Unidad 7

Descargar estos apunte en pdf o html

indice

= indice
¥ Introduccion
= Concepcion de los primeros programas
¥ Programacion Estructurada
¥ Definiciones formales a la hora de modularizar en PE
= Tipos de sub-modulos segun su valor de retorno.
V¥ Disefio modular (POV Orientado a Objetos)
= Método
= Signatura
» Tipos de métodos
¥ Definicion de interfaces en métodos
= Conceptos previos
¥ Sintaxis en CSharp
= Declaracién de método estatico con retorno
Llamada a método estatico con retorno

Declaracion de método estatico sin retorno

Llamada de método estatico sin retorno

Consejos sobre la alineaciéon y paso de parametros en ambos casos

¥ Definir parametros de entrada
= Paso por valor
¥ Definir parametros de salida
= Eltipo tupla
= Caso especial con clausula out
¥ Resumen y consejos para definir un interfaz
= Determinar el nombre o identificador
» Determinar parametros de entrada
= Determinar parametros de salida
= Otras consideraciones del diseno
= Ejemplo practico de disefio modularizado
= Sobrecarga de métodos o polimorfismo funcional
= Parametros opcionales o por defecto
¥ Anexo |: Otros pasos de parametros menos comunes en CSharp
= Paso por referencia con in (entrada tipos valor inmutable sin copia)

1/41 Programacion 1° DAM Unidad 7 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u7_funciones/u7_funciones.pdf
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u7_funciones/u7_funciones.html

= Paso por referencia con ref (entrada/salida)
= Paso por referencia con out (solo salida)
= Anexo Ill: Caso de estudio

2/41 Programacion 1° DAM Unidad 7 IES Doctor Balmis

Introduccion

Concepcion de los primeros programas

Los primeros programas eran monoliticos con instrucciones de ruptura y salto tanto condicional como
incondicional del tip0 GoTo O GoSub .

Monoithic Program Modular Program
M Fucintor
(A Monoithic %)
£ By
Monolthic &=— " A l
Rycitom M Opd C Lipd
I Cart > Gart
2
: VS ‘ |
N e C. Preine C. Megam
2 Soin < m
| R;d Renoitum > Gaits
T
L o Frem
Fycitum M Program
j/ Smiutre Fyclreble
| y

Problematicas de los programas monoliticos

Caodigo "spaghetti”.

Tiempo elevado de correccion de errores.

Baja reusabilidad del codigo.
Dificil documentacion.

¢ Mantenimiento excesivamente costoso.
Lo que buscamos

Correccion.
Legibilidad y portabilidad.
Facil mantenimiento, cédigo no duplicado o repetido.

Facil depuracion de errores.
o Cadigo reutilizable (genericidad) y sencillez.

3/41 Programacién 1° DAM Unidad 7 IES Doctor Balmis

Programacién Estructurada

0 Enlaces

¢ Diseno Estructurado Wikipedia

Durante la década de los 70 diferentes autores como Stevens, Myers y Constantine, 1974 y Yourdon y

Constantine, 1979 definieron las bases de la PE (programacion estructurada). Esta, definio las bases de

como modularizar el cédigo, las cuales se usaron hasta principios de los 90 donde se empez6 a popularizar

la POO (Programacioén Orientada a Objetos). No obstante, estos principios estaran también vigentes en

la POO y por tanto deberemos de conocerlos.

Definiciones formales a la hora de modularizar en PE

o Moédulo o (Subprograma, Subrutina): Parte de un programa que realiza una tarea concreta mediante una

serie de instrucciones.
Lo simbolizaremos mediante una caja.

modulo

¢ Modularizar: Dividir una tarea o modulo en otros sub-modulos.

» Transferencia de control: Cuando un modulo llama a un sub-médulo para realizar parte de su tarea.

e Moédulo principal o (main): Médulo que controla al resto.

En el siguiente diagrama estamos simbolizando una modularizacién, donde el médulo principal sera el

de mas arriba y lo simbolizaremos por una linea doble. Para realizar su tarea hace una transferencia de

control a los 3 sub-modulos inferiores en orden de izquierda a derecha. A su vez el sub-médulo 2 llama

transfiere el control a los sub-médulos 4 y 5 respectivamente para realizar su tarea y tiene el
sub-médulo 5 en comun con el sub-médulo 3 . Generandose asi una estructura jerarquica.

main

.

PN

1

sub-modulo sub-modulo

sub-modulo

VARV

sub-moddulo
4

sub-méddulo
5

sub-moddulo
6

o Grado de entrada o (fan-in): El niumero de modulos que usan otro médulo.

