Unidad 8

Descargar estos apunte en pdf o html

indice

= indice
V¥ Colecciones Homogéneas de Tamano Fijo o Arrays
= [ntroduccién
¥ Tablas Unidimensionales o (Arrays/Vectores)
= |nstanciando y dimensionando arrays
= Indexacion o acceso a los datos de un array
= Recorrer arrays
= Operaciones con arrays
¥ Los tipos Index y Range
= Eltipo Index
= El tipo Range
¥ Operadores de indexacion intervalo .. y final »
= |ndexacion desde el operador final
= QOperador de intervalo ..
= Redimensionando arrays con el operador de propagacion
¥ Pasando y devolviendo arrays en métodos
= Uso para definir un numero indeterminado de parametros
= Usando arrays al definir el interfaz de un método
= Operadores condicionales null en arrays ?. y ?[]
= Operador supersion de null .t (‘null-forgiving’)
V¥ Tablas Dentadas (Jagged Arrays)
= Cocepto de combinacién de tabla homogénea
» |nstanciar tablas dentadas
= Recorrer tablas dentadas

1/41 Programacion 1° DAM Unidad 8 IES Doctor Balmis

file:///C:/unidadB/git/programaciondam/u8_arrays/u8_arrays.pdf
file:///C:/unidadB/git/programaciondam/u8_arrays/u8_arrays.html

Colecciones Homogéneas de Tamano Fijo o Arrays

Introduccion

En esta unidad vamos a ver como organizar datos
homogéneos en memoria de forma que podamos acceder a
ellos de forma rapida y sencilla. Para ello, vamos a ver las
tablas unidimensionales o arrays y también otros
conceptos como indices, rangos etc. Ademas, veremos un
caso tipico de estructura multidimensional a través de las
tablas dentadas o Jagged arrays.

Dichas estructuras nos permitiran almacenar un numero
indeterminado de datos del mismo tipo, de forma que
podamos acceder a ellos de forma rapida, sencilla 'y

eficiente. Ademas, vamos a poder encontrarlas en casi todos
los lenguajes de programacion como los tradicionales como
C, C++, o0 los mas modernos como Java, JavaScript,
Python, C#, Kotlin etc.

Vemos pues los dos tipos de estructuras de tamafo fijo mas usadas o comunes en la programacion
tradicional:

Tablas Unidimensionales o (Arrays/Vectores)

Es una organizacion de datos que se caracteriza porque todos los componentes con las siguiente
caracteristicas generales:

e Son del mismo tipo (homogénea).

o Se pueden acceder arbitrariamente y son igualmente accesibles (acceso directo de coste O(1)).

e Tienen un tamafio fijo, es decir, se definen con un numero de datos que no deberia cambiar una vez
definido (tamafo fijo).

o Se pueden recorrer de forma secuencial (iterables).

e Se pueden indexar a través de un numero entero que indica la posicién del dato dentro de la tabla
(indexables).

» Algunos lenguajes permiten definirlas de forma inmutable, es decir, que no se pueden modificar una
vez creadas (inmutables).

» En algunos lenguajes, como C#, se pueden definir de forma dinamica, es decir, que se pueden
redimensionar en tiempo de ejecucion (dinamicas), Aunque esto ultimo no es buena idea porque es
una operacion muy costosa.

2/41 Programacién 1° DAM Unidad 8 IES Doctor Balmis

» En los lenguajes débilmente tipados como JavaScript o Python se pueden definir arrays
heterogéneos, es decir, que pueden contener datos de diferentes tipos. Aunque esto no es

recomendable porque puede generar errores dificiles de depurar.

Instanciando y dimensionando arrays

Caso 1: Definimos solo el tipo del array, ain no lo hemos
instanciado en memoria, por lo que aun no podemos
acceder a sus datos. En este caso, el array se define como
un tipo de referencia y por tanto su valor sera null hasta
que lo instanciemos.

<Tipo>[] <identificadorTabla>;

double[] v1;
double[] vl = default;

Caso 2: Definimos el tipo del array y ademas lo instanciamos
en memoria, es decir, reservamos espacio para €l. En este
caso, el array se define como un tipo de valor double y por
tanto el contenido de cada 'celda' sera e.eb hasta que lo
inicialicemos con un valor concreto.

<Tipo>[] <identificadorTabla> = new <Tipo>[<numeroElementos>];

double[] v2 = new double[4];
X
double[] v2 = new double[];

3/41 Programacién 1° DAM Unidad 8 IES Doctor Balmis

null

v2 : double]]
Length=4

O 1 2 3

0.0(0.0|0.0{0.0

Caso 3: Definimos el tipo del array, lo instanciamos en

memoria y ademas le asignamos un valor a cada dato. En v3 : double]]

este caso, el array se define como un tipo de valor double y Length=3

los datos dentro del array tomaran el valor que les

asignemos. 0o 1 2
0.1(0.2]-1.7

// En este crearemos un objeto tabla con espacio en su interior para guardar numeroElementos
// y ademas estamos definiendo por extension cada dato.
// numeroElementos sera opcional y si se pone debe coincidir con el numero de datos

<Tipo>[] <identificadorTabla> = new <Tipo>[<numeroElementosOpcional>] { datol, dato2, .. , datoN };

double[] v3 = new double[]{ 0.1, 0.2, -1.7 };
// También podemos simplificar la sintaxis y no poner el numero de datos
double[] v3 = { 0.1, 0.2, -1.7 };

// XK ERROR al no coincidir el nimero de datos con el numero de datos del array.
double[] v3 = new double[2]{ ©.1, 0.2, -1.7 };

Desde .NET 8 se han afiadido al lenguaje las denominadas expresiones de coleccion estas permiten
definir expresiones que se evaluan a una coleccion de forma similar a como se hace en otros lenguajes
como JavaScript utilizando corchetes [] lo cual nos puede ser mas familiar.

double[] v3 = [0.1, 0.2, -1.7];

Asi mismo, se pueden combinar arrays de forma sencilla utilizando el operador .. dato de propagacion.
Similar al ... (spread operator) de JavaScript siendo otro ‘guifio’ al lenguaje.

double[] va = [1.3, -2.9, 3.45];
double[] vb = [-4.88, 5.3, 6.7];
double[] vc [7.9, 8.45, -9.6];
double[] unionVvlv2yVv3 = [.. va, .. vb, .. vc];

¢) Sugenerncia

Esta forma sera preferible a las anteriores, ya que es mas legible, evita errores de sintaxis y se
parece mas a la forma de definir arrays en otros lenguajes.

4/41 Programacion 1° DAM Unidad 8 IES Doctor Balmis

https://learn.microsoft.com/es-es/dotnet/csharp/language-reference/operators/collection-expressions
https://learn.microsoft.com/es-es/dotnet/csharp/language-reference/operators/collection-expressions#spread-element

Caso 4: Si solo dimensionamos y el tipo de los datos del

array es un tipo referencia, los valores dentro del mismo se

T , v4 : string(]
oficializaran a referencias a null. Puesto que tras reservar el
espacio, aun no se habran instanciando cada uno de los
_ _] _ null | null { null
objetos. Por ejemplo para el tipo referencia string :
0 1 2

string[] v4 = new string[3];
// Contendrd [null, null, null]

5/41 Programacién 1° DAM Unidad 8 IES Doctor Balmis

Indexacidén o acceso a los datos de un array

Los datos de un "array" responden a un nombre de variable o identificador comun y se indexan por el valor
de una expresidén entera, escrita entre corchetes (operador []), lamada indice.

