
Índice
Ejercicio 1. Sistema de gestión de niveles de dificultad
Ejercicio 2. Control de abono de transporte urbano
Ejercicio 3. Gestión de estados de pedidos
Ejercicio 4. Dieta semanal vegetariana
Ejercicio 5. Sistema de turnos de trabajo con flags

Ejercicios Unidad 9
Descargar estos ejercicios

Antes de empezar

Para realizar estos ejercicios, deberás descargar los recursos del enlace de
proyecto_enumeraciones. Como puedes ver, la solución está compuesta de varios proyectos.
Cada uno de ellos corresponde con un ejercicio, deberás implementar todo el código, tanto de
la Main como de los métodos que se piden en cada ejercicio. Cada proyecto contiene el test
correspondiente, que deberás pasar para comprobar que has hecho el ejercicio correctamente.



1/12 Ejercicios Unidad 9 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u9_enumerados/ejercicios/1_ejercicios/1_ejercicios_enumerados.pdf
file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u9_enumerados/ejercicios/1_ejercicios/recursos/1_ejercicios_enumerados_recurso.zip

2/12 Ejercicios Unidad 9 IES Doctor Balmis

Ejercicio 1. Sistema de gestión de niveles de
dificultad
Programa que gestione diferentes niveles de dificultad en un videojuego.

Ejercicio 1: Sistema de gestión de niveles de dificultad

=== CONFIGURACIÓN DE DIFICULTAD ===

Niveles disponibles: Facil, Medio, Dificil, Extremo

Introduce el nivel deseado: Facil

Nivel seleccionado: Facil

=== ESTADÍSTICAS DEL NIVEL ===

Nivel: Facil

Vidas: 10

Puntos por enemigo: 5

¿Quieres probar otro nivel? (S/N): s

Introduce el nivel deseado: dfa

Nivel no válido. Niveles disponibles: Facil, Medio, Dificil, Extremo

Introduce el nivel deseado: Extremo

Nivel seleccionado: Extremo

=== ESTADÍSTICAS DEL NIVEL ===

Nivel: Extremo

Vidas: 1

Puntos por enemigo: 50

¿Quieres probar otro nivel? (S/N): n

¡Gracias por jugar!

Requisitos:

Definir la enumeración NivelDificultad con valores: Facil, Medio, Dificil, Extremo.
Método RecogeNivel devuelve un NivelDificultad válido a partir de la cadena que se le pida
al usuario, gestionando los posibles errores:

Usar Enum.GetNames para mostrar niveles disponibles y Enum.TryParse para validación.
Método ObtenVidas que devuelva el número de vidas según el nivel (Facil=10, Medio=5,
Dificil=3, Extremo=1).

3/12 Ejercicios Unidad 9 IES Doctor Balmis

Método ObtenPuntosPorEnemigo que devuelva puntos según el nivel (Facil=5, Medio=15,
Dificil=30, Extremo=50).
Método MuestraEstadisticas que muestre toda la información del nivel.

4/12 Ejercicios Unidad 9 IES Doctor Balmis

Ejercicio 2. Control de abono de transporte urbano
Programa que permita controlar el coste del abono de transporte urbano de una ciudad.

Ejercicio 2: Control de abono de transporte urbano

=== CALCULADORA DE ABONOS ===

Tipos de abono disponibles: QuinceDias, TreintaDias, FamiliasNumerosas, TerceraEdad, Di

Introduce el tipo de abono: juvenil

Tipo de abono seleccionado: Juvenil

Los abonos QuinceDias y TreintaDias tienen duración fija.

Para otros abonos, introduce días (mínimo 7, máximo 60): 15

=== DETALLES DEL ABONO ===

Tipo de abono: Juvenil

Precio por viaje: 0,65€

Días del abono: 15

Coste total del abono: 9,75€

¿Quieres calcular otro abono? (S/N): s

Introduce el tipo de abono: quincedias

Tipo de abono seleccionado: QuinceDias

=== DETALLES DEL ABONO ===

Tipo de abono: QuinceDias

Precio por viaje: 0,70€

Días del abono: 15 (fijo)

Coste total del abono: 10,50€

¿Quieres calcular otro abono? (S/N): n

¡Gracias por usar nuestro servicio!

Requisitos:

Definir la enumeración TipoAbono con valores: QuinceDias=70, TreintaDias=60,
FamiliasNumerosas=50, TerceraEdad=30, Discapacidad=20, Juvenil=65, Infantil=35,
Turistico=90.

Los valores representan el precio por viaje en céntimos (dividir entre 100 para obtener
euros).

Método RecogeAbono que pida y devuelva el abono, realizando una validación correcta
usando Enum.TryParse .

