
Unidad 8
Descargar estos apunte en pdf o html

Índice
Índice
Colecciones Homogéneas de Tamaño Fijo o Arrays

Introducción
Tablas Unidimensionales o (Arrays/Vectores)

Instanciando y dimensionando arrays
Indexación o acceso a los datos de un array
Recorrer arrays

Operaciones con arrays
Los tipos Index y Range

El tipo Index
El tipo Range
Operadores de indexación intervalo .. y final ̂

Indexación desde el operador final ̂

Operador de intervalo ..
Redimensionando arrays con el operador de propagación

Pasando y devolviendo arrays en métodos
Uso para definir un número indeterminado de parámetros
Usando arrays al definir el interfaz de un método

Operadores condicionales null en arrays ?. y ?[]
Operador supersión de null .! ('null-forgiving')
Tablas Dentadas (Jagged Arrays)

Cocepto de combinación de tabla homogénea
Instanciar tablas dentadas
Recorrer tablas dentadas

1/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

file:///C:/unidadB/git/programaciondam/u8_arrays/u8_arrays.pdf
file:///C:/unidadB/git/programaciondam/u8_arrays/u8_arrays.html

Colecciones Homogéneas de Tamaño Fijo o Arrays

Introducción
En esta unidad vamos a ver cómo organizar datos
homogéneos en memoria de forma que podamos acceder a
ellos de forma rápida y sencilla. Para ello, vamos a ver las
tablas unidimensionales o arrays y también otros
conceptos como índices, rangos etc. Además, veremos un
caso típico de estructura multidimensional a través de las
tablas dentadas o Jagged arrays.

Dichas estructuras nos permitirán almacenar un número
indeterminado de datos del mismo tipo, de forma que
podamos acceder a ellos de forma rápida, sencilla y
eficiente. Además, vamos a poder encontrarlas en casi todos
los lenguajes de programación como los tradicionales como
C, C++, o los más modernos como Java, JavaScript,
Python, C#, Kotlin etc.

Vemos pues los dos tipos de estructuras de tamaño fijo más usadas o comunes en la programación
tradicional:

Tablas Unidimensionales o (Arrays/Vectores)
Es una organización de datos que se caracteriza porque todos los componentes con las siguiente
características generales:

Son del mismo tipo (homogénea).
Se pueden acceder arbitrariamente y son igualmente accesibles (acceso directo de coste O(1)).
Tienen un tamaño fijo, es decir, se definen con un número de datos que no debería cambiar una vez
definido (tamaño fijo).
Se pueden recorrer de forma secuencial (iterables).
Se pueden indexar a través de un número entero que indica la posición del dato dentro de la tabla
(indexables).
Algunos lenguajes permiten definirlas de forma inmutable, es decir, que no se pueden modificar una
vez creadas (inmutables).
En algunos lenguajes, como C#, se pueden definir de forma dinámica, es decir, que se pueden
redimensionar en tiempo de ejecución (dinámicas), Aunque esto último no es buena idea porque es
una operación muy costosa.

2/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

En los lenguajes débilmente tipados como JavaScript o Python se pueden definir arrays
heterogéneos, es decir, que pueden contener datos de diferentes tipos. Aunque esto no es
recomendable porque puede generar errores difíciles de depurar.

Instanciando y dimensionando arrays

Caso 1: Definimos solo el tipo del array, aún no lo hemos
instanciado en memoria, por lo que aún no podemos
acceder a sus datos. En este caso, el array se define como
un tipo de referencia y por tanto su valor será null hasta
que lo instanciemos.

v1 null

// Este objeto tabla referenciaría a null porque no se ha instanciado en memoria

// Solo estamos indicando el tipo de datos que va a contener.

<Tipo>[] <identificadorTabla>;

double[] v1;

double[] v1 = default;

Caso 2: Definimos el tipo del array y además lo instanciamos
en memoria, es decir, reservamos espacio para él. En este
caso, el array se define como un tipo de valor double y por
tanto el contenido de cada 'celda' será 0.0D hasta que lo
inicialicemos con un valor concreto.

v2 : double[]
Length=4

v2
0 1 2 3

0.0 0.0 0.0 0.0

// Este crearemos un objeto tabla con espacio en su interior para guardar númeroElementos del tipo definido.

// Los datos dentro del tipo tomarán el valor default para el tipo.

<Tipo>[] <identificadorTabla> = new <Tipo>[<númeroElementos>];

// Todos los datos valen 0.0D por ser double Type-safe y su valor 'default' ser ese.

double[] v2 = new double[4];

// ❌ ERROR al no definir el número de datos

double[] v2 = new double[];

3/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Caso 3: Definimos el tipo del array, lo instanciamos en
memoria y además le asignamos un valor a cada dato. En
este caso, el array se define como un tipo de valor double y
los datos dentro del array tomarán el valor que les
asignemos.

v3 : double[]
Length=3

v3
0 1 2

0.1 0.2 -1.7

// En este crearemos un objeto tabla con espacio en su interior para guardar númeroElementos

// y además estamos definiendo por extensión cada dato.

// númeroElementos será opcional y si se pone debe coincidir con el número de datos

<Tipo>[] <identificadorTabla> = new <Tipo>[<númeroElementosOpcional>] { dato1, dato2, … , datoN };

double[] v3 = new double[]{ 0.1, 0.2, -1.7 };

// También podemos simplificar la sintaxis y no poner el número de datos

double[] v3 = { 0.1, 0.2, -1.7 };

// ❌ ERROR al no coincidir el número de datos con el número de datos del array.

double[] v3 = new double[2]{ 0.1, 0.2, -1.7 };

Desde .NET 8 se han añadido al lenguaje las denominadas expresiones de colección estas permiten
definir expresiones que se evalúan a una colección de forma similar a como se hace en otros lenguajes
como JavaScript utilizando corchetes [] lo cual nos puede ser más familiar.

double[] v3 = [0.1, 0.2, -1.7];

Así mismo, se pueden combinar arrays de forma sencilla utilizando el operador .. dato de propagación.
Similar al ... (spread operator) de JavaScript siendo otro 'guiño' al lenguaje.

double[] va = [1.3, -2.9, 3.45];

double[] vb = [-4.88, 5.3, 6.7];

double[] vc = [7.9, 8.45, -9.6];

double[] unionV1V2yV3 = [.. va, .. vb, .. vc];

Sugenerncia

Esta forma será preferible a las anteriores, ya que es más legible, evita errores de sintaxis y se
parece más a la forma de definir arrays en otros lenguajes.



4/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

https://learn.microsoft.com/es-es/dotnet/csharp/language-reference/operators/collection-expressions
https://learn.microsoft.com/es-es/dotnet/csharp/language-reference/operators/collection-expressions#spread-element

Caso 4: Si solo dimensionamos y el tipo de los datos del
array es un tipo referencia, los valores dentro del mismo se
oficializarán a referencias a null. Puesto que tras reservar el
espacio, aún no se habrán instanciando cada uno de los
objetos. Por ejemplo para el tipo referencia string :

v4 : string[]

v4
null null null
0 1 2

string[] v4 = new string[3];

// Contendrá [null, null, null]

5/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Indexación o acceso a los datos de un array

Los datos de un "array" responden a un nombre de variable o identificador común y se indexan por el valor
de una expresión entera, escrita entre corchetes (operador []), llamada índice.