Esta expresion entera nos servira de indice comenzando desde cero y si accedemos mas alla del tamafio

dimensionado se producira el error outofBoundsException

e Limite inferior del indice = 0
 Limite superior del indice = Longitud-1

Imaginemos el siguiente cédigo donde definimos un array de enteros y accedemos a sus datos a través de
su indice.

int[] v = [35, 23, 12, 99];

Console.Write(v[0@]);
Console.Write(v[3]);
Console.Write(v[5]); X
v[2] = 44;

Console.Write(v[0]); \\ Muestra 35

35 (23| 12|99

Console.Write(v[3]); \\ Muestra 99
35|23 |12 |99

Console.Write(v[5]); \\ X ERROR
3512312 | 99 X

v[2] = 44; \\ Asigna 44 al indice 2

35|23 |44 | 99

6/41 Programacién 1° DAM Unidad 8 IES Doctor Balmis

Recorrer arrays

Tendremos, basicamente, dos formas de recorrer un array. \Veamos por ejemplo como sumar los datos

de un array de tipo double recorriendo el array donde definimos inicialmente...

double[] v = [2.0, 4.0, 5.0 ,6.0];
double suma = 0.0d;

1.

7/41

Modificando el valor de un indice nombrado por convenio con el identificador i a modo de contador y
con el que recorreremos todos los datos.

Podremos saber la longitud de un array dimensionado en la inicializacion a través de la propiedad
v.Length .

Basicamente podremos hacerlo a través de un bucle for .

for (int 1 = 0; i < v.Length; ++i)

{

suma += v[i];

. Los arrays tienen una propiedad que veremos mas adelante y el que son recorribles o iterables de

forma secuencial. Siempre que una coleccion o estructura de datos sea iterable, podremos recorrerla
a través de un bucle foreach .

Basicamente, la instruccion foreach €s una variante del for pensada, especialmente, para
compactar la escritura de cédigos donde se realice algun tratamiento a todos los datos de una
secuencia de datos donde no necesitamos saber la posicién o indice.

En ella, tendremos un bucle con tantas iteraciones como datos en la secuencia. Ademas, en cada
iteracion la variable definida, que sera local al ambito del foreach , tomara el valor de cada uno de los
datos de la secuencia, de forma ordenada.

foreach (double dato in v)

{

suma += dato;

}

// Podemos usar el método Index() que me devolverd tuplas con el indice y dato.
foreach (var (i, dato) in v.Index())
{

Console.WriteLine($"v[{i}] -> {dato}");

}

// Variante alternativa a lo anteriors
foreach (var (i, _) in v.Index())

{
Console.WritelLine($"v[{i}] -> {v[il}");

Programacién 1° DAM Unidad 8 IES Doctor Balmis

«” Ampliaciéon opcional:

Veamos como definir los ejemplos anteriores de definicion y recorrido de un array en otros lenguajes
como Python o Kotlin para que puedas reconocer equivalencias con C#.

Python:

v = [2.0, 4.0, 5.0, 6.90]
suma = 0.0

for i in range(len(v)):

suma += v[i]

for dato in v:

suma += dato

for i, dato in enumerate(v):
v[i] es el dato en la posicidn i
print(f"v[{i}] -> {dato}")

Kotlin:

val v = 1ist0f(2.0, 4.9, 5.0, 6.0)

var suma = 0.0

for (i in v.indices) {

suma += v[i]

for (dato in v) {
suma += dato

for ((i, dato) in v.withIndex()) {
// v[i] es el dato en la posicién i
println("v[$i] -> $dato")

Fijate que en otros lenguajes solo disponemos de for con diferentes sintaxis. No haciendo distincion
entre for y foreach como en C#.

8/41 Programacion 1° DAM Unidad 8 IES Doctor Balmis

Operaciones con arrays

0 Enlaces

 Documentacién oficial de la clase Array
e Split, Join
+ IndexOf, Sort, Resize, Clear, Copy.

En este apartado veremos algunas operaciones que podemos realizar con arrays y que nos seran muy
utiles para trabajar con ellos. Ademas, muchas de ellas son comunes a otros lenguajes de

programacion.

1. static string string.Join(<separador>, array)
e Es un método estatico de la clase string .
o Me permite 'unir los datos de un array a través de un separador para representarlos o
enumerarlos.
e <separador> puede ser un string o un char
o Retornara una cadena con los datos del array separados por el separador.

string[] provincias = ["Barcelona", "Tarragona", "Girona", "Lleida"];

string t = string.Join(", ", provincias);

Console.WritelLine(t);

Mostrara al ejecutar:

Barcelona, Tarragona, Girona, Lleida

2. string[] objString.Split(params char[]? separadores, opcionesDeTroceado)
¢ Es una operacion sobre un objeto cadena string .
» Retornara un array con el resultado de 'frocear' o dividir el objeto cadena al que lo aplicamos, por
los caracteres de separacion que recibe como parametros.
e En opcionesDeTroceado podemos usar StringSplitOptions.RemoveEmptyEntries para evitar que

tras el troceado queden cadenas vacias.

9/41 Programacién 1° DAM Unidad 8 IES Doctor Balmis

https://learn.microsoft.com/es-es/dotnet/api/system.array?view=net-9.0
https://learn.microsoft.com/es-es/dotnet/csharp/how-to/parse-strings-using-split
https://learn.microsoft.com/es-es/dotnet/api/system.string.join?view=net-9.0#system-string-join(system-string-system-string())
https://learn.microsoft.com/es-es/dotnet/api/system.array.indexof?view=net-9.0
https://learn.microsoft.com/es-es/dotnet/api/system.array.sort?view=net-9.0
https://learn.microsoft.com/es-es/dotnet/api/system.array.resize?view=net-9.0
https://learn.microsoft.com/es-es/dotnet/api/system.array.clear?view=net-9.0
https://learn.microsoft.com/es-es/dotnet/api/system.array.copy?view=net-9.0

string t = "Barcelona, Tarragona, Girona;Lleida";
string[] provincias = t.Split(",; ".ToCharArray(), StringSplitOptions.RemoveEmptyEntries);

foreach (string provincia in provincias)

{

Console.WritelLine(provincia);

Mostrara al ejecutar:

Barcelona
Tarragona

Girona
Lleida

3. static int Array.IndexOf(array, <dato>)
e Es un método estatico de la clase Array .
o Busca linealmente O(n) un dato en el array y retorna el indice donde se encuentra o -1 si no lo

encuentra.

string[] v = ["Barcelona", "Tarragona", "Girona", "Lleida"];
Console.WriteLine(string.Join(", ", Vv));

Console.WriteLine(Array.IndexOf(v, "Girona"));

Console.WriteLine(Array.IndexOf(v, "Alicante"));

Mostrara al ejecutar:

Barcelona, Tarragona, Girona, Lleida

Recuerda, no confundirla con objArray.Index() que hemos usado al recorrer un array y nos
devuelve las tuplas que contienen el indice y el dato del objeto array al que lo aplicamos.