5/12 Ejercicios Unidad 9 IES Doctor Balmis

Método EsAbonoFijo que determine si un abono tiene duración fija (QuinceDias=15 días,
TreintaDias=30 días).
Método RecogeDias Al que le llega el tipo de abono y usando el anterior, pide el número de
días (7-60) para abonos no fijos, con validación y los devuelve.
Método CalculaCosteTotal que calcule el coste multiplicando precio por viaje por número
de días. A este método le llegará el tipo de abono a calcular y el total de días para los que
se quiere el abono. Este método devolverá una tupla con el coste total y los días.
Método MuestraDetalle que muestre toda la información del abono calculado.
Usar bucles do-while para validación de entrada y control del programa principal.

6/12 Ejercicios Unidad 9 IES Doctor Balmis

Ejercicio 3. Gestión de estados de pedidos
Programa que gestione los estados de pedidos en una tienda online usando arrays.

Ejercicio 3: Gestión de estados de pedidos

=== SISTEMA DE PEDIDOS ===

Estados disponibles: Pendiente, Procesando, Enviado, Entregado, Cancelado

Número de pedidos a gestionar: r

Número de pedidos a gestionar: 5

--- ASIGNACIÓN DE ESTADOS ---

Pedido 1 - Introduce estado: pendiente

Pedido 2 - Introduce estado: procesando

Pedido 3 - Introduce estado: enviado

Pedido 4 - Introduce estado: entregaos

Estado no válido. Estados disponibles: Pendiente, Procesando, Enviado, Entregado, Cance

Pedido 4 - Introduce estado: entregado

Pedido 5 - Introduce estado: cancelado

=== RESUMEN DE PEDIDOS ===

Pedido 1: Pendiente

Pedido 2: Procesando

Pedido 3: Enviado

Pedido 4: Entregado

Pedido 5: Cancelado

=== ESTADÍSTICAS ===

Pendiente: 1 pedidos

Procesando: 1 pedidos

Enviado: 1 pedidos

Entregado: 1 pedidos

Cancelado: 1 pedidos

=== PEDIDOS ACTIVOS (no entregados ni cancelados) ===

Pedido 1: Pendiente

Pedido 2: Procesando

Pedido 3: Enviado

Total de pedidos activos: 3

Requisitos:

Definir la enumeración EstadoPedido con valores: Pendiente, Procesando, Enviado,
Entregado, Cancelado.

7/12 Ejercicios Unidad 9 IES Doctor Balmis

Usar un array EstadoPedido[] para almacenar los estados de los pedidos.
Método AsignaEstados que pida estados para cada pedido usando Enum.TryParse . Si se
introduce entrada no valida, se mostrarán los estados y se volverá a pedir.
Método MuestraResumen que muestre todos los pedidos con sus estados.
Método CuentaPorEstado que cuente cuántos pedidos hay de cada estado usando bucles.
Recuerda que cada elemento de una enumeración está asociado a un entero.
Método MuestraEstadisticas que muestre el recuento de cada estado.
Método MuestraPedidosActivos que muestre solo pedidos que no estén Entregado ni
Cancelado.
Usar bucles for y foreach para recorrer el array de pedidos.

8/12 Ejercicios Unidad 9 IES Doctor Balmis

Ejercicio 4. Dieta semanal vegetariana
Programa que genere de manera aleatoria una dieta semanal para las cenas basada en platos
vegetarianos.

Ejercicio 4: Dieta semanal vegetariana

=== GENERADOR DE DIETA SEMANAL ===

Generando dieta aleatoria para la semana...

=== DIETA DE LA SEMANA ===

Lunes: PastaConPesto (450 calorías)

Martes: SushiVegetariano (500 calorías)

Miércoles: SopaDeLentejas (250 calorías)

Jueves: CazuelaDeVegetales (300 calorías)

Viernes: HamburguesaVegetal (300 calorías)

Sábado: WrapDeVerdurasYHummus (300 calorías)

Domingo: BerenjenasAlHornoConQueso (250 calorías)

=== ANÁLISIS NUTRICIONAL ===

Calorías totales de la semana: 2350

Promedio de calorías por día: 335.71

Día con menos calorías: Miércoles (SopaDeLentejas - 250 calorías)

Día con más calorías: Martes (SushiVegetariano - 500 calorías)

¿Quieres generar otra dieta? (S/N): s

=== NUEVA DIETA GENERADA ===

Lunes: EnsaladaDeQuinoa (350 calorías)

Martes: FalafelConEnsalada (400 calorías)

Miércoles: CremaDeCalabaza (150 calorías)

Jueves: PizzaVegetariana (500 calorías)

Viernes: ArrozFritoConTofu (400 calorías)

Sábado: ChilesRellenosDeQueso (350 calorías)

Domingo: GnocchiConSalsaDeTomate (450 calorías)

Día con menos calorías: Miércoles (CremaDeCalabaza - 150 calorías)

¿Quieres generar otra dieta? (S/N): n

¡Que disfrutes de tu dieta vegetariana!