Esta expresión entera nos servirá de índice comenzando desde cero y si accedemos más allá del tamaño
dimensionado se producirá el error OutOfBoundsException

Límite inferior del índice = 0
Límite superior del índice = Longitud-1

Imaginemos el siguiente código donde definimos un array de enteros y accedemos a sus datos a través de
su índice.

int[] v = [35, 23, 12, 99];

Console.Write(v[0]); // Muestra 35

Console.Write(v[3]); // Muestra 99

Console.Write(v[5]); // ❌ ERROR: OutOfBounds

v[2] = 44; // Modificamos el valor del dato en la posición 2 a 44

v[2] = 44; \\ Asigna 44 al índice 2 v
0 1 2 3

35 23 44 99

Console.Write(v[5]); \\ ❌ ERROR v
0 1 2 3 4 5

35 23 12 99 ❌

Console.Write(v[3]); \\ Muestra 99 v
0 1 2 3

35 23 12 99

Console.Write(v[0]); \\ Muestra 35 v
0 1 2 3

35 23 12 99

6/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Recorrer arrays

Tendremos, básicamente, dos formas de recorrer un array. Veamos por ejemplo cómo sumar los datos
de un array de tipo double recorriendo el array donde definimos inicialmente...

double[] v = [2.0, 4.0, 5.0 ,6.0];

double suma = 0.0d;

1. Modificando el valor de un índice nombrado por convenio con el identificador i a modo de contador y
con el que recorreremos todos los datos.
Podremos saber la longitud de un array dimensionado en la inicialización a través de la propiedad
 v.Length .
Básicamente podremos hacerlo a través de un bucle for .

for (int i = 0; i < v.Length; ++i)

{

 suma += v[i];

}

2. Los arrays tienen una propiedad que veremos más adelante y el que son recorribles o iterables de
forma secuencial. Siempre que una colección o estructura de datos sea iterable, podremos recorrerla
a través de un bucle foreach .
Básicamente, la instrucción foreach es una variante del for pensada, especialmente, para
compactar la escritura de códigos donde se realice algún tratamiento a todos los datos de una
secuencia de datos donde no necesitamos saber la posición o índice.
En ella, tendremos un bucle con tantas iteraciones como datos en la secuencia. Además, en cada
iteración la variable definida, que será local al ámbito del foreach , tomará el valor de cada uno de los
datos de la secuencia, de forma ordenada.

foreach (double dato in v)

{

 suma += dato;

}

// Podemos usar el método Index() que me devolverá tuplas con el indice y dato.

foreach (var (i, dato) in v.Index())

{

 Console.WriteLine($"v[{i}] -> {dato}");

}

// Variante alternativa a lo anteriors

foreach (var (i, _) in v.Index())

{

 Console.WriteLine($"v[{i}] -> {v[i]}");

}

7/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

🚀 Ampliación opcional:

Veamos cómo definir los ejemplos anteriores de definición y recorrido de un array en otros lenguajes
como Python o Kotlin para que puedas reconocer equivalencias con C#.

Python:

v = [2.0, 4.0, 5.0, 6.0]

suma = 0.0

for i in range(len(v)):

 suma += v[i]

for dato in v:

 suma += dato

for i, dato in enumerate(v):

 # v[i] es el dato en la posición i

 print(f"v[{i}] -> {dato}")

Kotlin:

val v = listOf(2.0, 4.0, 5.0, 6.0)

var suma = 0.0

for (i in v.indices) {

 suma += v[i]

}

for (dato in v) {

 suma += dato

}

for ((i, dato) in v.withIndex()) {

 // v[i] es el dato en la posición i

 println("v[$i] -> $dato")

}

Fíjate que en otros lenguajes solo disponemos de for con diferentes sintaxis. No haciendo distinción
entre for y foreach como en C#.

8/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Operaciones con arrays

En este apartado veremos algunas operaciones que podemos realizar con arrays y que nos serán muy
útiles para trabajar con ellos. Además, muchas de ellas son comunes a otros lenguajes de
programación.

1. static string string.Join(<separador>, array)
Es un método estático de la clase string .
Me permite 'unir' los datos de un array a través de un separador para representarlos o
enumerarlos.
 <separador> puede ser un string o un char
Retornará una cadena con los datos del array separados por el separador.

// Partimos con el siguiente array con las províncias de Cataluña

string[] provincias = ["Barcelona", "Tarragona", "Girona", "Lleida"];

string t = string.Join(", ", provincias);

Console.WriteLine(t);

Mostrará al ejecutar:

 Barcelona, Tarragona, Girona, Lleida

2. string[] objString.Split(params char[]? separadores, opcionesDeTroceado)
Es una operación sobre un objeto cadena string .
Retornará un array con el resultado de 'trocear' o dividir el objeto cadena al que lo aplicamos, por
los caracteres de separación que recibe como parámetros.
En opcionesDeTroceado podemos usar StringSplitOptions.RemoveEmptyEntries para evitar que
tras el troceado queden cadenas vacías.

Enlaces

Documentación oficial de la clase Array
Split, Join
IndexOf, Sort, Resize, Clear, Copy.



9/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

https://learn.microsoft.com/es-es/dotnet/api/system.array?view=net-9.0
https://learn.microsoft.com/es-es/dotnet/csharp/how-to/parse-strings-using-split
https://learn.microsoft.com/es-es/dotnet/api/system.string.join?view=net-9.0#system-string-join(system-string-system-string())
https://learn.microsoft.com/es-es/dotnet/api/system.array.indexof?view=net-9.0
https://learn.microsoft.com/es-es/dotnet/api/system.array.sort?view=net-9.0
https://learn.microsoft.com/es-es/dotnet/api/system.array.resize?view=net-9.0
https://learn.microsoft.com/es-es/dotnet/api/system.array.clear?view=net-9.0
https://learn.microsoft.com/es-es/dotnet/api/system.array.copy?view=net-9.0

// Partimos con la siguiente cadena con las províncias de Cataluña

// separadas de diferentes formas.

string t = "Barcelona, Tarragona, Girona;Lleida";

string[] provincias = t.Split(",; ".ToCharArray(), StringSplitOptions.RemoveEmptyEntries);

foreach (string provincia in provincias)

{

 Console.WriteLine(provincia);

}

Mostrará al ejecutar:

 Barcelona

 Tarragona

 Girona

 Lleida

3. static int Array.IndexOf(array, <dato>)
Es un método estático de la clase Array .
Busca linealmente O(n) un dato en el array y retorna el índice donde se encuentra o -1 si no lo
encuentra.

string[] v = ["Barcelona", "Tarragona", "Girona", "Lleida"];

Console.WriteLine(string.Join(", ", v));

Console.WriteLine(Array.IndexOf(v, "Girona"));

Console.WriteLine(Array.IndexOf(v, "Alicante"));

Mostrará al ejecutar:

 Barcelona, Tarragona, Girona, Lleida

 2

 -1

Recuerda, no confundirla con objArray.Index() que hemos usado al recorrer un array y nos
devuelve las tuplas que contienen el índice y el dato del objeto array al que lo aplicamos.

string[] v = ["Barcelona", "Tarragona", "Girona", "Lleida"];