En el diagrama de ejemplo serian las flechas que llegan. Asi pues, el sub-médulo 5 tiene fan-in

4/41 Programacién 1° DAM Unidad 7 IES Doctor Balmis

=2

https://ieeexplore.ieee.org/document/5388187
https://www.amazon.es/Structured-Design-Fundamentals-Discipline-Computer/dp/B000H39SJE
https://www.amazon.es/Structured-Design-Fundamentals-Discipline-Computer/dp/B000H39SJE
https://es.wikipedia.org/wiki/Dise%C3%B1o_estructurado

» Grado de salida o (fan-out): El numero de médulos subordinados a otro. Deberia ser el minimo
necesario para realizar la tarea.
En el diagrama de ejemplo serian las lineas que salen. Asi pues, el main tiene fan-out = 3,
generandose asi una dependencia de sus 3 sub-mddulos.
¢ Visibilidad o (Scope): El conjunto de médulos o componentes que pueden ser usados por otro.
o Cohesion:
o Debe serlo mas alta posible.
o Se da cuando los médulos en el ultimo nivel, realizaran tareas atémicas y no tendra diferentes
funcionalidades segun la entrada aprovechando un codigo comun.
o Un modulo solo hace una cosa y las instrucciones para hacerlo guardan un orden y relacién logica.
o Acoplamiento:
o Debe ser el mas bajo posible.
o El acoplamiento mide la interaccién entre modulos.
o Por tanto trataremos de ocultar la informacion contenida en los mismos de tal manera que no pueda
ser accedida desde otros médulos.
o Para tener bajo acoplamiento:
= Todo lo que comparten dos rutinas se especifica en la lista de parametros del la subrutina
llamada (Solo los parametros indispensables).
= No debemos conocer la implementacion de un modulo para poder utilizarlo.
= Evitar siempre que dos médulo utilicen algun tipo de variable global comun.
o Nos proporciona:
= Nos proporciona independencia entre médulos.
= Evita la propagacién de errores.

Tipos de sub-médulos segun su valor de retorno.

e Procedimientos: No devuelven ningun valor asociado a su nombre y son el resultado de la divisién de
un modulo mas grande que agrupa sentencias relacionadas en una subrutina.
e Funciones: Retornan al mdédulo llamador un valor asociado a su nombre.

= Resumen

Definiremos una interfaz clara, de tal manera que el nombre y los parametros me indique, sin
redundancia, lo que hace un modulo sin necesidad de conocer su implementacién.

Buscaremos modulos con alta cohesion. Esto es, pequefios, de poca complejidad y que solo
hagan una cosa.

¢ Buscaremos modulos con bajo acoplamiento. Esto es, evitaremos usar en ellos variables
globales o externas al ambito del mismo. Un sub-modulo se dedicara a hacer su tarea en funcion
de sus parametros de entrada, sin saber por quien es llamado ni para quien la hace. Esto implica
que si producimos una salida, sera siempre en funcién de los parametros de entrada.

5/41 Programacién 1° DAM Unidad 7 IES Doctor Balmis

Diseno modular (POV Orientado a Objetos)

Método

» Aunque en posteriores temas entraremos formalmente el la POO. Podemos decir ya que en POO los
maodulos siempre se definiran dentro de una clase y dentro de este ambito se denominaran métodos.

e Como C# es un lenguaje OO puro, los médulos siempre estaran definidos dentro de una y por tanto
tendran la nomenclatura de método independientemente de si son funciones o procedimientos.

Signatura

e En POO al conjunto formado por: el identificador o nombre de un método, y el nimero y tipo de sus
parametros formales, se le denomina signatura.

o Dos métodos pueden tener el mismo nombre, si sus parametros son diferentes. (Cambia su signatura). A
esto ya veremos mas adelante que se le denomina Sobrecarga o Polimorfismo funcional en POO.

Tipos de métodos

1. Métodos de objeto o también (de instancia): Son llamados a través de un objeto o una estructura
instanciada en memoria.

(Profundizaremos en ellos mas adelante al ver POO)

2. Métodos de acceso y actualizacion: Me permiten acceder y modificar el estado de un objeto.
(Profundizaremos en ellos mas adelante al ver POO)

3. Métodos estaticos o también (de tipo, de clase):

* No necesitan ningun tipo de instancia en memoria del objeto o la estructura a la que pertenecen para
ser llamados.

¢ Son los mas parecidos conceptualmente a las funciones y procedimientos en la PE.

Definicion de interfaces en métodos

Conceptos previos

Definiciones conceptuales de parametros...

e Formales
La forma en que se comunican el subprograma y el modulo que lo llama.

static double Pow(double x, double y)
{

¢ Reales o Actuales

Podemos decir que es un valor concreto en un momento de la ejecucién de los parametros formales.

6/41 Programacién 1° DAM Unidad 7 IES Doctor Balmis

Pow(2d, 10d);

Tipos de parametros segun el flujo de datos:

o De entrada: Los necesitara el método para realizar su ejecucion y no deben modificar su valor dentro del
mismo.

o De salida: Si el método es una 'funcién', contendran el valor o los valores que devuelve la misma
después de su ejecucion.

+ De entrada/salida (»s Hay que evitarlos): Pasan un dato de entrada que puede quedar modificado

tras la ejecucion del método.

Sintaxis en CSharp
Declaracion de método estatico con retorno

class Tipo

{

public static tipoDevuelto IdentificadorMétodo(parametrosFormales)

{

return variableDelTipoDevuelto;

}
}

Al ser publico el identificador del método ira en PascalCasing y para los parametros formales usaremos

camelCasing.

