enum a cadena

DiaSemana dia = DiaSemana.Domingo;
string textoDia = dia.ToString();

Console.WriteLine(textoDia);

Console.WritelLine(DiaSemana.Martes);

Mostrara por la consola:

Domingo

Martes

Caso 2: Pasar de cadena a enum

4/13 Programacién 1° DAM Unidad 9 IES Doctor Balmis



DiaSemana dia;

if (Enum.TryParse("Viernes", true, out dia))

Console.WritelLine(dia);

dia = (DiaSemana)Enum.Parse(enumType: typeof(DiaSemana), value: "lunes", ignoreCase: true);

Console.WritelLine(dia);

dia = (DiaSemana)Enum.Parse(enumType: typeof(DiaSemana), value: "Monday", ignoreCase: true); X

Console.WriteLine(dia);

Mostrara por la consola:

Viernes
Lunes

Unhandled exception. System.ArgumentException: Requested value 'Monday' was not found.

Fijate que al convertir de cadena a enum, si la cadena no esta en el enum se producira un error,
por lo que es recomendable usar Enum.TryParse para evitar excepciones.

Caso 3: Pasar de enum a entero

DiaSemana dia = DiaSemana.Sabado;
int valorDia = (int)dia;

Console.WriteLine(valorDia);

Mostrara por la consola:

Caso 4: Pasar de entero a enum

DiaSemana dia;
dia = (DiaSemana)5;

Console.WritelLine(dia);

Mostrara por la consola:

Sabado

5113 Programacién 1° DAM Unidad 9 IES Doctor Balmis



Métodos de utilidad para enumeraciones

e static Array Enum.GetValues(Type enum)

Me devuelve un array del valor enumerado del tipo.
e static string[] Enum.GetNames(Type enum)

Me devuelve un array de cadenas con los valores posibles del enum.
e static bool Enum.IsDefined(Type enum, object value)

Me dice si value esta en el enum en alguna de sus formas (enum, int, string).

Ejemplo 1:

Supongamos que tenemos el siguiente enum con los dias de la semana donde hemos asignado
un valor explicito a cada dia empezando por 1.

public class Ejemplo

{
public enum DiaSemana
{
Lunes = 1, Martes = 2, Miércoles = 3, Jueves = 4, Viernes = 5, Sabado = 6, Domingo = 7
}
public static void Main()
{
DiaSemana[] diasSemana = (DiaSemana[])Enum.GetValues(typeof(DiaSemana));
foreach (DiaSemana dia in diasSemana)
Console.WriteLine($"{dia} = {(int)dia}");
string[] nombresDiasSemana = Enum.GetNames(typeof(DiaSemana));
Console.WriteLine(string.Join(", ", nombresDiasSemana));
string diaBuscado = "Juernes";
bool existe = Enum.IsDefined(typeof(DiaSemana), diaBuscado);
Console.WriteLine(
$"E1l dia '{diaBuscado}' {(existe ? "si" : "no")} estd definido en el enum DiaSemana.");
}
}

Mostrara por la consola:

6/13 Programacién 1° DAM Unidad 9 IES Doctor Balmis




Lunes =
Martes = 2
Miércoles = 3
Jueves = 4
Viernes = 5

Sdbado = 6

Domingo = 7
Lunes, Martes, Miércoles, Jueves, Viernes, Sabado, Domingo
E1 dia 'Juernes' no estd definido en el enum DiaSemana.

Ejemplo 2:

Vamos a implementar un método denominado PresupuestoAnual, que devuelva el presupuesto
anual en euros, de los diferentes departamentos de una empresa ficticia.