(int i, string dato)[] tuplas = v.Index().ToArray();

Console.WriteLine(string.Join("\n", tuplas));

Mostrará al ejecutar:

 (0, Barcelona)

 (1, Tarragona)

 (2, Girona)

 (3, Lleida)

10/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

4. static void Array.Sort(array)
Ordena el array que recibe como parámetro, pero 'solo si el contenido del array es un tipo básico como
int, double, string, etc...' más adelante veremos como usarlo en tipos más complejos.

string[] v = ["Barcelona", "Tarragona", "Girona", "Lleida"];

Array.Sort(v);

Console.WriteLine(string.Join(", ", v));

Mostrará al ejecutar:

 Barcelona, Girona, Lleida, Tarragona

5. static void Array.Resize(ref array, int newSize) (💀 y ⚠️ en deshuso)
Redimensiona un array a un nuevo tamaño.
Si el nuevo tamaño es mayor que el actual, se añaden nuevos datos al final del array con el valor
 default del tipo que contenga.
Si el nuevo tamaño es menor que el actual, se eliminan los datos del final del array.

string[] v = ["Barcelona", "Tarragona", "Girona", "Lleida"];

Array.Resize(ref v, v.Length + 1);

v[v.Length - 1] = "Tabarnia":

Console.WriteLine(string.Join(", ", v));

Mostrará al ejecutar:

 Barcelona, Tarragona, Girona, Lleida, Tabarnia

6. 💀 static void Array.Clear(array, int index, int length) (💀 y ⚠️ en deshuso)
'Borra' datos en una array. Esto es, los deja al valor default del tipo que contenga.

string[] v = ["Barcelona", "Tarragona", "Girona", "Lleida"];

int i = Array.IndexOf(v, "Girona");

Array.Clear(v, i, v.Length - i);

Console.WriteLine(string.Join(", ", v));

Aviso

Este opreración es costosa porque implica crear un nuevo array y copiar los datos del antiguo al
nuevo. Por tanto, no es recomendable usarla en bucles o de forma repetitiva. Más adelante
veremos el uso de List<T> que es una colección dinámica que nos permite añadir y eliminar
datos de forma más eficiente. Además, también podremos usar el operador .. para añadir
datos a un array de forma más sencilla y que veremos más adelante.



11/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Mostrará al ejecutar:

 Barcelona, Tarragona, ,

string[] v = ["Barcelona", "Tarragona", "Girona", "Lleida"];

int i = Array.IndexOf(v, "Girona");

Array.Clear(v, i, v.Length - i);

Array.Resize(ref v, i);

Console.WriteLine(string.Join(", ", v));

Mostrará al ejecutar:

 Barcelona, Tarragona

7. static void Array.Copy(array sourceArray, array destinationArray, int length) (⚠️ en deshuso)
Copia los datos de un array a otro.
Si el destino es más pequeño que el origen, se copiarán los primeros datos del origen hasta
completar el destino.
Si el destino es más grande que el origen, se copiarán todos los datos del origen y el resto
quedará al valor default del tipo que contenga.

Ejemplo similar al anterior, pero usando Array.Copy() para copiar las provincias hasta la posición de
Girona, sin incluirla.

string[] v = ["Barcelona", "Tarragona", "Girona", "Lleida"];

int i = Array.IndexOf(v, "Girona");

string[] copia = new string[i];

Array.Copy(v, copia, i);

Console.WriteLine(string.Join(", ", copia));

Mostrará al ejecutar:

 Barcelona, Tarragona

Aviso

Fíjate que aunque se han eliminado los datos, el array sigue teniendo el mismo tamaño y por
tanto se muestran las posiciones borradas como null . Una forma de eliminar los datos de un
array es redimensionándolo a un tamaño menor usando Array.Resize() . Más adelante
veremos un ejemplo que simplifica este código usando rangos.



12/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Los tipos Index y Range

El tipo Index

Además de con enteros, vamos a poder indexar arrays con un tipo denominado Index que me permitirá
definir una posición en un array empezando desde el comienzo o desde el final.

string[] palabras = ["cero", "uno", "dos", "tres"];

// Usamos public Index (int value, bool fromEnd = false);

// Indice que toma el primer dato desde el final.

Index i = new Index(1, true);

Console.WriteLine(palabras[i]); // Mostrará "tres"

// Indice que toma el primer dato desde el principio.

i = new Index(0);

Console.WriteLine(palabras[i]); // Mostrará "cero"

El tipo Range

Además del tipo Index, existe un tipo Range que podremos traducir como rango o intervalo. Que me
servirá para describir un subconjunto de datos contiguos dentro de un array desde un determinado índice
de comienzo hasta uno de fin.

Son bastante útiles si queremos extraer un subconjunto de datos de un array a partir de un par de índices
que hagan de límites.

string[] palabras = ["cero", "uno", "dos", "tres"];

// Cogemos el segundo dato como inicio del intervalo y el último de forma excluyente.

Range intervalo = new Range(new Index(1), new Index(1, true));

string[] palabrasSinLosExtremos = palabras[intervalo];

// Mostrará "uno", "dos"

Console.WriteLine(string.Join(", ", palabrasSinLosExtremos));

Enlaces

Documentación oficial
Tipo Index
Tipo Range
Indexación desde el operador final ^
Operador de intervalo ..



13/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

https://docs.microsoft.com/es-ES/dotnet/api/system.index
https://docs.microsoft.com/es-es/dotnet/api/system.range
https://learn.microsoft.com/es-es/dotnet/csharp/tutorials/ranges-indexes
https://docs.microsoft.com/es-ES/dotnet/api/system.index
https://docs.microsoft.com/es-es/dotnet/api/system.range
https://docs.microsoft.com/es-ES/dotnet/csharp/language-reference/operators/member-access-operators#index-from-end-operator-
https://docs.microsoft.com/es-ES/dotnet/csharp/language-reference/operators/member-access-operators#range-operator-

Operadores de indexación intervalo .. y final ̂

Ya conocemos los tipos Index y Range pero nosotros no los vamos a usar así, ya que esta forma de
usarlos es poco útil y nos va a generar más código. Para ellos, existen unos operadores que nos facilitarán
la labor y simplifican la sintaxis aproximándome a la de otros lenguajes modernos.

Indexación desde el operador final ̂

Se evalúa directamente a un tipo Index y equivale a indicar que un índice entero se aplicará empezando
desde el final del array. Veámoslo a través los siguientes ejemplos comentados...

Ejemplo 1:

string[] palabras =

[

 // índice desde comienzo índice desde el final

 "cero", // 0 ^4

 "uno", // 1 ^3

 "dos", // 2 ^2

 "tres", // 3 ^1

]; // 4 (or palabras.Length) ^0

// Donde ...

Index u = new Index(1, true);

// equivale a ...

Index u = ^1;

// y por tanto las siguientes expresiones serán equivalente para

// obtener el último dato de un array.

string p = palabras[palabras.Length - 1];

string p = palabras[new Index(1, true)];

string p = palabras[^1];

Nota

Hemos explicado los tipos Index y Range para que sepamos que tipos hay involucrados, pero
nosotros los vamos a usar de una forma más simplificada sin tener que hacer new Index() o
 new Range() .