string[] v = ["Barcelona", "Tarragona", "Girona", "Lleida"];
(int i, string dato)[] tuplas = v.Index().ToArray();
Console.WriteLine(string.Join("\n", tuplas));

Mostrara al ejecutar:

Barcelona)
Tarragona)

Girona)
Lleida)

10/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

4. static void Array.Sort(array)
Ordena el array que recibe como parametro, pero 'solo si el contenido del array es un tipo basico como
int, double, string, etc...' mas adelante veremos como usarlo en tipos mas complejos.
string[] v = ["Barcelona", "Tarragona", "Girona", "Lleida"];

Array.Sort(v);

Console.WriteLine(string.Join(", ", Vv));

Mostrara al ejecutar:

Barcelona, Girona, Lleida, Tarragona

5. static void Array.Resize(ref array, int newSize) (=+ y .1, en deshuso)
¢ Redimensiona un array a un nuevo tamano.
» Si el nuevo tamafio es mayor que el actual, se anaden nuevos datos al final del array con el valor
default del tipo que contenga.
¢ Si el nuevo tamano es menor que el actual, se eliminan los datos del final del array.
string[] v = ["Barcelona", "Tarragona", "Girona", "Lleida"];
Array.Resize(ref v, v.Length + 1);

v[v.Length - 1] = "Tabarnia":

Console.WriteLine(string.Join(", ", v));

Mostrara al ejecutar:

Barcelona, Tarragona, Girona, Lleida, Tabarnia

Aviso

Este opreracion es costosa porque implica crear un nuevo array y copiar los datos del antiguo al
nuevo. Por tanto, no es recomendable usarla en bucles o de forma repetitiva. Mas adelante
veremos el uso de List<T> que es una coleccidén dinamica que nos permite anadir y eliminar
datos de forma mas eficiente. Ademas, también podremos usar el operador .. para afiadir
datos a un array de forma mas sencilla y que veremos mas adelante.

6. == static void Array.Clear(array, int index, int length) (=+ y .1, en deshuso)
'Borra’ datos en una array. Esto es, los deja al valor default del tipo que contenga.

string[] v = ["Barcelona", "Tarragona", "Girona", "Lleida"];
int i = Array.IndexOf(v, "Girona");

Array.Clear(v, i, v.Length - i);

Console.WriteLine(string.Join(", ", Vv));

11/41 Programacién 1° DAM Unidad 8 IES Doctor Balmis

Mostrara al ejecutar:

Barcelona, Tarragona, |,

Aviso

Fijate que aunque se han eliminado los datos, el array sigue teniendo el mismo tamafo y por
tanto se muestran las posiciones borradas como null . Una forma de eliminar los datos de un
array es redimensionandolo a un tamafio menor usando Array.Resize() . Mas adelante
veremos un ejemplo que simplifica este cédigo usando rangos.

string[] v = ["Barcelona", "Tarragona", "Girona", "Lleida"];

int i = Array.IndexOf(v, "Girona");
Array.Clear(v, i, v.Length - i);
Array.Resize(ref v, i);

Console.WriteLine(string.Join(", ", Vv));

Mostrara al ejecutar:

Barcelona, Tarragona

7. static void Array.Copy(array sourceArray, array destinationArray, int length) (.1, en deshuso)
» Copia los datos de un array a otro.
o Si el destino es mas pequefio que el origen, se copiaran los primeros datos del origen hasta
completar el destino.
o Si el destino es mas grande que el origen, se copiaran todos los datos del origen y el resto
quedara al valor default del tipo que contenga.
Ejemplo similar al anterior, pero usando Array.Copy() para copiar las provincias hasta la posicién de
Girona, sin incluirla.
string[] v = ["Barcelona"”, "Tarragona", "Girona", "Lleida"];
int i = Array.IndexOf(v, "Girona");
string[] copia = new string[i];

Array.Copy(v, copia, i);

Console.WriteLine(string.Join(", ", copia));

Mostrara al ejecutar:

Barcelona, Tarragona

12/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

Los tipos Index y Range

0 Enlaces

e Documentacion oficial

Tipo Index

Tipo Range

Indexacion desde el operador final #

Operador de intervalo ..

El tipo Index

Ademas de con enteros, vamos a poder indexar arrays con un tipo denominado Index que me permitira
definir una posicién en un array empezando desde el comienzo o desde el final.

string[] palabras = ["cero", "uno", "dos", "tres"];

// Usamos public Index (int value, bool fromEnd = false);
// Indice que toma el primer dato desde el final.
Index i = new Index(1, true);

Console.WriteLine(palabras[i]); // Mostrara "tres"

// Indice que toma el primer dato desde el principio.
i = new Index(9);

Console.WriteLine(palabras[i]); // Mostrara "cero"

El tipo Range

Ademas del tipo Index, existe un tipo Range que podremos traducir como rango o intervalo. Que me
servira para describir un subconjunto de datos contiguos dentro de un array desde un determinado indice

de comienzo hasta uno de fin.

Son bastante utiles si queremos extraer un subconjunto de datos de un array a partir de un par de indices

que hagan de limites.

string[] palabras = ["cero", "uno", "dos", "tres"];

// Cogemos el segundo dato como inicio del intervalo y el ultimo de forma excluyente.
Range intervalo = new Range(new Index(1), new Index(1, true));

string[] palabrasSinLosExtremos = palabras[intervalo];

// Mostrara "uno", "dos"

Console.WritelLine(string.Join(", ", palabrasSinLosExtremos));

13/41 Programacion 1° DAM Unidad 8 IES Doctor Balmis

https://docs.microsoft.com/es-ES/dotnet/api/system.index
https://docs.microsoft.com/es-es/dotnet/api/system.range
https://learn.microsoft.com/es-es/dotnet/csharp/tutorials/ranges-indexes
https://docs.microsoft.com/es-ES/dotnet/api/system.index
https://docs.microsoft.com/es-es/dotnet/api/system.range
https://docs.microsoft.com/es-ES/dotnet/csharp/language-reference/operators/member-access-operators#index-from-end-operator-
https://docs.microsoft.com/es-ES/dotnet/csharp/language-reference/operators/member-access-operators#range-operator-

Operadores de indexacion intervalo .. y final ~

Ya conocemos los tipos Index y Range pero nosotros no los vamos a usar asi, ya que esta forma de
usarlos es poco util y nos va a generar mas codigo. Para ellos, existen unos operadores que nos facilitaran
la labor y simplifican la sintaxis aproximandome a la de otros lenguajes modernos.

2’ Nota

Hemos explicado los tipos Index y Range para que sepamos que tipos hay involucrados, pero
nosotros los vamos a usar de una forma mas simplificada sin tener que hacer new Index() O

new Range() .

Indexacion desde el operador final ~

Se evalua directamente a un tipo Index y equivale a indicar que un indice entero se aplicara empezando
desde el final del array. Veamoslo a través los siguientes ejemplos comentados...

Ejemplo 1:

string[] palabras =

[

// indice desde comienzo indice desde el final
"cero", // © AL
"uno", // 1 A3
"dos", // 2 A
"tres", // 3 ~
1; // 4 (or palabras.Length) "0

// Donde ...
Index u = new Index(1, true);
// equivale a ...