Llamada a método estatico con retorno

o Si se hace fuera de la clase donde se define:
tipoDevuelto idvariable = Tipo.IdentificadorMétodo(parametrosReales);

(Profundizaremos en ellos mas adelante al ver POO)

7141 Programacién 1° DAM Unidad 7 IES Doctor Balmis

class Fecha

{
public static bool EsBisiesto(ushort afo)
{
return afio % 4 == 0 && (afio % 100 != 0 || afio % 400 == 0);
¥
}

public class Principal

{
public static void Main()
{
string salida = (Fecha.EsBisiesto(2008) ? "Es" : "No es") + " bisiesto";
Console.WritelLine(salida);
}
}

o Si se hace dentro de la clase donde se define:
tipoDevuelto idvVariable = IdentificadorMétodo(parametrosReales);

(Son los que usaremos para aprender a modularizar en los primeros programas)

public class Principal

{
static bool EsBisiesto(ushort afo)
{
return afio % 4 == 0 &% (afio % 100 != 0 || afio % 400 == 0);
}
public static void Main()
{
string salida = (EsBisiesto(2008) ? "Es" : "No es") + " bisiesto";
Console.WritelLine(salida);
}
}

o Métodos y funciones de nivel superior (top-level) y métodos con cuerpo de expresion

o Métodos nivel superior: Don métodos que no estan dentro de una clase, sino que se definen
directamente en el espacio de nombres. Se introdujeron en C# 9.0 para simplificar la escritura de
programas pequefios y scripts.

o Métodos con cuerpo de expresion: Son una forma concisa de definir métodos que consisten en
una sola expresion. No vamos a profundizar mucho en ellos (usos y significados) hasta el final del
curso. Pero son una caracteristica que también podemos encontrar en otros lenguajes como
JavaScript, Kotlin, etc.

Podemos simplificar diciendo que son aplicables en aquellos métodos que estén formados por una
unica expresién o instruccién, independientemente de si se evaluan algo o0 a void . Eliminaremos
las llaves y el return de la definicion del método y usaremos el operador => para indicar a que se
evalua el método.

8/41 Programacién 1° DAM Unidad 7 IES Doctor Balmis

https://learn.microsoft.com/es-es/dotnet/csharp/fundamentals/program-structure/top-level-statements
https://learn.microsoft.com/es-es/dotnet/csharp/programming-guide/statements-expressions-operators/expression-bodied-members

static bool EsBisiesto(ushort afio) => afio % 4 == 0 & (afio % 100 != @ || afio % 400 == 0);

string salida = (EsBisiesto(2008) ? "Es" : "No es") + " bisiesto";

Console.WritelLine(salida);

o) Tip
Para obtener el cédigo anterior a partir del ejemplo con Main:

= Nos situamos el cursor sobre el método Main y pulsamos s ctrl+. nos ofrecera la opcion
de 'Corregir Todo: Convertir en instrucciones de nivel superior’

= Posteriormente, nos situamos sobre el return con una Unica expresion de EsBisiesto Yy
pulsamos ctrl+. nos ofrecera la opcion de

'Usar cuerpo de expresiones para funcién local’ .

Declaracion de método estatico sin retorno

o Usaremos para ello el tipo void (vacio) como tipo de retorno.
e Su sintaxis suponiendo que es un método estatico dentro de una misma clase sera:

static void IdProcedimiento(parametros_formales)

{
// Cuerpo del método
return; // Podemos obviarlo
}
o Ejempilo ...

class Datos

{
public static void Muestra(
string nombre,
string apellido,
ushort edad)
{
Console.WriteLine($" Nombre: {nombre}\n" +
$" Apellido: {apellido}\n" +
$" Edad: {edad}");
}
public static void MetodoSinRetorno()
{
// Llamada desde un método de la misma clase.
Muestra("Xusa", "Garcia", 15);
}
}

9/41 Programacién 1° DAM Unidad 7 IES Doctor Balmis

Llamada de método estatico sin retorno

¢ Haremos la llamada sin asignar el retorno a una variable o sin usarlo en una expresion.

IdProcedimiento(pardmetros_reales);

e Ejemplo ...

public class Principal

{
public static void Main()
{
Datos.Muestra("Juanjo", "Martinez", 18);
Datos.MetodoSinRetorno();
}
}

Consejos sobre la alineacién y paso de parametros en ambos casos

o Visual Studio y VS Code tienen herramientas para alineacion y sangria de parametros en métodos.

o Cuando tenemos pocos parametros pueden ir en la misma linea de la definicion.

static void Muestra(string nombre, string apellido, ushort edad, string direccién)

Si no estan asi, esto se consigue en el editor, colocandose sobre un parametro y pulsando ctril+. A
continuacion nos ofrecera la opcién
'Desajustar lista de parametros - Desajustar todos los pardmetros'
+ Sitenemos 4 o mas parametros, nuestra recomendacion es que se haga una sangria de
parametros.
Para ello: ctrl+. sobre los parametros y a continuacion seleccionar
'Ajustar todos los parametros - Aplicar sangria a todos los parametros' obteniendo asi...
public static void Muestra(
string nombre,
string apellido,

ushort edad,

string direccidn)