14/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Ejemplo 2:

string[] diasSemana =

[//Índice desde el inicio índice desde el final

 "Lunes", // 0 ^7

 "Martes", // 1 ^6

 "Miércoles", // 2 ^5

 "Jueves", // 3 ^4

 "Viernes", // 4 ^3

 "Sábado", // 5 ^2

 "Domingo" // 6 ^1

]; // 7 diasSemana.Length ^0

El índice 0 representa el primer dato
El índice ̂ 0 es lo mismo que diasSemana[diasSemana.Length] , por lo que da error.
Dado un número n, diasSemana[^n] es lo mismo que diasSemana[diasSemana.Length - n]

Console.WriteLine(string.Join(", ", diasSemana));

Console.WriteLine($"La longitud del array es: {diasSemana.Length}");

Console.WriteLine($"El primer día de la semana es: {diasSemana[0]}");

Console.WriteLine($"El último día de la semana es: {diasSemana[^1]}");

15/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Operador de intervalo ..

Permite definir un rango de forma sencilla.

Range intervalo = new Range(new Index(1), new Index(1, true));

// equivaldrá a ...

Range intervalo = 1..^1;

y por tanto el código de ejemplo que usamos en los rangos se simplificará muchísimo siendo mucho más
legible y evitando usar explícitamente los tipos Index y Range .

string[] palabras = { "cero", "uno", "dos", "tres" };

// Mostrará "uno", "dos"

Console.WriteLine(string.Join(", ", palabras[1..^1]));

Ten en cuenta y recuerda que:

Un rango especifica el inicio y el final de dicho rango de índices.
✋ Importante: El inicio del rango es inclusivo, pero el final es exclusivo, es decir el inicio está
incluido en el rango, pero el final no.

Veamos uno cuantos ejemplos de uso a través del array de días de la semana que definimos en los
índices.

string[] diasSemana = ...

string[] diasLaborales1 = diasSemana[0..5];

Console.Write("Laborales: ");

Console.WriteLine(string.Join(", ", diasLaborales1));

// Fíjate que diasLaborales1.Length es 5 - 0 = 5

string[] finSemana1 = diasSemana[5..7];

Console.Write("Fin de semana: ");

Console.WriteLine(string.Join(", ", finSemana1));

// Fíjate que finSemana1.Length es 7 - 5 = 2

string[] finSemana2 = diasSemana[^2..]; // [^2..^0]

Console.Write("Fin de semana: ");

Console.WriteLine(string.Join(", ", finSemana2));

string[] diasLaborales2 = diasSemana[..5]; // [0..5]

Console.Write("Laborales: ");

Console.WriteLine(string.Join(", ", diasLaborales2));

string[] finSemana3 = diasSemana[5..];

Console.Write("Fin de semana: ");

Console.WriteLine(string.Join(", ", finSemana3));

16/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Además, se pueden usar variables para los índices y rangos:

Index ultimoDiaSemana = ^1;

Index primerDiaSemana = 0;

Console.WriteLine($"El primer día de la semana es: {diasSemana[primerDiaSemana]}");

Console.WriteLine($"El último día de la semana es: {diasSemana[ultimoDiaSemana]}");

string[] todosDiasSemana = diasSemana[primerDiaSemana..];

Console.WriteLine(string.Join(", ", todosDiasSemana));

Range diasFinSemana = 5..;

string[] finSemana4 = diasSemana[diasFinSemana];

Console.Write("Fin de semana: ");

Console.WriteLine(string.Join(", ", finSemana4));

Cuidado

Es muy fácil confundir el operador de intervalo .. que me define rangos, con el operador de
propagación .. que vimos al principio y me permite colocar un array dentro de otro array. Aunque
ambos usan el mismo símbolo, su significado es diferente y por se usan en diferentes contextos.

Veamos un ejemplo de uso de ambos operadores, para hacer una copia de un array en lugar de usar
 Array.Copy() por ejemplo:

string[] v = ["be", "eat", "see"];

string[] copiaV = new string[v.Length];

Array.Copy(v, copiaV, copiaV.Length);

1. Usando el operador de rango:
Aquí aplicamos un indizador al array v con el rango 0..^0 . Esto es, el rango es todos los
elementos del array v .

string[] copiaV1 = v[..];

2. Usando el operador de propagación;
Aquí usamos el operador [] para definir un nuevo array y dentro de él usamos el operador de
propagación .. para incluir todos los elementos del array v .

string[] copiaV2 = [..v];



17/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Ejemplo:

Veamos un ejemplo de uso de ambos operadores a la vez para combinar el contenido de arrays en C#.
Para ello en el ejemplo combinaremos los primeros n datos de un array v1 con los últimos n de otro
array v2 .

string[] v1 = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"];

string[] v2 = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"];

int n = 4;

string[] v3 = [..v1[..n], ..v2[^n..]];

Console.WriteLine(string.Join(", ", v3));

Al ejecutar, obtendremos la siguiente salida en consola:

a, b, c, d, 7, 8, 9, 10

📌 Nota: Fíjate que el uso de ambos operadores simplifica el código y lo hace más legible.
Veamos a qué equivaldría la expresión string[] v3 = [..v1[..n], ..v2[^n..]]; utilizando los
método tradicionales con Array.Copy() .

var v3 = new string[n + n];

Array.Copy(v1, 0, v3, 0, n);

Array.Copy(v2, v2.Length - n, v3, n, n);

Resumen de uso del uso de operadores de rango

Ten en cuenta que, los intervalos [0..5] y [5..7] son consecutivos y disjuntos
El rango [n..^n] elimina n datos de cada extremo
Ten en cuenta que, si el valor de uno de los extremos es cero se puede omitir. Por tanto, [..n]
es lo mismo que [0..n] y que [n..] es lo mismo que [n..^0] y que por tanto [0..^0] es lo
mismo que [..] .



18/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

🚀 Ampliación opcional:

Veamos cómo definir el ejemplo anterior en otros lenguajes como Python, Kotlin o JavaScript para
que puedas reconocer equivalencias con C#.

Python:

v1 = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]

v2 = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"]

n = 4

v3 = v1[:n] + v2[-n:]

print(", ".join(v3))

Kotlin:

val v1 = listOf("a", "b", "c", "d", "e", "f", "g", "h", "i", "j")

val v2 = listOf("1", "2", "3", "4", "5", "6", "7", "8", "9", "10")

val n = 4

val v3 = v1.take(n) + v2.takeLast(n)

println(v3.joinToString(", "))

JavaScript:

let v1 = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]

let v2 = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"]

let n = 4

let v3 = [...v1.slice(0, n), ...v2.slice(-n)]

console.log(v3.join(", "))

19/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Redimensionando arrays con el operador de propagación

Aunque vimos que existía el método Array.Resize() para redimensionar un array, este método además de
ser poco eficiente, es un poco engorroso de usar. Por tanto, en su lugar, podemos usar el operador de
propagación .. para ir añadiendo datos.