Index u = ~1;

// y por tanto las siguientes expresiones seran equivalente para

// obtener el ultimo dato de un array.

string p

palabras[palabras.Length - 17;

string p = palabras[new Index(1, true)];

string p = palabras[~1];

14/41 Programacion 1° DAM Unidad 8 IES Doctor Balmis

Ejemplo 2:

string[] diasSemana =

[//Indice desde el inicio indice desde el final
"Lunes", // © A7
"Martes", // 1 G
"Miércoles", // 2 Ag
"Jueves", // 3 Vi
"Viernes", // 4 A3
"Sabado", /] 5 A2
"Domingo" // 6 A1
13 // 7 diasSemana.length "0

El indice e representa el primer dato
El indice ~e eslo mismo que diasSemana[diasSemana.Length] , por lo que da error.

Dado un numero n, diasSemana[~n] €s |0 mismo que diasSemana[diasSemana.Length - n]

Console.WriteLine(string.Join(", ", diasSemana));
Console.WriteLine($"La longitud del array es: {diasSemana.Length}");
Console.WritelLine($"E1l primer dia de la semana es: {diasSemana[©]}");

Console.WriteLine($"El ultimo dia de la semana es: {diasSemana[~1]}");

15/41 Programacion 1° DAM Unidad 8 IES Doctor Balmis

Operador de intervalo ..

Permite definir un rango de forma sencilla.

Range intervalo = new Range(new Index(1l), new Index(1, true));
// equivaldra a ...

Range intervalo = 1..71;

y por tanto el cédigo de ejemplo que usamos en los rangos se simplificara muchisimo siendo mucho mas

legible y evitando usar explicitamente los tipos Index y Range .

string[] palabras = { "cero", "uno", "dos", "tres" };

// Mostrara "uno", "dos"

Console.WriteLine(string.Join(", ", palabras[1..”1]));

Ten en cuenta y recuerda que:

» Un rango especifica el inicio y el final de dicho rango de indices.
o ' Importante: El inicio del rango es inclusivo, pero el final es exclusivo, es decir el inicio esta

incluido en el rango, pero el final no.

Veamos uno cuantos ejemplos de uso a través del array de dias de la semana que definimos en los

indices.

string[] diasSemana = ...

string[] diasLaboralesl = diasSemana[©@..5];
Console.Write("Laborales: ");
Console.WriteLine(string.Join(", ", diasLaboralesl));

// Fijate que diaslLaboralesl.Length es 5 - @ =5

string[] finSemanal = diasSemana[5..7];
Console.Write("Fin de semana: ");

Console.WriteLine(string.Join(", ", finSemanal));

// Fijate que finSemanal.lLength es 7 - 5 = 2

string[] finSemana2 = diasSemana[”2..]; // ["2..70]
Console.Write("Fin de semana: ");

Console.WriteLine(string.Join(", ", finSemana2));

string[] diasLaborales2 = diasSemana[..5]; // [0..5]
Console.Write("Laborales: ");
Console.WriteLine(string.Join(", ", diasLaborales2));

string[] finSemana3 = diasSemana[5..];
Console.Write("Fin de semana: ");

Console.WriteLine(string.Join(", ", finSemana3));

16/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

Ademas, se pueden usar variables para los indices y rangos:

Index ultimoDiaSemana = "1;
Index primerDiaSemana = 0;
Console.WriteLine($"El primer dia de la semana es: {diasSemana[primerDiaSemana]}");

Console.WriteLine($"El ultimo dia de la semana es: {diasSemana[ultimoDiaSemana]}");

string[] todosDiasSemana = diasSemana[primerDiaSemana..];
Console.WriteLine(string.Join(", ", todosDiasSemana));

Range diasFinSemana = 5..;
string[] finSemana4 = diasSemana[diasFinSemana];
Console.Write("Fin de semana: ");

Console.WriteLine(string.Join(", ", finSemana4d));

Cuidado

Es muy facil confundir el operador de intervalo .. que me define rangos, con el operador de

propagacion .. que vimos al principio y me permite colocar un array dentro de otro array. Aunque
ambos usan el mismo simbolo, su significado es diferente y por se usan en diferentes contextos.

Veamos un ejemplo de uso de ambos operadores, para hacer una copia de un array en lugar de usar

Array.Copy() por ejemplo:

string[] v = ["be", "eat", "see"];

string[] copiaV = new string[v.Length];
Array.Copy(v, copiaV, copiaV.Length);

1. Usando el operador de rango:
Aqui aplicamos un indizador al array v con el rango e..~e . Esto es, el rango es todos los

elementos del array v .

string[] copiaVl = v[..];

2. Usando el operador de propagacion;

Aqui usamos el operador [] para definir un nuevo array y dentro de él usamos el operador de

propagacion .. para incluir todos los elementos del array v .

string[] copiaV2 = [..v];

17/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

Ejemplo:

Veamos un ejemplo de uso de ambos operadores a la vez para combinar el contenido de arrays en C#.
Para ello en el ejemplo combinaremos los primeros n datos de un array vi con los ultimos n de otro
array v2.

string[] vl = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "i" I;
[T, S W WA DGR Wpn Ol e W

string[] v2

int n = 4;

string[] v3 [..vi[..n], ..v2[*n..] T;

Console.WriteLine(string.Join(", ", v3));

Al ejecutar, obtendremos la siguiente salida en consola:

A Nota: Fijate que el uso de ambos operadores simplifica el codigo y lo hace mas legible.

Veamos a qué equivaldria la expresion string[] v3 = [..vi[..n], ..v2[*n..]]; utilizando los
método tradicionales con Array.Copy() -

var v3 = new string[n + n];
Array.Copy(vl, @, v3, 0, n);
Array.Copy(v2, v2.Length - n, v3, n, n);

Resumen de uso del uso de operadores de rango

Ten en cuenta que, los intervalos [@..5] y [5..7] son consecutivos y disjuntos

Elrango [n..~n] elimina n datos de cada extremo

Ten en cuenta que, si el valor de uno de los extremos es cero se puede omitir. Por tanto, [..n]
es lo mismo que [0..n] yque [n..] eslomismo que [n..”@] y que portanto [@..70] eslo

mismo que [..] .

18/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

«” Ampliaciéon opcional:

Veamos como definir el ejemplo anterior en otros lenguajes como Python, Kotlin o JavaScript para
que puedas reconocer equivalencias con C#.

Python:

vi = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]
V2 = ["1", "2, "3n, mgn, wgn wgn mgm ugu ugn uqgu]
v3 = vi[:n] + v2[-n:]

print(", ".join(v3))

Kotlin:

Val Vl = 1is.to_F(llall) "b", Ilcll) Ildll) Ilell, II_FII, Ilgll’ Ilhll’ Ilill’ Iljll)
val v2 = 1istOf("1", "2", "3", "4", "gn, mgn, uwyn ugn ngn wqgny
val n = 4

val v3 = vl.take(n) + v2.takelLast(n)

println(v3.joinToString(", "))

JavaScript:

let vl =
let v2
let n =14

[PeF, TBT, P, PeP, Pa®, B, F, OhE, PAT, 295
(DT, ToF, T AR BET TET mom opD o TeD Tipm

let v3 = [...v1l.slice(®, n), ...v2.slice(-n)]

console.log(v3.join(", "))

19/41 Programacion 1° DAM Unidad 8 IES Doctor Balmis

Redimensionando arrays con el operador de propagacion

Aunque vimos que existia el método Array.Resize() para redimensionar un array, este método ademas de
ser poco eficiente, es un poco engorroso de usar. Por tanto, en su lugar, podemos usar el operador de
propagacion .. para ir afadiendo datos.