De esta forma sera mas facil...
i. Ver y saber todos los parametros de una funcién. Si que se pierdan por el lado derecho del editor.
ii. Afadir parametros nuevos.
iii. Eliminar un parametro en la declaracion.
iv. Cambiar el orden de los mismos con Alt+t O Alt+! sobre el parametro.
v. Ademas, podremos cambiar facilmente la indentacion de los mismos, seleccionandolos y luego

aplicando Tab O Shift+Tab
¢ Ademas, estas opciones también valdran para realizar ajustar los parametros de una llamada a un

método. De tal manera que si tenemos una llamada a Mustra con parametros reales como la siguiente:

10/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

Muestra("Juanjo", "Martinez", 18, "Calle Falsa, 123")

=> Console.WriteLine($"Nombre: {nombre}, Apellido: {apellido}, Edad: {edad}, Direccidn: {direccién}");

Si ahora nos situamos sobre el parametro real "3Juanjo" y pulsamos ctrl+. nos ofrecera la opcion

'Ajustar todos los parametros - Aplicar sangria a todos los parametros' obteniendo asi:

Muestra(
"Juanjo",
"Martinez",
18,
"Calle Falsa, 123")
=> Console.WritelLine($"Nombre: {nombre}, Apellido: {apellido}, Edad: {edad}, Direcciodn: {direccion}");

Si ademas, volvermos a pulsar ctrl+. sobre el primer parametro real, nos ofrecera
'Agregar el nombre al argumento "..." (incluidos los argumentos finales)' oObtendremos asi:
Muestra(
nombre: "Juanjo",
apellido: "Martinez",

edad: 18,

direccién: "Calle Falsa, 123");

o) Tip

Fijate que podemos indicar el nombre del parametro real al que corresponde el valor que le
pasamos separado por el caracter : . Esto es muy util cuando tenemos muchos parametros o son
de tipo similar, pues nos ayuda a saber a qué corresponde cada uno de ellos. Ademas, nos
permitira cambiar el orden de los parametros reales sin que afecte a la llamada, pues al
indicar el nombre del parametro real, no importa el orden en que se pasen. Esta sintaxis, es muy
comun en lenguajes como Python, Kotlin o Swift y se denomina "Argumentos nombrados”.

2

...-with- proper, design, the features come
cheaply. This approach is arduous, but
continues to succeed.

2

- Dennis Ritchie.

11/41 Programacién 1° DAM Unidad 7 IES Doctor Balmis

<« Ampliacion opcional:

Veamos como definir el ejemplo anterior en otros lenguajes como Python o Kotlin para que puedas
reconocer equivalencias con C#.

Python:

def muestra(nombre, apellido, edad, direccion):
print(f"Nombre: {nombre}, Apellido: {apellido}, Edad: {edad}, Direccidén: {direccion}")

muestra(nombre="Juanjo", apellido="Martinez", edad=18, direccion="Calle Falsa, 123")

Kotlin:

// En este ejemplo hemos ajustado los pardmetros y les hemos aplicado sangria para que se vean mejor.
fun muestra(

nombre: String,

apellido: String,

edad: UShort,

direccion: String) {

println("Nombre: $nombre, Apellido: $apellido, Edad: $edad, Direccidén: $direccion")

}
muestra(
nombre = "Juanjo",
apellido = "Guarinos",
edad = 18u,
direccion = "Calle Falsa, 123")

12/41 Programacion 1° DAM Unidad 7 IES Doctor Balmis

Definir parametros de entrada
Paso por valor
Si no ponemos ningun modificador o clausula al parametro formal. El paso sera por valor. Por tanto, si es un

tipo valor el objeto se duplica en memoria y si pasamos un tipo referencia, se duplicara la referencia al objeto.

public class Ejemplo

{
static void RestaUno(int d) // el pardmetro de entrada 'd' deja de existir al finalizar el método.
{
// E1l parametro formal con id. 'd' solo existe en este
// ambito y es una copia en el Heap del tipo valor dato
// se pas6é como parametro real.
--d;
Console.Write(d); // Muestra 4
3
public static void Main()
{
int dato = 5;
// Se pasa una copia de dato por que es un Tipo-valor.
RestaUno(dato);
// Después de la llamada dato sigue valiendo 5 por que lo que se modifica es la copia.
Console.Write(dato); // Muestra 5
¥
X

Por lo que podemos decir que int d es un parametro solo de entrada ya que aunque se modifique
internamente en el ambito del método no afecta al valor de la variable dato en el ambito de ejecucién del
método main . Para que el cambio tenga efecto en el método main deberiamos devolver el valor modificado y
asignarlo a la variable dato . Por lo que el cddigo anterior seria equivalente a:

public class Ejemplo

{
static int RestaUno(int d)
{
--d;
Console.Write(d); // Muestra 4
// Devolvemos una copia de lo que vale d en el Heap
// antes de que se 'destruya'.
return d;
¥
public static void Main()
{
int dato = 5;
// Sobrescribimos el Tipo-valor dato con lo que devuelve la funcion.
dato = RestaUno(dato);
Console.Write(dato); // Muestra 4
3
}

13/41 Programacion 1° DAM Unidad 7 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/programming-guide/classes-and-structs/passing-value-type-parameters