Por ejemplo, supongamos un programa en el que solicitamos al usuario que introduzca nombres hasta que
introduzca la cadena "fin" . Queremos almacenar los nombres en un array y al finalizar mostrar todos los
nombres introducidos. Podremos hacerlo de la siguiente forma:

Mostrará al ejecutar:

Introduce un nombre (o 'fin' para terminar): Pepe

Introduce un nombre (o 'fin' para terminar): Maria

Introduce un nombre (o 'fin' para terminar): Juana

Introduce un nombre (o 'fin' para terminar): fin

Nombres: Pepe, Maria, Juana

string[] nombres = [];

string? nombre;

do

{

 Console.Write("Introduce un nombre (o 'fin' para terminar): ");

 nombre = Console.ReadLine();

 if (!string.IsNullOrEmpty(nombre) && nombre != "fin")

 {

 // Añadimos el nombre al array usando el operador de propagación

 // en lugar de hacer Array.Resize(ref nombres, nombres.Length + 1);

 nombres = [.. nombres, nombre!];

 }

}

while (nombre != "fin");

string salida = $"Nombres: {string.Join(", ", nombres)}";

Console.WriteLine(salida);

9

11

Aviso

Ten en cuenta que, el operador de propagación .. como Array.Resize(...) son formas de
redimensionar un array muy poco eficientes. Sobretodo, si se usa en bucles o de forma repetitiva
como en este caso. Más adelante en el curso, usaremos colección dinámica como List<T> para
hacer esto.



20/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

🎓 Caso de estudio 1:

Recordemos nuestro ejemplo en Array.Clear() donde teníamos un array de provincias de Cataluña y
borrábamos las las provincias a partir de una provincia concreta y después redimensionábamos el
array para eliminar las provincias borradas.

string[] v = ["Barcelona", "Tarragona", "Girona", "Lleida"];

int i = Array.IndexOf(v, "Girona");

Array.Clear(v, i, v.Length - i);

Array.Resize(ref v, i);

Console.WriteLine(string.Join(", ", v));

Ahora, usando intervalos, podemos simplificarlo de la siguiente forma:

string[] v = ["Barcelona", "Tarragona", "Girona", "Lleida"];

int i = Array.IndexOf(v, "Girona");

Console.WriteLine(string.Join(", ", v[..i]));

Además de ser mas simple y legible el array original no se modifica, sino que se crea un nuevo array
con los datos del intervalo.

21/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

🎓 Caso de estudio 2:
Supongamos el siguiente código donde tenemos un array de nombres de alumnos...

string[] nombres =

{

 "Ana", "Pepe", "Juan", "Carmen", "Simon", "Emy", "Juanjo", "Xusa",

 "Cristina", "Jose", "Mario", "Candela", "Soledad", "Felipe", "Miguel", "Manuel"

};

Random semilla = new Random();

y queremos mostrar grupos de 3 o 4 alumnos consecutivos aleatoriamente, más un último grupo con
los que nos queden. ¿Se te ocurre cómo solucionarlo usando intervalos?

En un primer caso podemos utilizar un bucle anidado o un método auxiliar para rellenar el array de
componentes del grupo.

int i = 0;

while (i < nombres.Length)

{

 int compoenentesGrupo = semilla.Next(3, 5);

 compoenentesGrupo = i + compoenentesGrupo >= nombres.Length

 ? nombres.Length - i

 : compoenentesGrupo;

 // Código a sustituir --

 string[] grupo = new string[compoenentesGrupo];

 for (int j = 0; j < compoenentesGrupo; j++)

 {

 grupo[j] = nombres[i+j];

 }

 // ---

 Console.WriteLine(string.Join(", ", grupo));

 i += compoenentesGrupo;

}

Otra opción sería copiar de una sola vez al nuevo array dimensionado.

string[] grupo = new string[compoenentesGrupo];

Array.Copy(nombres, i, grupo, 0, compoenentesGrupo);

Por último, podemos extraer directamente un intervalo.

Console.WriteLine(string.Join(", ", nombres[i..(i + compoenentesGrupo)]));

22/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Pasando y devolviendo arrays en métodos

Uso para definir un número indeterminado de parámetros

Una de las funcionalidades que me ofrecen los arrays, es el caso especial de definir un número
indeterminado de parámetros formales del mismo tipo en la signatura de los métodos. Lo haremos
anteponiendo la palabra reservada params a un parámetro formal de tipo array.

public static class Ejemplo

{

 static double Media(params double[]? valores)

 {

 double media = 0;

 if (valores?.Length > 0)

 {

 double suma = 0;

 foreach (double v in valores)

 {

 suma += v;

 }

 media = suma / valores.Length;

 }

 return media;

 }

 public static void Main()

 {

 // Podré llamar a la función de las siguientes formas:

 // 1. Pasando un array de valores.

 double[] valores = [2.0, 5.0, 7.0];

 Console.WriteLine(Media(valores));

 // 2. Pasando un número indeterminado de valores separados por coma.

 Console.WriteLine(Media(2.0, 5.0, 7.0));

 }

}

Una funcionalidad similar la tendremos en la gran mayoría de lenguajes modernos.

23/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/params

Usando arrays al definir el interfaz de un método

En este apartado pretendemos hacer una reflexión, sobre cómo trabajar con arrays cuando definamos la
signatura de un método. Para ellos, vamos a verlo a través de un ejemplo...
Supongamos que tenemos un array de cadenas con verbos en inglés.

string[] verbs = ["be", "eat", "see"];

Ahora queremos definir un método que modifique el contenido del array para que anteponga la cláusula
 "to ..." a cada verbo devolviéndome ["to be", "to eat", "to see"]

Si implementamos la interfaz de la siguiente implementación...

public class Ejemplo

{

 static void AddVerbPrefix(string[] verbs)

 {

 for (int i = 0; i < verbs.Length; i++)

 verbs[i] = $"to {verbs[i]}";

 /*

 Cuidado !!!! la siguiente implementación ...

 foreach(string verb in verbs)

 verb = $"to {verbs[i]}";

 No sería válida porque no estamos modificando el contenido del array.

 Si lo piensas, las referencias en el array sería las mismas porque no estamos

 modificándolas a través del indizador.

 */

 }

 public static void Main()

 {

 string[] verbs = ["be", "eat", "see"];

 // Pasamos una copia de la referencia al objeto string[] apuntada por verbs.

 AddVerbPrefix(verbs);

 Console.WriteLine(string.Join(", ", verbs));

 }

}

Si nos fijamos en la salida, como AddVerbPrefix(verbs); no retorna nada, solo con ver el interfaz y sin
saber cómo está implementado el método, podemos deducir que es el contenido del objetos verbs el que
se ha modificando añadiéndose el prefijo "to" a los verbos del array que define, y por tanto perdiendo el
contenido original donde teníamos los verbos sin prefijo.

24/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Pero... ¿Cómo lo implementaríamos si queremos que me cree un nuevo array de verbos sin
modificar el original?

static string[] AddVerbPrefix(string[] verbs)

{

 // Dimensionamos el array donde irán las cadenas modificadas.

 // recuerda que los objetos cadena que contiene no están definidos

 // y apuntarán a null.

 string[] verbsWithPrefix = new string[verbs.Length];

 for (int i = 0; i < verbsWithPrefix.Length; i++)

 // Instáncio la nueva cadena con prefijo en las posiciones del array.

 verbsWithPrefix[i] = $"to {verbs[i]}";

 // retorno la referencia al array. Deberá ser siempre un nuevo objeto instanciado en memoria.

 return verbsWithPrefix;

}

string[] verbs = ["be", "eat", "see"];

string[] verbsWithPrefix = AddVerbPrefix(verbs);

Console.WriteLine(string.Join(", ", verbs));

Console.WriteLine(string.Join(", ", verbsWithPrefix));

Si nos fijamos en la salida ambos arrays tendrán contenido diferente y de esta forma, no habremos
perdido el array original. Eso sí, asumiendo el coste de instanciar y crear uno nuevo.