Por ejemplo, supongamos un programa en el que solicitamos al usuario que introduzca nombres hasta que
introduzca la cadena "fin" . Queremos almacenar los nombres en un array y al finalizar mostrar todos los
nombres introducidos. Podremos hacerlo de la siguiente forma:

string[] nombres = [];

string? nombre;

do

{
Console.Write("Introduce un nombre (o 'fin' para terminar): ");
nombre = Console.ReadlLine();

if (!string.IsNullOrEmpty(nombre) && nombre != "fin")
{

nombres = [.. nombres, nombre!];

}

while (nombre != "fin");

string salida = $"Nombres: {string.Join(", ", nombres)}";

Console.WritelLine(salida);
Mostrara al ejecutar:

Introduce un nombre (o 'fin' para terminar):
Introduce un nombre (o 'fin' para terminar):
Introduce un nombre (o 'fin' para terminar):

Introduce un nombre (o 'fin' para terminar):
Nombres: Pepe, Maria, Juana

Aviso

Ten en cuenta que, el operador de propagacion .. como Array.Resize(...) son formas de
redimensionar un array muy poco eficientes. Sobretodo, si se usa en bucles o de forma repetitiva
como en este caso. Mas adelante en el curso, usaremos coleccién dinamica como List<T> para
hacer esto.

20/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

® Caso de estudio 1:

Recordemos nuestro ejemplo en Array.Clear() donde teniamos un array de provincias de Catalufia y
borrabamos las las provincias a partir de una provincia concreta y después redimensionabamos el

array para eliminar las provincias borradas.

string[] v = ["Barcelona"”, "Tarragona", "Girona", "Lleida"];

int i = Array.IndexOf(v, "Girona");
Array.Clear(v, i, v.Length - i);
Array.Resize(ref v, i);

Console.WriteLine(string.Join(", ", Vv));
Ahora, usando intervalos, podemos simplificarlo de la siguiente forma:

string[] v = ["Barcelona", "Tarragona", "Girona", "Lleida"];
int i = Array.IndexOf(v, "Girona");

Console.WriteLine(string.Join(", ", v[..1]));

Ademas de ser mas simple y legible el array original no se modifica, sino que se crea un nuevo array

con los datos del intervalo.

21/41 Programacion 1° DAM Unidad 8 IES Doctor Balmis

® Caso de estudio 2:
Supongamos el siguiente cédigo donde tenemos un array de nombres de alumnos...

string[] nombres =
{
"Ana", "Pepe", "Juan", "Carmen", "Simon", "Emy", "Juanjo", "Xusa",
"Cristina", "Jose", "Mario", "Candela", "Soledad", "Felipe", "Miguel", "Manuel"

1

Random semilla = new Random();

y queremos mostrar grupos de 3 o 4 alumnos consecutivos aleatoriamente, mas un ultimo grupo con
los que nos queden. ¢ Se te ocurre como solucionarlo usando intervalos?

En un primer caso podemos utilizar un bucle anidado o un método auxiliar para rellenar el array de
componentes del grupo.

int i = 0;
while (i < nombres.Length)
{
int compoenentesGrupo = semilla.Next(3, 5);
compoenentesGrupo = i + compoenentesGrupo >= nombres.Length
? nombres.Length - i
: compoenentesGrupo;
// Coédigo a sustituir -----------------“ -
string[] grupo = new string[compoenentesGrupo];
for (int j = @; j < compoenentesGrupo; j++)
{

grupo[j] = nombres[i+j];

Console.WriteLine(string.Join(", ", grupo));

i += compoenentesGrupo;

Otra opcion seria copiar de una sola vez al nuevo array dimensionado.

string[] grupo = new string[compoenentesGrupo];

Array.Copy(nombres, i, grupo, 0, compoenentesGrupo);

Por ultimo, podemos extraer directamente un intervalo.

Console.WriteLine(string.Join(", ", nombres[i..(i + compoenentesGrupo)]));

22/41 Programacion 1° DAM Unidad 8 IES Doctor Balmis

Pasando y devolviendo arrays en métodos

Uso para definir un nimero indeterminado de parametros

Una de las funcionalidades que me ofrecen los arrays, es el caso especial de definir un niumero
indeterminado de parametros formales del mismo tipo en la signatura de los métodos. Lo haremos
anteponiendo la palabra reservada params a un parametro formal de tipo array.

public static class Ejemplo

{
static double Media(params double[]? valores)
{
double media = 0;
if (valores?.Length > 0)
{
double suma = 0;
foreach (double v in valores)
{
suma += Vv;
}
media = suma / valores.Length;
}
return media;
}
public static void Main()
{
double[] valores = [2.0, 5.0, 7.0];
Console.WriteLine(Media(valores));
Console.WritelLine(Media(2.0, 5.0, 7.0));
b
}

Una funcionalidad similar la tendremos en la gran mayoria de lenguajes modernos.

23/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/params

Usando arrays al definir el interfaz de un método

En este apartado pretendemos hacer una reflexion, sobre cémo trabajar con arrays cuando definamos la
signatura de un método. Para ellos, vamos a verlo a través de un ejemplo...
Supongamos que tenemos un array de cadenas con verbos en inglés.

string[] verbs = ["be", "eat", "see"];

Ahora queremos definir un método que modifique el contenido del array para que anteponga la clausula
“to ..." acada verbo devolviendome ["to be", "to eat", "to see"]

Si implementamos la interfaz de la siguiente implementacion...

public class Ejemplo

{
static void AddVerbPrefix(string[] verbs)

{
for (int i = @; i < verbs.Length; i++)
verbs[i] = $"to {verbs[i]}";

/>(<

Cuidado !!!! 1la siguiente implementacion ...

foreach(string verb in verbs)
verb = $"to {verbs[i]}";

No seria valida porque no estamos modificando el contenido del array.
Si lo piensas, las referencias en el array seria las mismas porque no estamos
modificandolas a través del indizador.

*/

public static void Main()

{

string[] verbs = ["be", "eat", "see"];

// Pasamos una copia de la referencia al objeto string[] apuntada por verbs.

AddVerbPrefix(verbs);

Console.WritelLine(string.Join(", ", verbs));

Si nos fijamos en la salida, como AddverbPrefix(verbs); no retorna nada, solo con ver el interfaz y sin
saber como esta implementado el método, podemos deducir que es el contenido del objetos verbs el que
se ha modificando afiadiéndose el prefijo "to" a los verbos del array que define, y por tanto perdiendo el
contenido original donde teniamos los verbos sin prefijo.