¢ Qué sucede si pasamos por valor un tipo-referencia en lugar de un tipo-valor?
En el siguiente ejemplo vamos a ver que pasa usando el tipo referencia basico cadena.
Nota
Puedes profundizar si los tipos valor y referencia en la documentacion oficial y su gestion en el Anexo |
de ampliacion. Aunque, a este nivel, no es necesario que conozcamos la gestion de memoria de los

tipos valor y referencia, si no que nos quedemos con el concepto de que los tipos valor se copian y los
tipos referencia se copian las referencias al pasarse por valor.

public class Ejemplo

{
static void PonExclamaciones(string t)
{
t=t+ "1
}
public static void Main()
{
string texto = "Adios";
PonExclamaciones(texto);
Console.Write(texto);
¥
}

Después de ... t =t + "III": tendremos...
Antes de ... t =t + "IlII"; tendremos... P
texto : string
"Adios"
t, texto : string t : string
"Adios" "Adios!!!!"

14/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/programming-guide/classes-and-structs/passing-reference-type-parameters

Definir parametros de salida

Lo normal es tener un Unico parametro de salida, que sera el valor que retorna la funcién. En este caso no
necesitamos ningun modificador o clausula y solo deberemos indicar el tipo de retorno en la declaracion del
método y usar la clausula return , como hemos visto en la sintaxis, para devolver el valor o si es una

expresion, simplemente evaluarlo como hemos visto en la sintaxis.

Por ejemplo, si queremos definir un método que calcule el angulo en radianes entre dos puntos en un plano
cartesiano, podriamos hacerlo asi:

static double AnguloEnRadianes(double x1, double yl, double x2, double y2)
{

// Definir una variable local en ocasiones nos ayuda a depurar.
double angulo = Math.Atan2(y2 - y1, x2 - x1);

return angulo;

o también, simplificarlo con cuerpo de expresién ya que podemos reducirlo a una Unica expresion. Recuerda,
que si para obtener el valor de retorno, necesitamos realizar mas de una operacion, deberemos usar el
cuerpo del método con llaves y la clausula return obligatoriamente.

static double AnguloEnRadianes(double x1, double yl1, double x2, double y2) => Math.Atan2(y2 - y1, x2 - x1);

Pero, como retornar mas de un valor, o varios valores de salida?. Esta opcién, no va a ser muy comuin,
puesto que si retornamos mas de un valor posiblemente el médulo haga mas de una cosa y por tanto tenga
baja cohesion. Si esto sucede, deberiamos dividir el modulo en sub-mddulos mas pequefios que hagan una

sola cosa, retornando un Unico valor.

Sin embargo, en ocasiones una "operacion atomica" puede requerir mas de un valor de salida. En este caso,
la opcién mas recomendable es usar tuplas.

El tipo tupla

0 Enlace

Tuplas en C#

Formalmente una tupla, seria un objeto que contiene otros objetos ordenados en su interior (a1, a2, a3, a4,
..., an) que pueden ser o no de diferente tipo.

Son tipos valor, esto es, se almacenan en el Heap y se copian al pasarse o al retornarse de un método o
al asignase a una variable como el resto de tipos primitivos int, double ,... (excepto string).

15/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

https://es.wikipedia.org/wiki/Tupla#Definiciones_formales
https://learn.microsoft.com/es-es/dotnet/csharp/language-reference/builtin-types/value-tuples

Ejemplo 1:

Por ejemplo, una coordenada 2D de 2 valores reales (x, y) como (2.5d, 6d) es una tupla de dobles.
Podemos definirla de tres maneras:

// Sin indicar un identificador para los valores de la tupla y después acceder usando Iteml, Item2, etc.
(double, double) puntol = (2.5d, 6d);
Console.WriteLine($"Punto: ({puntol.Iteml}, {puntol.Item2})");

// Indicando un identificador para los valores de la tupla y después acceder usando el identificador.
(double x, double y) punto2 = (2.5d, 6d);
Console.WriteLine($"Punto: ({punto2.x}, {punto2.y})");

// Sin necesidad de indicar un identificador para la tupla, pero asignando los valores a variables individuales.
// Aunque ahora no tenga mucho sentido, es util cuando el tipo tupla es el retorno de un método.

(double x, double y) = (2.5d, 6d);

Console.WriteLine($"Punto: ({x}, {y})");

Ejemplo 2:

Supongamos que queremos definir un tipo tupla que represente la demografia de una ciudad con el
nombre de la ciudad, el nimero de habitantes y el area en km2. Podriamos definirlo asi:

(string ciudad, int habitantes, double area) demografia = ("Alicante", 337482, 201.26);

Console.WritelLine($"Ciudad: {demografia.ciudad}");
Console.WritelLine($"Habitantes: {demografia.habitantes}");
Console.WriteLine($"Area: {demografia.area} km2");

Continuando con la definicion de parametros de salida a través de tuplas. Supongamos que queremos
definir un método similar al anterior, pero que nos retorne la direccion del segmento definido por los dos
puntos (x1, y1) y (x2, y2) en forma de tupla de dos valores reales (sen, cos). Ademas, los puntos también los
vamos a pasar como tupla. Para ello, podemos definir el método de la siguiente manera:

(double sen, double cos) Direccion((double x, double y) pl, (double x, double y) p2)
Como vemos, el tipo de retorno es (double sen, double cos) una tupla con dos valores reales que seran las

dos variables de salida. El nombre o identificador de los valores de la tupla es opcional, pero deberemos
indicarlo para que el cédigo sea mas legible y auto-documentado.