Los posibles departamentos seran Marketing, Compras, Ventas, RRHH, Administracién y su
presupuesto sera un valor literal de tu eleccion.

class Ejemplo

{
public enum Departamento
{
Marketing, Compras, Ventas, RRHH, Administracidn
¥

public static double PresupuestoAnual(in Departamento d) => d switch

{

Departamento.Marketing => 30000d,

Departamento.Compras or Departamento.Ventas => 40000d,

Departamento.RRHH => 10000d,

Departamento.Administracién => 256000d,

_ => throw new NotImplementedException("Falta por tener en cuenta un departamento")
¥

713 Programacién 1° DAM Unidad 9 IES Doctor Balmis



public static void Main()

{

Departamento departamento;

bool enumCorrecto;

do

{

Console.Write("Departamento: ");
enumCorrecto = Enum.TryParse(Console.ReadlLine(), true, out departamento);
if (!enumCorrecto)
Console.WriteLine("Prueba otra vez con " +
$"{string.Join(", ",Enum.GetNames(typeof(Departamento)))}");

} while (!enumCorrecto);

Console.WriteLine("El presupuesto anual para " +
$"{departamento.ToString().ToLower()} es de " +
$"{PresupuestoAnual (departamento)} euros.");

}

Mostrara por la consola:

Departamento: Finanzas
Prueba otra vez con Marketing, Compras, Ventas, RRHH, Administracion

Departamento: Compras
E1 presupuesto anual para compras es de 40000 euros.

8/13 Programacién 1° DAM Unidad 9 IES Doctor Balmis



«” Ampliacién opcional:

Aunque el tipo enumerado como entero de C# es equivalente al de C y C++. En otros lenguajes
se implementa de otras formas de forma conceptual. Por ejemplo en Kotlin y Python son clases
con un conjunto de constantes, y por tanto se comportan como objetos. Pero la palabra enum
sigue apareciendo y solo tendremos que averiguar como se definen y usan. Veamos pues como
definir el enum del ejemplo anterior y la funcidn PresupuestoAnual en otros lenguajes como
Kotlin y Python para que puedas reconocer equivalencias con C#.

Kotlin:

enum class Departamento {
Marketing, Compras, Ventas, RRHH, Administracion

}

fun presupuestoAnual(d: Departamento): Double = when (d) {
Departamento.MARKETING -> 30000.0
Departamento.COMPRAS, Departamento.VENTAS -> 40000.0
Departamento.RRHH -> 10000.0
Departamento.ADMINISTRACION -> 25000.0

Python:

from enum import Enum, auto
class Departamento(Enum):
Marketing = auto()
Compras = auto()
Ventas = auto()
RRHH = auto()

Administracion = auto()

def presupuesto_anual(d: Departamento) -> float:
match d:

case Departamento.Marketing:
return 30000.0

case Departamento.Compras | Departamento.Ventas:
return 40000.0

case Departamento.RRHH:
return 10000.0

case Departamento.Administracion:
return 25000.0

case _

raise NotImplementedError("Falta por tener en cuenta un departamento")

9/13 Programacién 1° DAM Unidad 9 IES Doctor Balmis



Enumeraciones NO excluyentes (Mascara de Bits de estado o
Flags)

0 Enlaces

Enumeraciones como bits de estado o flags

El concepto es muy similar al de flag que vimos con booleanos. Por tanto,
es una forma compacta y muy rapida de guardar varios flag de estado asociandolos a un bit en
memoria en lugar de a una variable booleana.

Por ejemplo, el valor binario de un byte en memoria puede ser e11ee111 y cada bit puede ser un
'flag' con un significado donde el 1 significa que se cumple y el @ que no.

Ademas, para nombrar o identificar el significado de los 'flags’ asociados a un bit utilizaremos
una enumeracion.

Veamos la sintaxis y uso a través de un ejemplo...

Supongamos la siguiente enumeracién no excluyente para gestionar los extras en cierto modelo de
coche...

[Flags]
enum Extra : byte

{

None

0b_0000 0000,
Climatizador ob_0000_0001,
Navegador = Ob_0000 0010,
Fullled 0b_0000_ 0100,
LlantasDeportivas = 0b_0000 1000,

Fijate que hemos anadidos el atributo o 'anotacién' [Flags] sobre la definicion de la enumeracion
para indicar que vamos a definir los nombres de los flags.

Ademas, hemos hecho que el entero subyacente sea de tipo byte y hemos definido por extension
con un literal binario ( eb_ ), los valores de cada byte a las potencias de 2 de tal manera que
realizara la asociacién entre el valor enumerado y el 'flag' que representa en la byte.

En un principio la byte estara todo a ceros, a trevés de la asignacion y para cambiarlo utilizaremos
operaciones de bit.