24/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

Pero... ¢Coémo lo implementariamos si queremos que me cree un nuevo array de verbos sin
modificar el original?

static string[] AddVerbPrefix(string[] verbs)

{
// Dimensionamos el array donde iran las cadenas modificadas.
// recuerda que los objetos cadena que contiene no estan definidos
// y apuntaran a null.
string[] verbsWithPrefix = new string[verbs.Length];
for (int i = @; i < verbsWithPrefix.Length; i++)
// Instancio la nueva cadena con prefijo en las posiciones del array.
verbsWithPrefix[i] = $"to {verbs[i]}";
// retorno la referencia al array. Debera ser siempre un nuevo objeto instanciado en memoria.
return verbsWithPrefix;
}

string[] verbs = ["be", "eat", "see"];
string[] verbsWithPrefix = AddVerbPrefix(verbs);

Console.WriteLine(string.Join(", ", verbs));

Console.WriteLine(string.Join(", ", verbsWithPrefix));

Si nos fijamos en la salida ambos arrays tendran contenido diferente y de esta forma, no habremos
perdido el array original. Eso si, asumiendo el coste de instanciar y crear uno nuevo.

25/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

Cuidado

Ademas, siempre que veamos una llamada en la que se retorna un objeto

string[] verbsWithPrefix = AddVerbPrefix(verbs); deberemos deducir que es un método 'factoria’
esto es, retorna un objeto nuevo y no el que se le pasé como referencia lo cual puede ser
peligroso. Supongamos que hacemos...

// No confundir esto con lo que se pretendia hacer en el patrdon fluent interface, pues és complétamente difer
// Ya que es un método estatico y no de instancia.

static string[] AddVerbPrefix(string[] verbs)

{
for (int 1 = @; i < verbs.Length; i++)
verbs[i] = $"to {verbs[i]}";
// @ @ Aqui estoy devolviendo la misma referencia que recibo como parametro. (MALA PRACTICA)
return verbs;
b

string[] verbs = ["be", "eat", "see"];
string[] verbsWithPrefix = AddVerbPrefix(verbs);

// Ahora estoy modificando los 2 arrays. (ALIASING)
verbsWithPrefix[0] = "to sit";

Console.WriteLine(string.Join(", ", verbs));

Console.WriteLine(string.Join(", ", verbsWithPrefix));

Ahora, ademas de perder el array con los verbos sin prefijo, verbs y verbsWithPrefix son una
referencia al mismo objeto array en memoria. Por lo que si modifico el contenido de uno, también
modifico el del otro. Produciéndose un efecto denominado ‘aliasing' s .

A Nota: Recuerda que el que usa mi método no tiene por qué conocer su implementacion y
posiblemente asumira que string[] AddverbPrefix(string[] verbs) me devuelve un array
nuevo.

26/41 Programacion 1° DAM Unidad 8 IES Doctor Balmis

® Caso de estudio 1

Vamos a realizar un método que reciba un rango y me devuelva un array de enteros con los numeros

comprendidos en ese rango.

static int[] ValoresEnRango(Range rango)

{
int[] numeros = new int[rango.End.Value - rango.Start.Value];
for (int 1 = 0; i < numeros.Length; i++)
{
numeros[i] = rango.Start.Value + i;
¥
return numeros;
¥

int[] numeros = ValoresEnRango(1..10);

Console.WriteLine(string.Join(", ", numeros));

Mostrara al ejecutar:

Cuidado
¢ Qué no deberiamos hacer nunca?.... Definir el método de la siguiente forma:

static void ValoresEnRango(Range rango, int[] valores)

{
int longitud = rango.End.Value - rango.Start.Value;
Debug.Assert(valores.Length == longitud, "E1 array no tiene la longitud correcta");
for (int 1 = 0; i < longitud; i++)
{
valores[i] = rango.Start.Value + 1i;
}
}

int[] numeros = new int[9];
ValoresEnRango(1..10, numeros);

Console.WriteLine(string.Join(", ", numeros));

27141 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

® Caso de estudio 2

Aunqgue ya hemos visto que el lenguaje ya implementa un método de utilidad para ordenacién de
arrays como es Array.Sort() . Vamos a ver un ejemplo de recorrido e intercambio de datos en un
array a través de un ejemplo y estudiando uno de los algoritmos basicos de ordenacion de arrays,
como es el de la 'burbuja’ (bubble sort).

En este algoritmo, recorreremos el array comparando 2 a 2 los datos contiguos del mismo. De
forma que intercambiaremos cuando un dato sea mayor que su sucesor, asi en un recorrido el dato
mayor promocionara hasta el final del array, por esto se denomina de burbuja porque se dice que
‘asciende' dentro del array como si lo fuera.

Una vez ha ascendido un dato este queda fijo, y volveremos ha comparar 2 a 2 los datos sin tomar el
ultimo, de tal manera que ahora ascendera o promocionara el dato anterior. Este proceso se repetira
sucesivamente, teniendo en cuenta que no tenemos que comparar con los ya promocionados o
fijados.

static int[] Ordena(int[] array)

{
int[] arrayOrdenado = array[..];
for (int 1 = @; i < arrayOrdenado.Length; i++)
{
for (int j = @; j < arrayOrdenado.Length - 1 - i; j++)
{
if (arrayOrdenado[j] > arrayOrdenado[j + 1])
{
int auxiliar = arrayOrdenado[j];
arrayOrdenado[j] = arrayOrdenado[j + 1];
arrayOrdenado[j + 1] = auxiliar;
}
}
}
return arrayOrdenado;
}

int[] array = [5, 6, 4, 2, 3, 1];
int[] arrayOrdenado = Ordena(array);
Console.WriteLine($"Array original: {string.Join(", ", array)}");

Console.WriteLine($"Array ordenado: {string.Join(", ", arrayOrdenado)}");

Recorrido1 (i = 0)
[5, 6,4, 2,3, 1]

[5,6,4,2,3, 1 —[5, 4, 6, 2, 3, 1] Intercambio
[5,6,6,2, 3,1 —[5,4, 2,6, 3, 1] Intercambio
[5,4,2,6,3,11— 1[5, 4, 2, 3, 6, 1] Intercambio
[5,4,2,3,6,1 —[5,4, 2, 3,1, 6] Intercambio
Recorrido2 (i = 1)
[5,4,2,3,1,6]—1[4,5,2,3,1, 6] Intercambio

28/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

https://es.wikipedia.org/wiki/Ordenamiento_de_burbuja

[4,5,2,3,1,6]—[4,2,5, 3,1, 6] Intercambio
[4,2,5,3,1,6]—[4,2, 3,5 1, 6] Intercambio
[4,2,3,51, 6]—[4,2, 3,1,5, 6] Intercambio
Recorrido 3 (i = 2)
[4,2,3,1,5,6]—1[2,4,3,1, 5, 6] Intercambio
2,4,3,1,5,6]—[2,3,4,1, 5, 6] Intercambio
[2,3,4,1,5,6]—[2,3,1,4, 5, 6] Intercambio
Recorrido 4 (i = 3)
2,3,1, 4,5, 6]
2,3,1,4,5,6]—[2,1,3, 4, 5, 6] Intercambio
Recorrido 5 (i = 4)
2,1, 3,4,5,6]->[1,2, 3, 4, 5, 6] Intercambio
[1,2,3,4,5, 6]

29/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

Operadores condicionales null en arrays 2. y ?[]

Puesto que los arrays son objetos 'nullables’, esto es, son tipos que pueden tomar valor null. Tenemos
que saber que uno de los errores mas temidos por los programadores, es tener un valor nulo e intentar
acceder a una propiedad o realizar una operacién sobre dicho array.