16/41 Programacion 1° DAM Unidad 7 IES Doctor Balmis

public class Ejemplo

{
static (double sen, double cos) Direccion((double x, double y) pl, (double
{
double anguloRad = Math.Atan2(p2.y - pl.y, p2.x - pl.x);
return (Math.Sin(anguloRad), Math.Cos(anguloRad));
¥
public static void Main()
{
(double sen, double cos) = Direccion((x:2.5d, y:6d), (x:4.5d, y:8d));
Console.WritelLine($"Sen = {sen:F3}");
Console.WritelLine($"Cos = {cos:F3}");
}
}

Ejeplo de ejecucion:

17/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

x, double y) p2)

<« Ampliacion opcional:

Veamos como definir el ejemplo anterior en otros lenguajes como Python o Kotlin para que puedas
reconocer equivalencias con C#.

Python:

import math

Fijate que también podemos definir tuplas de forma

muy similar a como hace C#

def direccion(pl, p2):
angulo_rad = math.atan2(p2[1] - p1[1], p2[@] - p1[e@])
return (math.sin(angulo_rad), math.cos(angulo_rad))

sen, cos = direccion((2.5, 6.0), (4.5, 8.0))
print(f"Sen = {sen:.3f}") # Muestra Sen = 0.707
print(f"Cos = {cos:.3f}") # Muestra Cos = 0.707

Kotlin:

import kotlin.math.*

// En Kotlin también es similar pero no tenemos un tipo tupla indeterminado

// sino que tenemos que indicar el numero de elementos y si son dos

// utilizaremos Pair<Double, Double>

fun direccion(pl: Pair<Double, Double>, p2: Pair<Double, Double>): Pair<Double, Double> {
val anguloRad = atan2(p2.second - pl.second, p2.first - pl.first)

return Pair(sin(anguloRad), cos(anguloRad))

fun main() {

val (sen, cos) = direccion(2.5 to 6.0, 4.5 to 8.0)

// El resto del cédigo no cambia.
println("Sen = %.3f".format(sen)) // Muestra Sen = 0.707
println("Cos = %.3f".format(cos)) // Muestra Cos = 0.707

Como puedes ver una vez vista una estructura, podemos encontrar otras mas o menos equivalentes en
otros lenguajes y si no sucede, siempre podemos definir dos métodos, uno que retorne el senoy
otro el coseno.

18/41 Programacion 1° DAM Unidad 7 IES Doctor Balmis

Caso especial con clausula out

Existen otras formas de pasar parametros a los métodos a través del uso de modificadores o clausulas. Su
uso no es muy comun, pero puedes profundizar en ellas en el Anexo | de ampliacién al final del tema. Una de
ellas es la clausula out que nos permite definir un caso especial de parametros de salida.

Veamoslo a través del método TryParse de la clase Int32 definido en las BCL, de la que podemos encontrar

su equivalente para el resto de tipos primitivos como Double.TryParse , Int64.TryParse , efc.

Este método nos permite intentar convertir una cadena a un entero pero... analicemos su interface:
public static bool TryParse(string? s, out int result);

1. Hay un parametro de entrada string? s que es una cadena que queremos convertir a entero.

2. Hay un primer parametro de salida que es el booleano que retorna el método, el cual nos indica si la
conversioén se ha realizado correctamente o no.

3. Hay un segundo parametro de salida denominado out int result que es el entero resultante de la
conversion si se ha podido realizar. Es de salida porque porque el tipo esta modificado con la clausula
out lo que nos indica que el valor de este parametro se modificara dentro del método y no es necesario
inicializarlo antes de la llamada.

En este caso el parametro de salida out int result esta subordinado al parametro de salida bool y a que
su valor sea true ya que sies false el valor de result no tendra sentido. Por tanto, no tendria sentido
devolverlo en una tupla porque cuando se definié el método las tuplas no existian y ademas, como hemos
comentado, result esta subordinado al valor del bool de salida y con una tupla no podriamos expresar
correctamente esta relacion de dependencia.

Veamos un ejemplo simple de uso a través de un programa simple que lea un valor entero y que filtre la
entada para que el valor introducido sea un niumero entero entre 1 y 10. Si no es asi, volvera a pedir el valor
hasta que se introduzca un valor correcto que se acabara mostrando por consola.

bool esNumeroValido;
int numero;

do
{

Console.Write("Introduce un numero entero entre 1y 10: ");

string entrada = Console.ReadlLine();
esNumeroValido = int.TryParse(entrada, out numero) && numero is >= 1 and <= 10;
if (!esNumeroValido)
Console.WritelLine($"La entrada {entrada} no es valida. Por favor, introduce un numero entero entre 1y 10.");
} while (!esNumeroValido);

Console.WriteLine($"Numero valido introducido: {numero}");

Fijate en el siguiente ejemplo de ejecucién, que si no introducimos nada o introducimos una cadena ya no se
generara un error de ejecucion, sino que se mostrara un mensaje de error y volvera a pedir el valor hasta que
se introduzca un numero entero valido entre 1 y 10. Numero sera rellenado por TryParse sise evallua a true

19/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

https://learn.microsoft.com/es-es/dotnet/api/system.int32.tryparse?view=net-9.0#system-int32-tryparse(system-string-system-int32@)

y si se evalla a false no se llegara a evaluar la segunda parte de la expresion numero is >= 1 and <= 10
donde comprobamos que el numero esté en el rango de 1 a 10.