Requisitos:

9/12 Ejercicios Unidad 9 IES Doctor Balmis

Definir enumeración DiaSemana con valores: Lunes, Martes, Miercoles, Jueves, Viernes,
Sabado, Domingo.
Definir enumeración PlatoVegetariano con valores: EnsaladaDeQuinoa,
CurryDeGarbanzos, HamburguesaVegetal, SopaDeLentejas, PastaConPesto,
FalafelConEnsalada, TortillaDeEspinacas, CremaDeCalabaza, SushiVegetariano,
PizzaVegetariana, BowlDeAvenaConFrutas, SmoothieVerde, WrapDeVerdurasYHummus,
ArrozFritoConTofu, CazuelaDeVegetales, ChilesRellenosDeQueso,
GnocchiConSalsaDeTomate, BerenjenasAlHornoConQueso.
Array caloriasPlatos con las calorías de cada plato: {350, 400, 300, 250, 450, 400, 200,
150, 500, 500, 350, 200, 300, 400, 300, 350, 450, 250}.
Método GeneraDietaSemana que devuelva un array con 7 platos asignados aleatoriamente
sin repetir.
Método MuestraDietaSemana que muestre los platos asignados a cada día con formato
específico.
Método DiaConMenosCalorias que devuelva el día con el plato de menor cantidad de
calorías.
Método DiaConMasCalorias que devuelva el día con el plato de mayor cantidad de
calorías.
Método CaloriasDieta que calcule y devuelva las calorías totales de la semana.
Método PromedioCaloriasDiarias que calcule el promedio de calorías por día.
Usar la clase Random para generar la dieta aleatoria, bucles y llamadas a los métodos que
resuelvan un problema,
para evitar repeticiones.

10/12 Ejercicios Unidad 9 IES Doctor Balmis

Ejercicio 5. Sistema de turnos de trabajo con flags
Programa que gestione turnos de trabajo usando enumeración con flags.

Ejercicio 5: Sistema de turnos de trabajo con flags

=== GESTIÓN DE TURNOS ===

Empleado: Juan Pérez

Turnos disponibles:

M = Mañana, T = Tarde, N = Noche, F = FinDeSemana

Introduce turnos asignados (ej: MTF): mt

=== INFORMACIÓN DEL EMPLEADO ===

Empleado: Juan Pérez

Turnos: Mañana, Tarde

Horas semanales: 16

Salario base: 1280.00€

Operaciones disponibles:

A = Añadir turno, Q = Quitar turno, M = Mostrar info, S = Salir

Operación: a

Turno a añadir (M/T/N/F): f

Turno FinDeSemana añadido.

Operaciones disponibles:

A = Añadir turno, Q = Quitar turno, M = Mostrar info, S = Salir

Operación: q

Turno a quitar (M/T/N/F): t

Turno Tarde quitado.

Operación: m

=== INFORMACIÓN DEL EMPLEADO ===

Empleado: Juan Pérez

Turnos: Mañana, FinDeSemana

Horas semanales: 18

Salario base: 1480.00€

Operación: s

¡Hasta luego!

Requisitos:

11/12 Ejercicios Unidad 9 IES Doctor Balmis

Definir enumeración TurnoTrabajo con atributo [Flags] : Ninguno=0b_0000_0000,
Mañana=0b_0000_0001, Tarde=0b_0000_0010, Noche=0b_0000_0100,
FinDeSemana=0b_0000_1000.
Método CaracterATurno que a partir de un carácter ('M','T','N','F') como parámetro de
entrada, devuelva el valor correspondiente de la enumeración TurnoTrabajo . Puedes usar
un switch de expresión.
Método ParseaTurnos que convierta una string con todos los caracteres de los turnos
(parámetro de entrada al método), a la variable de retorno de tipo TurnoTrabajo con la
combinación de turnos, usando operaciones de bits y el método anterior.
Método TieneTurno al que le llegan dos parámetros de entrada de tipo TurnoTrabajo, uno
con todos los turnos del empleado y otro con el turno a verificar. Con esto se debe verificar
si un empleado tiene un turno específico usando operaciones de bits.
Método CalculaHorasSemanales que calcule el total de horas semanales del empleado
(parámetro de entrada TurnoTrabajo). Según los turnos que tenga, se irán añadiendo las
horas según (Mañana=8h, Tarde=8h, Noche=8h, FinDeSemana=10h). Usa el método
TieneTurno para comprobar si el empleado ha hecho ese turno.
Método CalculaSalario método parecido al anterior, pero que calcule salario base
(€10/hora normal, €15/hora noche, €20/hora fin de semana). Usa el método TieneTurno
para comprobar si el empleado ha hecho ese turno.
Método AñadeTurno al que le llegan los turnos actuales y el turno nuevo y devuelve los
turnos con el nuevo añadido. Usando operador OR (|).
Método QuitaTurno que quite un turno usando operadores AND y NOT (& ~). Igual que el
anterior pero quitando un turno.
Método MuestraInformacion que muestre toda la información del empleado como se
puede ver en la salida. Al método le llegará el nombre del empleado y sus turnos.

12/12 Ejercicios Unidad 9 IES Doctor Balmis