Obtendremos un error en tiempo de ejecucion de NullReferenceException . Ademas, nos generara un
warning en tiempo de compilacion indicando que el objeto puede ser nulo.

Este tipo e aviso lo evitaremos como vimos en la Unidad 3 con los operador de fusién y condicionales de
Null 2?2 o 2.

Recordemos a través de un ejemplo...

Ejemplo:

string? t = default; // Inicializamos a null
N ooc
// Nos generara un aviso (WARNING 4,) al compilar. Por que, puede

// que nos olvidamos de asignarle un objeto cadena y sigue a null.

M ooc
Console.WriteLine(t.ToUpper()); // @ NullReferenceException al ejecutar.

& Una posible solucion para eliminar el warning, si estamos seguros que t no va a ser nulo, es usar
el operador de supresion de Null ! que ta usabamos al hacer string t = Console.Readline()! y
sobre el que profundizaremos mas adelante.

string? t = default;

M ooe

t = "Hola";

M ooc
Console.WriteLine(t!.ToUpper());

5 & Una mejor solucion aun sera usar el operador 2. si nop estamos seguros de si vale Null o no.

<= ==

string? t = default;
M ooc
Console.WriteLine(t?.ToUpper() ?? "Cadena Vacia");

Pues bien, esto también nos puede pasar con los arrays. Por ejemplo, si tenemos un array de cadenas que
puede contener valores nulos. Pero puede liarse un poco, veamos estos tres tipos de declaraciones...

30/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

https://docs.microsoft.com/es-ES/dotnet/csharp/language-reference/operators/member-access-operators#null-conditional-operators--and-

1. El primer caso, saludos es un array de cadenas que no pueden ser null, ni puede ser nulo el mismo.

string[] saludos = ["Hola", "Buenas Tardes", "Adios"]; // &
// string[] saludos ["Hola", null, "Adios"]; X
// string[] saludos = null; X

2. El segundo caso, saludos es un array de cadenas que pueden ser null, pero el array en si no puede
ser nulo.
string?[] saludos = ["Hola", "Buenas Tardes", "Adios"]; // &4

string?[] saludos = ["Hola", null, "Adios"]; // &4
// ¥ string?[] saludos = null;

3. El tercer caso, saludos es un array de cadenas que no pueden ser null, pero el array en si puede ser

nulo.

string[]? saludos = ["Hola", "Buenas Tardes", "Adios"]; // &4
// XK string[]? saludos = ["Hola", null, "Adios"];
string[]? saludos = null; // &4

4. El cuarto caso, saludos €s un array de cadenas que pueden ser null y el array en si también puede

ser nulo.

["Hola", "Buenas Tardes", "Adios"]; // &
["Hola", null, "Adios"]; // &4
null; // &4

string?[]? saludos

string?[]? saludos

string?[]? saludos

Esto es porque la ? se aplica al tipo de la izquierda:

1. string[]? : Un array de cadenas anulable.
2. string?[]? : Un array de cadenas anulables que es anulable.

Una vez tenemos claro esto, veamos cémo usar los operadores condicionales de Null 2. y []? en este
caso...

string?[] saludos = ["Hola", null, "Adios"];

// En la segunda cadena obtendremos un NullReferenceException @@

foreach (string? saludo in saludos)
Console.WritelLine(saludo.ToUpper()); // XK saludo puede ser null

// Una posible solucién es combinar una vez mas el operador ?. con ??
foreach (string? saludo in saludos)

Console.WritelLine(saludo?.ToUpper() ?? "No hay dato");

Pero el operador []? entonces. ¢ Cuando se usaria?. En el ejemplo anterior ademas de los objetos que
contiene el array de cadenas, es el propio array de cadenas el que puede estar sin inicializar. Imaginemos

el siguiente cédigo ...

31/41 Programacion 1° DAM Unidad 8 IES Doctor Balmis

string?[]? saludos = default;

// XK Tanto el array como el contenido del array podrian estar a Null.
string? t = saludos[1].ToUpper(); // (4. WARNING !!l)

// & Con operadores ternarios quedaria bastante ilegible y ofuscado
// incluso indentado el cédigo.
string? t = saludos != null
? saludos[1] != null
? saludos[1].ToUpper()
: null

: null;

// & &El cédigo equivalente al anterior usando []? y ?. seria...

string? t = saludos?[1]?.ToUpper();

32/41 Programacion 1° DAM Unidad 8 IES Doctor Balmis

Operador supersion de null .! (‘null-forgiving’)

Es un operador que podemos encontrar en el contexto de algunos lenguajes con control de nulos como C#
(o! y o!.)siendo o una referencia a un objeto anulable.

Es un operador que se usa de forma conjunta o en contraposcion con o?.

Supongamos el siguiente codigo donde permitimos la posibilidad de que una coleccién contenga objetos
anulables ...

public static void Main()

{
string?[]? saludos = ["hola", null, "adios"];
foreach (string? t in saludos)
{
Console.WriteLine($"Texto = {t.ToUpper()}, Logitud = {t.Length}");
¥
}

Sin embargo, si ‘estamos seguros’de que el array no va a contener ningun null. Podemos usar el
operador de supresion de Null. Nos quitara el Waning, haciendo ver al compilador de que somos
conscientes de que el objeto no es nulo y si lo es deberia saltar una excepcion.

public static void Main()

{
string?[]? saludos = ["hola", null, "adios"];
foreach (string? t in saludos!)
{
Console.WritelLine($"Texto = {t!.ToUpper()}, Logitud = {t!.Length}");
¥
}

En contraposicion, si no estamos seguros de que el objeto no sea nulo, deberemos usar los operadores ya

vistos ?. y/o ??.

33/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

https://learn.microsoft.com/es-es/dotnet/csharp/language-reference/operators/null-forgiving

public static void Main()

{
string?[]? saludos = ["hola", null, "adios"];
foreach (string? t in saludos!)
{
string texto = t?.ToUpper() ?? "Nulo";
int longitud = t?.Length ?? ©;
Console.WriteLine($"Texto = {texto}, Logitud = {longitud}");
}
}

Mostrara al ejecutar:

HOLA, Logitud 4
Nulo, Logitud = 0
ADIOS, Logitud = 5

2

I call it my billion-dollar mistake.

Tony Hoare 2009 (Creador del concepto de null en 1965).- ”

34/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

«” Ampliaciéon opcional:

Veamos como pasar a otros lenguajes que manejan nullables el ultimo codigo que hemos hecho en
y asi poder reconocer equivalencias con C#.