Introduce un numero entero entre 1 y 10: hola
La entrada hola no es valida. por favor, introduce un numero entero entre 1 y 10.
Introduce un numero entero entre 1 y 10: 34,6
La entrada 34,6 no es valida. por favor, introduce un numero entero entre 1 y 10.

Introduce un numero entero entre 1 y 10: 22

La entrada 22 no es valida. Por favor, introduce un numero entero entre 1 y 10.
Introduce un numero entero entre 1 y 10: 5

Numero valido introducido: 5

20/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

Resumen y consejos para definir un interfaz

Paso de parametros por
valor

-
Un tipo simple para
un solo valor de salida

-

Usando la clausula
'return’

Segun el tipo
de parametro

r

Un tipo tupla para
mas de un valor de salida

-

Entrada/Salida
No lo vamos ha hacer e

Determinar el nombre o identificador

1.
2.
3.
4.

21/41

Usaremos PascalCasing. Ej: double CalculaDistancia(...)

Usaremos sustantivos o verbos conjugados en el caso de procedimientos.

Si es una funcioén que retorna algo me indicara lo que devuelve o calcula.

No debe ser ambiguo, tiene que ser suficientemente descriptivo, asi auto-documentamos el cédigo.
Solo con ver el nombre mas los parametros sabremos lo que hace el método sin conocer su
implementacion.

. Recuerda un método s6lo hace una cosa. Por tanto, si al decidir el nombre usamos alguna conjuncion

como 'y' u '0' el método sera incorrecto.
e float PorcentajeDeDescuento(double tarifa, double precio) {...} &

e float Porcentaje(double tarifa, double precio) {...} Es ambiguo =’

. Recuerda que identificador + parametros definen la signatura. Por tanto, evitaremos redundancias en

el nombre, en relacién con los parametros. Ya que estos también me proporcionan informacion de lo que
hace el método.
Esto ultimo requiere de una reflexién tras elegir un nombre.

e public static double Distancia(Punto2D pl1, Punto2D p2) {...}

e public static double CalculaDistanciaEntrePuntos(Punto2D pl, Punto2D p2) {...} Redundante

=%

Programacioén 1° DAM Unidad 7 IES Doctor Balmis

Determinar parametros de entrada

1. Usaremos nombres descriptivos para los parametros formales.

2. Aunque, comentamos que no debiamos utilizar contracciones. En determinados contextos podremos
usar una inicial para el nombre del parametro formal, pues no hay posibilidad de confusion, ni
ambigledad.

* double Distancia(Punto2D i, Punto2D j) {...} i, json ids. usados paraindices °’
e double Distancia(Punto2D puntol, Punto2D punto2) {...} &

e double Distancia(Punto2D pl, Punto2D p2) {...} & &
3. El pasar los parametros sin agrupar en los modulos o funciones basicas o atémicas nos proporcionara
mayor reusabilidad. Ya que evitaremos acoplamientos y dependencias de tipos complejos.

Nota: Esto es dificil de valorar y objeto de discusién, porque lo normal es hacer lo contrario.

En el siguiente ejemplo. Es mas posible que pueda usar el método en mas sitios, si utilizo coordenadas
puesto que no necesito conocer la clase Punto2D .

e double Distancia(Punto2D pl, Punto2D p2){...} &

e double Distancia((double x, double y) pl, (double x, double y) p2){...} & &

®* double Distancia(double x1, double yl1, double x2, double y2){...} & &

Determinar parametros de salida

1. Lo normal es retornar un dnico valor. Por tanto, el nombre del método debera indicar lo que retorna.
e double AnguloEnRadianes(double x1, double yl, double x2, double y2) &
2. Si tenemos mas de un parametro de salida:
Podemos usar tuplas & &
(double sen, double cos) Direccion(double x1, double yl, double x2, double y2) {...}
(double sen, double cos) Direccion((double x, double y) pl, (double x, double y) p2) {...}

Otras consideraciones del diseno

o Los métodos deben ser cortos. Por tanto, intentaremos que su coédigo no exceda de una pantalla. Si
esto sucede, intentaremos modularizarlo o subdividirlo ain mas.

o Deberemos agrupar bloques de cédigo relacionado en procedimientos que ademas de acortar la funcién
nos auto-documentara el codigo.

o Si el método tiene excesiva carga logica, salvo en casos muy simples, evitaremos usar retornos en
medio de la I6gica de la funcién.
Esta practica ademas de liar puede llevar a errores por olvido cerrar flujos de datos, liberacion de

recursos en lenguajes no gestionados, efc...