25/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Cuidado

Además, siempre que veamos una llamada en la que se retorna un objeto
 string[] verbsWithPrefix = AddVerbPrefix(verbs); deberemos deducir que es un método 'factoría'
esto es, retorna un objeto nuevo y no el que se le pasó como referencia lo cual puede ser
peligroso. Supongamos que hacemos...

// No confundir esto con lo que se pretendía hacer en el patrón fluent interface, pues és complétamente difer

// Ya que es un método estático y no de instáncia.

static string[] AddVerbPrefix(string[] verbs)

{

 for (int i = 0; i < verbs.Length; i++)

 verbs[i] = $"to {verbs[i]}";

 // 💀💀 Aquí estoy devolviendo la misma referencia que recibo como parámetro. (MALA PRÁCTICA)

 return verbs;

}

string[] verbs = ["be", "eat", "see"];

string[] verbsWithPrefix = AddVerbPrefix(verbs);

// Ahora estoy modificando los 2 arrays. (ALIASING)

verbsWithPrefix[0] = "to sit";

Console.WriteLine(string.Join(", ", verbs));

Console.WriteLine(string.Join(", ", verbsWithPrefix));

Ahora, además de perder el array con los verbos sin prefijo, verbs y verbsWithPrefix son una
referencia al mismo objeto array en memoria. Por lo que si modifico el contenido de uno, también
modifico el del otro. Produciéndose un efecto denominado 'aliasing' 💀.

📌 Nota: Recuerda que el que usa mí método no tiene por qué conocer su implementación y
posíblemente asumirá que string[] AddVerbPrefix(string[] verbs) me devuelve un array
nuevo.



26/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

🎓 Caso de estudio 1

Vamos a realizar un método que reciba un rango y me devuelva un array de enteros con los números
comprendidos en ese rango.

static int[] ValoresEnRango(Range rango)

{

 int[] numeros = new int[rango.End.Value - rango.Start.Value];

 for (int i = 0; i < numeros.Length; i++)

 {

 numeros[i] = rango.Start.Value + i;

 }

 return numeros;

}

int[] numeros = ValoresEnRango(1..10);

Console.WriteLine(string.Join(", ", numeros));

Mostrará al ejecutar:

1, 2, 3, 4, 5, 6, 7, 8, 9

Cuidado

¿Qué no deberíamos hacer nunca?.... Definir el método de la siguiente forma:

static void ValoresEnRango(Range rango, int[] valores)

{

 // 💀💀 Aquí estoy modificando el array que se me pasa como parámetro.

 // y debe estar ya dimensionado con la longitud del rango, puesto que

 // dimensionarlo dentro no tendría efecto en el main.

 int longitud = rango.End.Value - rango.Start.Value;

 Debug.Assert(valores.Length == longitud, "El array no tiene la longitud correcta");

 for (int i = 0; i < longitud; i++)

 {

 valores[i] = rango.Start.Value + i;

 }

}

int[] numeros = new int[9];

ValoresEnRango(1..10, numeros);

Console.WriteLine(string.Join(", ", numeros));



27/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

🎓 Caso de estudio 2

Aunque ya hemos visto que el lenguaje ya implementa un método de utilidad para ordenación de
arrays como es Array.Sort() . Vamos a ver un ejemplo de recorrido e intercambio de datos en un
array a través de un ejemplo y estudiando uno de los algoritmos básicos de ordenación de arrays,
como es el de la 'burbuja' (bubble sort).
En este algoritmo, recorreremos el array comparando 2 a 2 los datos contiguos del mismo. De
forma que intercambiaremos cuando un dato sea mayor que su sucesor, así en un recorrido el dato
mayor promocionará hasta el final del array, por esto se denomina de burbuja porque se dice que
'asciende' dentro del array como si lo fuera.
Una vez ha ascendido un dato este queda fijo, y volveremos ha comparar 2 a 2 los datos sin tomar el
último, de tal manera que ahora ascenderá o promocionará el dato anterior. Este proceso se repetirá
sucesivamente, teniendo en cuenta que no tenemos que comparar con los ya promocionados o
fijados.

static int[] Ordena(int[] array)

{

 int[] arrayOrdenado = array[..];

 for (int i = 0; i < arrayOrdenado.Length; i++)

 {

 for (int j = 0; j < arrayOrdenado.Length - 1 - i; j++)

 {

 if (arrayOrdenado[j] > arrayOrdenado[j + 1])

 {

 int auxiliar = arrayOrdenado[j];

 arrayOrdenado[j] = arrayOrdenado[j + 1];

 arrayOrdenado[j + 1] = auxiliar;

 }

 }

 }

 return arrayOrdenado;

}

int[] array = [5, 6, 4, 2, 3, 1];

int[] arrayOrdenado = Ordena(array);

Console.WriteLine($"Array original: {string.Join(", ", array)}");

Console.WriteLine($"Array ordenado: {string.Join(", ", arrayOrdenado)}");

Recorrido 1 (i = 0)---------------------------------
[5, 6, 4, 2, 3, 1]
[5, 6, 4, 2, 3, 1] → [5, 4, 6, 2, 3, 1] Intercambio
[5, 6, 6, 2, 3, 1] → [5, 4, 2, 6, 3, 1] Intercambio
[5, 4, 2, 6, 3, 1] → [5, 4, 2, 3, 6, 1] Intercambio
[5, 4, 2, 3, 6, 1] → [5, 4, 2, 3, 1, 6] Intercambio
Recorrido 2 (i = 1)---------------------------------
[5, 4, 2, 3, 1, 6] → [4, 5, 2, 3, 1, 6] Intercambio

28/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

https://es.wikipedia.org/wiki/Ordenamiento_de_burbuja

[4, 5, 2, 3, 1, 6] → [4, 2, 5, 3, 1, 6] Intercambio
[4, 2, 5, 3, 1, 6] → [4, 2, 3, 5, 1, 6] Intercambio
[4, 2, 3, 5, 1, 6] → [4, 2, 3, 1, 5, 6] Intercambio
Recorrido 3 (i = 2)---------------------------------
[4, 2, 3, 1, 5 , 6] → [2, 4, 3, 1, 5 , 6] Intercambio
[2, 4, 3, 1, 5 , 6] → [2, 3, 4, 1, 5 , 6] Intercambio
[2, 3, 4, 1, 5 , 6] → [2, 3, 1, 4, 5 , 6] Intercambio
Recorrido 4 (i = 3)---------------------------------
[2, 3, 1, 4 , 5 , 6]
[2, 3, 1, 4 , 5 , 6] → [2, 1, 3, 4 , 5 , 6] Intercambio
Recorrido 5 (i = 4)---------------------------------
[2, 1, 3 , 4 , 5 , 6] -> [1, 2, 3 , 4 , 5 , 6] Intercambio
[1 , 2 , 3 , 4 , 5 , 6]

29/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Operadores condicionales null en arrays ?. y ?[]
Puesto que los arrays son objetos 'nullables', esto es, son tipos que pueden tomar valor null. Tenemos
que saber que uno de los errores más temidos por los programadores, es tener un valor nulo e intentar
acceder a una propiedad o realizar una operación sobre dicho array.