El cédigo que hemos visto en C# es el siguiente:

public static void Main()

{
string?[]? saludos = ["hola", null, "adios"];
foreach (string? t in saludos!)
{
string texto = t?.ToUpper() ?? "Nulo";
int longitud = t?.Length ?? ©;
Console.WritelLine($"Texto = {texto}, Logitud = {longitud}");
¥
}
Kotlin:

fun main() {

val saludos: Array<String?>? = arrayOf("hola", null, "adios")

for (t in saludos!!) {
val texto: String = t?.uppercase() ?: "Nulo"
val longitud: Int = t?.length ?: ©
println("Texto = $texto, Logitud = $longitud")

Swift: (Lenguaje de Apple para programar iOS y macOS de forma nativa y usando las ultimas
tecnologias de la marca)

func main() {

let saludos: [String?]? = ["hola", nil, "adios"]

for t in saludos! {
let texto: String = t?.uppercased() ?? "Nulo"
let longitud: Int = t?.count ?? ©
print("Texto = \(texto), Logitud = \(longitud)")

main()

35/41 Programacion 1° DAM Unidad 8 IES Doctor Balmis

Tablas Dentadas (Jagged Arrays)

e Es una tabla de tablas o array de arrays.
o Silos arrays que contiene el array principal son de la misma longitud, tendremos una estructura de tipo
matriz bidimensional.

Cocepto de combinacién de tabla homogénea

Podemos hacer que el contenido de una coleccidn homogénea sea otra coleccion homogénea. Para ello,
deberemos analizar la declaracion de izquierda a derecha siendo el tipo homogéneo a guardar lo ultimo en
tener en cuenta.

// 3 1 2 1 2 3
string[1[] t1; // Array de Arrays de strings. (Dos dimensiones)

//41 2 3 1 2 3 4

int[J[][1 t2; // Array de Arrays de Arrays de enteros. (Tres dimensiones).

Si te fijas en la ilustracion inferior, a partir de tres arrays en adelente, |la estructura resultante es
multidimensional y por tante conceptualmente compleja de manejar y de entender. Por lo que es facil
cometer errores al acceder y tratar los datos que contiene.

int[J[1[] t =
[[<‘==in/

[|
8, 9, 10], O‘ : ﬂ/ﬂ

[6, 7]

[3, 4, 5],
[1, 2]
1,
15

Por lo anterior, el caso mas comun y unico que vamos a tratar en este tema, son las tablas dentadas

s [N o i)
o §7

que son arrays de arrays.

int[][] t =
[

[8, 9, 10],
[6, 71

1;

36/41 Programacion 1° DAM Unidad 8 IES Doctor Balmis

Instanciar tablas dentadas
La sintaxis es la misma que para los arrays solo que los datos seran objetos array.

Por ejemplo, para crear una array de array de enteros a los valores por defecto.

int[][] td =
[
new int[2], // [@, @],
new int[3] // [0, @, @]
1

Se puede interpretar como una matriz donde la primer fila tiene 2 columna y la segunda 3.

td - intf][]

inttd = 0 o] "
[

new int[2],
new int[3]
0o 1 2

I 1 1] —p

Si quisiéramos definir por extension el contenido de la tabla dentada, lo mas simple es usar expresiones

de coleccion.

int[][] td =

[
[1, 2],
[3, 4, 5]
1;

Para acceder a uno de los datos, primero accederemos a la fila indizando el objeto array que lo contiene.
Por ejemplo, si quisieramos cambiar el valor 5 por un 77 accederiamos al array que contiene el 5 a través
de t[1] (referencia al objeto array que simboliza la segunda fila) y una vez lo tenemos podriamos indizar

ya el lugar que ocupa el 5 con td[1][2]

td[1][2] = 77;
// Seria equivalente a hacer...

int[] fila2 = td[1];
fila2[2] = 77;

37/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

int0 td =

{
[1,2],
3,4, 5]

td[11[2] = 77;

td : int[][]

0 td[0]

1 td[1]

¢ Qué pasa si no instanciamos o no definimos por extension todos o alguno de los arrays de la tabla

dentada?

Con este codigo: int[][] td = new int[2][]; , estamos inicializando un array de dos arrays de enteros,

pero sin dimensionar estos ultimos. En ese caso al tratarse de tipos referencia sin instanciar, ambos
valdran null y no podremos acceder a ellos hasta que los instanciemos dimensionandolos. Por tanto, si

hacemos...

td[1] [0] =

77, X ERROR
ya que td[1] es null

td 1 int[][]

td[0] [— null

td[1] — null

Por tanto, para acceder a la posicion td[1][e] deberemos instanciar primero el array que guardamos en el

indice 1 y posteriormente asignar el valor.

38/41

td[1] = new int[3];

td[1] [0] = 77;
= N |

Programacion 1° DAM Unidad 8

td - intf][]

td[0]

null

"

td[1]

0 1 2
—
o]

IES Doctor Balmis

Recorrer tablas dentadas

Lo haremos de forma analoga a como recorremos los arrays.

public static void Main()

{

int[][] td =

[
[1, 2],
[3, 4, 5, 6, 7, 8],
[9, 10, 11]

15

for (int 1 = 0; i < td.Length; i++)

{
for (int j = 0; j < td[i].Length; j++)
{

Console.Write($"{td[i][]],-4}");

}
Console.Write("\n\n");

}

foreach (int[] fila in td)

{
foreach (int valor in fila)
{

Console.Write($"{valor,-4}");

¥
Console.Write("\n\n");

}

}

En ambos recorridos, el resultado sera el mismo y se mostrara por consola:

39/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

Ejemplo :

Vamos a representar una correspondencia entre comunidades auténomas y sus provincias. De tal
manera que, las comunidades iran en un array y en el indice correspondiente en la tabla dentada, iran

cada una de las provincias de esa comunidad...

[Comuniudad Valenciana] -> @ [Alicante][Castellén][Valencia]
[Extremadura] -> 1 [Caceres][Badajoz]

[Galicia] -> 2 [Lugo][Pontevedra][Orense][La Corufa]

Vamos a recorrer ambas estructuras para mostrar el contenido de la siguiente forma:

Salida ejecucion del recorrido 1:

Comuniudad valenciana
Alicante, cCastellodn, valencia
Extremadura

Caceres, Badajoz
Galicia
Lugo, Pontevedra, Orense, La Corufa

Salida ejecucion del recorrido 2:

| Alicante | castellodn | valencia
| Caceres | Badajoz |

| Lugo | Pontevedra | Orense | La Coruna

public static class Ejemplo
{
public static void Main()
{
string[] comunidades =
[
"Comuniudad Valenciana",
"Extremadura",
"Galicia"
1
string[][] provinciasXComunidades =
[
["Alicante", "Castellén", "Valencia"],
["Caceres", "Badajoz"],
["Lugo", "Pontevedra", "Orense", "La Coruna"]

1

40/41 Programacioén 1° DAM Unidad 8 IES Doctor Balmis

// Recorrido 1 : Por 'filas'
string salida = "\n";
for (int i = @; i < provinciasXComunidades.Length; i++)

{

salida += $"{comunidades[i]}\n";

salida += $"\t{string.Join(", ", provinciasXComunidades[i])}\n";

}

Console.WritelLine(salida);

salida = H
// Recorrido 2 : Elemento a dato
for (int i = @; i < provinciasXComunidades.Length; i++)

{

..l w,
)

salida +=
for (int j = 0; j < provinciasXComunidades[i].Length; j++)

{

salida += $"{provinciasXComunidades[i][j],-11}";

" | n,
)

salida +=

}

salida += "\n";

}

Console.WritelLine(salida);

41/41

Programacion 1° DAM Unidad 8 IES Doctor Balmis