10/13 Programacioén 1° DAM Unidad 9 IES Doctor Balmis


file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u9_enumerados/%22https:/docs.microsoft.com/es-es/dotnet/csharp/programming-guide/concepts/attributes/%22
https://es.wikipedia.org/wiki/Operador_a_nivel_de_bits
https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/builtin-types/enum#enumeration-types-as-bit-flags

Extra extras = default;

1. Si queremos anadir uno o varios extras al coche usaremos el or de bit |

extras |= Extra.Climatizador | Extra.Fullled;
Console.WriteLine(extras);
Console.WritelLine("{Convert.ToString((byte)extras, 2).PadLeft(8, '@')}");

Estaremos haciendo la operacion:

00000000 (None)
00000001 (Climatizador)
OR 00000100 (Fullled)

00000101 (Climatizador | Fullled)

Mostrara por la consola:

Climatizador, FullLed

00000101

2. Si queremos ver si hemos establecido algun extra al coche usaremos el and de bit &
Fijate que al usar enumerados la operacién es mucho mas legible.

bool tieneClimatizador = (extras & Extra.Climatizador) == Extra.Climatizador;

Console.WriteLine(tieneClimatizador);

Estaremos haciendo la operacion:

00000101 (Climatizador | FulllLed)
AND 00000001 (Climatizador)

00000001 (Climatizador)

Mostrara por la consola:

True

3. Si queremos quitar algun extra al coche usaremos el and de bit & y la negacién de bit ~

extras &= ~Extra.Climatizador;
Console.WriteLine(extras);
Console.WriteLine("{Convert.ToString((byte)extras, 2).PadLeft(8, '0')}");

11/13 Programacién 1° DAM Unidad 9 IES Doctor Balmis



Estaremos haciendo la operacion:

00000101 (Climatizador | FulllLed)
AND 11111110 (~Climatizador)

00000100 (Fullled)

Mostrara por la consola:

FullLed

00000100

Ejemplo:

En el siguiente cdédigo vamos a definir una enumeracién no excluyente para almacenar los
estados combinados de un juego de plataformas. De tal manera que la primera letra del 'flag'
me va a activar o desactivar dicho estado (El enumerado del estado deberia empezar por una
letra diferente). Mostrandome tras cada pulsacion como se encuentran los flags, tanto el valor
de enumerado como el valor interno en binario del enum.

Ademas, indicaremos que teclas activaran o desactivaran un deteminado estado.

# Nota: Fijate como el cddigo se ha implementado para que funcione,
independientemente del nombre que hemos asignado al flag en la enumeracion y del
numero de flags que tengamos definidos.

public class Ejemplo

{

[Flags]

public enum PlayerState : byte

{
None = 0b_0000_0000,
PowerUp = 0b 0000 0001,
Walking = ©b_0000_ 0010,
Jumping = Ob_0000_0100,
Attacking = ©b_0000_1000,
Shield = 0b_0001_ 0000,

}

12/13 Programacioén 1° DAM Unidad 9 IES Doctor Balmis



public static string GameOptions()

{
string options = "Game keys ( ";
foreach (PlayerState playerState in Enum.GetValues(typeof(PlayerState)))
options += $"'{playerState.ToString()[@]}"' = {playerState} ";
options += ") Press E to Exit.";
return options;
}

public static PlayerState StateAccordingToKey(char key)

{
PlayerState stateForKey = PlayerState.None;
foreach (PlayerState s in (PlayerState[])Enum.GetValues(typeof(PlayerState)))
{
if (s.ToString()[0] == key)
{
stateForKey = s;
break;
}
}
return stateForKey;
}

public static void Main()
{
Console.CursorVisible = false;
char key;
PlayerState state = default;
string gameOptions = GameOptions();
do
{
Console.WriteLine($"PlayerStarte = {state} ({Convert.ToString((byte)state, 2).PadLeft(8, '®©
Console.WritelLine(gameOptions);
key = char.ToUpper(Console.ReadKey(true).KeyChar);
PlayerState stateToSwitch = StateAccordingToKey(key);
if ((state & stateToSwitch) == stateToSwitch)
state &= ~stateToSwitch;
else
state |= stateToSwitch;

}
while (key != 'E');

13/13 Programacion 1° DAM Unidad 9 IES Doctor Balmis