Obtendremos un error en tiempo de ejecución de NullReferenceException . Además, nos generará un
warning en tiempo de compilación indicando que el objeto puede ser nulo.

Este tipo e aviso lo evitaremos como vimos en la Unidad 3 con los operador de fusión y condicionales de
Null ?? o ?.

Recordemos a través de un ejemplo...

Ejemplo:

string? t = default; // Inicializamos a null

// ...

// Nos generará un aviso (WARNING ⚠️) al compilar. Por que, puede

// que nos olvidamos de asignarle un objeto cadena y sigue a null.

// ...

Console.WriteLine(t.ToUpper()); // 💀 NullReferenceException al ejecutar.

👍 Una posible solución para eliminar el warning, si estamos seguros que t no va a ser nulo, es usar
el operador de supresión de Null ! que ta usábamos al hacer string t = Console.Readline()! y
sobre el que profundizaremos más adelante.

string? t = default;

//...

t = "Hola";

// ...

Console.WriteLine(t!.ToUpper());

👍👍 Una mejor solución aún será usar el operador ?. si nop estamos seguros de si vale Null o no.

string? t = default;

// ...

Console.WriteLine(t?.ToUpper() ?? "Cadena Vacía");

Pues bien, esto también nos puede pasar con los arrays. Por ejemplo, si tenemos un array de cadenas que
puede contener valores nulos. Pero puede liarse un poco, veamos estos tres tipos de declaraciones...

30/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

https://docs.microsoft.com/es-ES/dotnet/csharp/language-reference/operators/member-access-operators#null-conditional-operators--and-

1. El primer caso, saludos es un array de cadenas que no pueden ser null, ni puede ser nulo el mismo.

string[] saludos = ["Hola", "Buenas Tardes", "Adios"]; // ✅

// string[] saludos = ["Hola", null, "Adios"]; ❌

// string[] saludos = null; ❌

2. El segundo caso, saludos es un array de cadenas que pueden ser null, pero el array en sí no puede
ser nulo.

string?[] saludos = ["Hola", "Buenas Tardes", "Adios"]; // ✅

string?[] saludos = ["Hola", null, "Adios"]; // ✅

// ❌ string?[] saludos = null;

3. El tercer caso, saludos es un array de cadenas que no pueden ser null, pero el array en sí puede ser
nulo.

string[]? saludos = ["Hola", "Buenas Tardes", "Adios"]; // ✅

// ❌ string[]? saludos = ["Hola", null, "Adios"];

string[]? saludos = null; // ✅

4. El cuarto caso, saludos es un array de cadenas que pueden ser null y el array en sí también puede
ser nulo.

string?[]? saludos = ["Hola", "Buenas Tardes", "Adios"]; // ✅

string?[]? saludos = ["Hola", null, "Adios"]; // ✅

string?[]? saludos = null; // ✅

Esto es porque la ? se aplica al tipo de la izquierda:

1. string[]? : Un array de cadenas anulable.
2. string?[]? : Un array de cadenas anulables que es anulable.

Una vez tenemos claro esto, veamos cómo usar los operadores condicionales de Null ?. y []? en este
caso...

string?[] saludos = ["Hola", null, "Adios"];

// En la segunda cadena obtendremos un NullReferenceException 💀

foreach (string? saludo in saludos)

 Console.WriteLine(saludo.ToUpper()); // ❌ saludo puede ser null

// Una posible solución es combinar una vez más el operador ?. con ??

foreach (string? saludo in saludos)

 Console.WriteLine(saludo?.ToUpper() ?? "No hay dato");

Pero el operador []? entonces. ¿Cuándo se usaría?. En el ejemplo anterior además de los objetos que
contiene el array de cadenas, es el propio array de cadenas el que puede estar sin inicializar. Imaginemos
el siguiente código ...

31/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

string?[]? saludos = default;

// ❌ Tanto el array como el contenido del array podrían estar a Null.

string? t = saludos[1].ToUpper(); // (⚠️ WARNING !!!)

// 👍 Con operadores ternarios quedaría bastante ilegible y ofuscado

// incluso indentado el código.

string? t = saludos != null

 ? saludos[1] != null

 ? saludos[1].ToUpper()

 : null

 : null;

// 👍👍El código equivalente al anterior usando []? y ?. sería...

string? t = saludos?[1]?.ToUpper();

32/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Operador supersión de null .! ('null-forgiving')
Es un operador que podemos encontrar en el contexto de algunos lenguajes con control de nulos como C#
(o! y o!.) siendo o una referencia a un objeto anulable.

Es un operador que se usa de forma conjunta o en contraposción con o?.

Supongamos el siguiente código donde permitimos la posibilidad de que una colección contenga objetos
anulables ...

public static void Main()

{

 string?[]? saludos = ["hola", null, "adios"];

 foreach (string? t in saludos)

 {

 Console.WriteLine($"Texto = {t.ToUpper()}, Logitud = {t.Length}");

 }

}

Sin embargo, si 'estamos seguros' de que el array no va a contener ningún null. Podemos usar el
operador de supresión de Null. Nos quitará el Waning, haciendo ver al compilador de que somos
conscientes de que el objeto no es nulo y si lo es debería saltar una excepción.

public static void Main()

{

 string?[]? saludos = ["hola", null, "adios"];

 foreach (string? t in saludos!)

 {

 Console.WriteLine($"Texto = {t!.ToUpper()}, Logitud = {t!.Length}");

 }

}

En contraposición, si no estamos seguros de que el objeto no sea nulo, deberemos usar los operadores ya
vistos ?. y/o ?? .

33/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

https://learn.microsoft.com/es-es/dotnet/csharp/language-reference/operators/null-forgiving

public static void Main()

{

 string?[]? saludos = ["hola", null, "adios"];

 foreach (string? t in saludos!)

 {

 string texto = t?.ToUpper() ?? "Nulo";

 int longitud = t?.Length ?? 0;

 Console.WriteLine($"Texto = {texto}, Logitud = {longitud}");

 }

}

Mostrará al ejecutar:

Texto = HOLA, Logitud = 4

Texto = Nulo, Logitud = 0

Texto = ADIOS, Logitud = 5

"

"

I call it my billion-dollar mistake.

Tony Hoare 2009 (Creador del concepto de null en 1965).-

34/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

🚀 Ampliación opcional:

Veamos cómo pasar a otros lenguajes que manejan nullables el último código que hemos hecho en
y así poder reconocer equivalencias con C#.

El código que hemos visto en C# es el siguiente:

public static void Main()

{

 string?[]? saludos = ["hola", null, "adios"];

 foreach (string? t in saludos!)

 {

 string texto = t?.ToUpper() ?? "Nulo";

 int longitud = t?.Length ?? 0;

 Console.WriteLine($"Texto = {texto}, Logitud = {longitud}");

 }

}

Kotlin:

fun main() {

 val saludos: Array<String?>? = arrayOf("hola", null, "adios")

 for (t in saludos!!) {

 val texto: String = t?.uppercase() ?: "Nulo"

 val longitud: Int = t?.length ?: 0

 println("Texto = $texto, Logitud = $longitud")

 }

}

Swift: (Lenguaje de Apple para programar iOS y macOS de forma nativa y usando las últimas
tecnologías de la marca)

func main() {

 let saludos: [String?]? = ["hola", nil, "adios"]

 for t in saludos! {

 let texto: String = t?.uppercased() ?? "Nulo"

 let longitud: Int = t?.count ?? 0

 print("Texto = \(texto), Logitud = \(longitud)")

 }

}

main()

35/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Tablas Dentadas (Jagged Arrays)
Es una tabla de tablas o array de arrays.
Si los arrays que contiene el array principal son de la misma longitud, tendremos una estructura de tipo
matriz bidimensional.

Cocepto de combinación de tabla homogénea
Podemos hacer que el contenido de una colección homogénea sea otra colección homogénea. Para ello,
deberemos analizar la declaración de izquierda a derecha siendo el tipo homogéneo a guardar lo último en
tener en cuenta.

// 3 1 2 1 2 3

string[][] t1; // Array de Arrays de strings. (Dos dimensiones)

//4 1 2 3 1 2 3 4

int[][][] t2; // Array de Arrays de Arrays de enteros. (Tres dimensiones).

Si te fijas en la ilustración inferior, a partir de tres arrays en adelente, la estructura resultante es
multidimensional y por tante conceptualmente compleja de manejar y de entender. Por lo que es fácil
cometer errores al acceder y tratar los datos que contiene.

int[][][] t =

[

 [

 [8, 9, 10],

 [6, 7]

],

 [

 [3, 4, 5],

 [1, 2]

],

];

Por lo anterior, el caso más común y único que vamos a tratar en este tema, son las tablas dentadas
que son arrays de arrays.

int[][] t =

[

 [8, 9, 10],

 [6, 7]

];

36/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Instanciar tablas dentadas
La sintaxis es la misma que para los arrays solo que los datos serán objetos array.

Por ejemplo, para crear una array de array de enteros a los valores por defecto.

int[][] td =

[

 new int[2], // [0, 0],

 new int[3] // [0, 0, 0]

];

Se puede interpretar como una matriz donde la primer fila tiene 2 columna y la segunda 3.

td : int[][]

int[][] td =
[
 new int[2],
 new int[3]
];

td

0 td[0]

1 td[1]

0 1

0 0

0 1 2

0 0 0

Si quisiéramos definir por extensión el contenido de la tabla dentada, lo más simple es usar expresiones
de colección.

int[][] td =

[

 [1, 2],

 [3, 4, 5]

];

Para acceder a uno de los datos, primero accederemos a la fila indizando el objeto array que lo contiene.
Por ejemplo, si quisieramos cambiar el valor 5 por un 77 accederíamos al array que contiene el 5 a través
de t[1] (referencia al objeto array que simboliza la segunda fila) y una vez lo tenemos podríamos indizar
ya el lugar que ocupa el 5 con td[1][2]

td[1][2] = 77;

// Sería equivalente a hacer...

int[] fila2 = td[1];

fila2[2] = 77;

37/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

td : int[][]

int[][] td =
{
 [1, 2],
 [3, 4, 5]
};

td[1][2] = 77;

td

0 1 2

3 4 77

0 td[0]

1 td[1]

0 1

1 2

¿Qué pasa si no instanciamos o no definimos por extensión todos o alguno de los arrays de la tabla
dentada?

Con este código: int[][] td = new int[2][]; , estamos inicializando un array de dos arrays de enteros,
pero sin dimensionar estos últimos. En ese caso al tratarse de tipos referencia sin instanciar, ambos
valdrán null y no podremos acceder a ellos hasta que los instanciemos dimensionándolos. Por tanto, si
hacemos...

td : int[][]

td[1] [0] = 77; ❌ERROR
ya que td[1] es null td

0 td[0]

1 td[1]

null

null

Por tanto, para acceder a la posición td[1][0] deberemos instanciar primero el array que guardamos en el
índice 1 y posteriormente asignar el valor.

td : int[][]

td[1] = new int[3];
td[1] [0] = 77; td

0 1 2

77 0 0

0 td[0]

1 td[1]

null

38/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Recorrer tablas dentadas
Lo haremos de forma análoga a como recorremos los arrays.

public static void Main()

{

 int[][] td =

 [

 [1, 2],

 [3, 4, 5, 6, 7, 8],

 [9, 10, 11]

];

 // Recorrido con un doble for

 for (int i = 0; i < td.Length; i++)

 {

 for (int j = 0; j < td[i].Length; j++)

 {

 Console.Write($"{td[i][j],-4}");

 }

 Console.Write("\n\n");

 }

 // Recorrido con un doble foreach

 foreach (int[] fila in td)

 {

 foreach (int valor in fila)

 {

 Console.Write($"{valor,-4}");

 }

 Console.Write("\n\n");

 }

}

En ambos recorridos, el resultado será el mismo y se mostrará por consola:

1 2

3 4 5 6 7 8

9 10 11

39/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

Ejemplo :

Vamos a representar una correspondencia entre comunidades autónomas y sus provincias. De tal
manera que, las comunidades irán en un array y en el índice correspondiente en la tabla dentada, irán
cada una de las provincias de esa comunidad...

[Comuniudad Valenciana] -> 0 [Alicante][Castellón][Valencia]

 [Extremadura] -> 1 [Cáceres][Badajoz]

 [Galicia] -> 2 [Lugo][Pontevedra][Orense][La Coruña]

Vamos a recorrer ambas estructuras para mostrar el contenido de la siguiente forma:

Salida ejecución del recorrido 1:

Comuniudad Valenciana

 Alicante, Castellón, Valencia

Extremadura

 Cáceres, Badajoz

Galicia

 Lugo, Pontevedra, Orense, La Coruña

Salida ejecución del recorrido 2:

| Alicante | Castellón | Valencia |

| Cáceres | Badajoz |

| Lugo | Pontevedra | Orense | La Coruña |

public static class Ejemplo

{

 public static void Main()

 {

 string[] comunidades =

 [

 "Comuniudad Valenciana",

 "Extremadura",

 "Galicia"

];

 string[][] provinciasXComunidades =

 [

 ["Alicante", "Castellón", "Valencia"],

 ["Cáceres", "Badajoz"],

 ["Lugo", "Pontevedra", "Orense", "La Coruña"]

];

40/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

 // Recorrido 1 : Por 'filas'

 string salida = "\n";

 for (int i = 0; i < provinciasXComunidades.Length; i++)

 {

 salida += $"{comunidades[i]}\n";

 salida += $"\t{string.Join(", ", provinciasXComunidades[i])}\n";

 }

 Console.WriteLine(salida);

 salida = "";

 // Recorrido 2 : Elemento a dato

 for (int i = 0; i < provinciasXComunidades.Length; i++)

 {

 salida += "| ";

 for (int j = 0; j < provinciasXComunidades[i].Length; j++)

 {

 salida += $"{provinciasXComunidades[i][j],-11}";

 salida += " | ";

 }

 salida += "\n";

 }

 Console.WriteLine(salida);

 }

}

41/41 Programación 1º DAM Unidad 8 IES Doctor Balmis