22/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

® Caso de estudio:

Vamos a volver sobre el programa de resolucion de ecuaciones de segundo grado que vimos en temas
anteriores y vamos a definir un método que nos permita resolver ecuaciones de segundo grado.
Recordemos que una ecuacion de segundo grado es aquella que tiene la forma:

—b =+ +/b? — 4ac

5 Discriminante — A = b> — 4ac
a

ar’ +br+c=0 donde = =

Donde si el discriminante es mayor que 0 tiene 2 soluciones. Si es igual a 0 tiene 1 solucién y si es
menor que cero no tiene soluciones reales.

Lo principal en este caso es definir el interfaz del método que nos permita resolver la ecuacion de
segundo grado. Para ello, vamos a definir un método que reciba los coeficientes a, b ¥ ¢ dela
ecuacion. Pero, ;Qué tipo de retorno debe tener el método?, ; COmo vamos a representar las
soluciones?.

Veamos una posible solucion donde usamos una tupla para representar el nimero de soluciones y las
soluciones en si. El método, pues, devolvera una tupla con el numero de soluciones y las soluciones si
las hay. Si no hay soluciones, las soluciones seran null para que no se puedan usar. Con todo esto, la
implementacion del método podria ser la siguiente...

static (int soluciones, double? x1, double? x2)

ResuelveEcuacionSegundoGrado(double a, double b, double c)

{

Debug.Assert(a > le-5, "E1 coeficiente 'a' debe ser distinto de cero");

double discriminante = b * b - 4 * a * c;

(int soluciones, double? x1, double? x2) resultado;

if (discriminante < 9)

{
resultado = (0, null, null);

}

else if (discriminante == 0)

{
double x = -b / (2 * a);
resultado = (1, x, null);

¥

else

{
double sqrtDiscriminante = Math.Sqrt(discriminante);
double x1 = (-b + sqrtDiscriminante) / (2 * a);
double x2 = (-b - sqrtDiscriminante) / (2 * a);
resultado = (2, x1, x2);

¥

return resultado;

}

23/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

Con lo visto durante el tema, podemos usar el método de la siguiente manera. Donde, podemos ver que
la llamada al método queda clara y auto-documentada, ademas su uso es sencillo sin necesidad de
definir tipos complejos para usarlo.

public static void Main()

{
(int soluciones, double? x1, double? x2) = ResuelveEcuacionSegundoGrado(a:1, b:-3, c:2);
string salida = soluciones switch
{
0 => "La ecuacién no tiene soluciones reales."”,
1 => $"La ecuacidn tiene una solucidén real: x = {x1}",
_ => $"La ecuaciodn tiene dos soluciones reales: x1 = {x1}, x2 = {x2}"
¥
Console.Writeline(salida);
}

24/41 Programacion 1° DAM Unidad 7 IES Doctor Balmis

Ejemplo practico de diseino modularizado

® Caso de estudio:

Se propone hacer un una version extendida del programa de piedra-papel-tijera.

En este versidn se jugaran rondas contra la maquina de 1 a 4 jugadores. De tal manera que el programa
nos pedira el numero de jugadores para la ronda de juego y posteriormente para cada jugador, indicara
que jugador juega Yy le pedira a este una jugada.

Acto seguido, la maquina hara una jugada aleatoria y nos mostrara el resultado del juego de ese jugador
en esa ronda.

Cuando hayan jugado todos los jugadores de la ronda, la maquina nos pedira que pulsemos una tecla
para jugar otra ronda o ESC para salir.

Nota: Para repasar algunas de las estructuras vistas en el anterior tema. Vamos ha hacer que el
ordenador filtre las entradas da datos del usuario, nos debera indicar si es incorrecta, y la volvera a pedir
en tal caso.

Una posible descomposicion del problema en médulos seria la siguiente...

Fijate que cada médulo solo hace una cosa.

Ejemplo de ejecucion:

Introduce cuantos jugadores van a participar (1 a 4): 6
6 no es correcto. Debe ser un valor entre 1y 4.
Introduce cuantos jugadores van a participar (1 a 4): 2
Jugando Jugador_1 ...
Introduce tu jugada (PIEDRA, PAPEL, TIJERA): PAPEL
ET ordenador ha jugado PAPEL
Jugador_1 ha jugado PAPEL
Empate

Jugando Jugador_2
Introduce tu jugada (PIEDRA, PAPEL, TIJERA): PAPEL
E1l ordenador ha jugado TIJERA
Jugador_2 ha jugado PAPEL
ET ordenador gana

iii FIN PARTIDA !!!,
Pulsa una tecla para jugar otra ronda. ESC para salir.

Puedes descargar el cédigo fuente del ejemplo en el siguiente enlace.

Nota: Aquellos modulos a los que se les pasa el control mas de una vez en un bucle, lo indicaremos
en la flecha con una etiqueta.

25/41 Programacion 1° DAM Unidad 7 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u7_funciones/assets/codigo/EjemploModularizacion_ejemplo.cs

Nivel 0 Principal

1 a ? rondas

Nivel 1 Juega Ronda

/ \a 4 jugadores

Pide Numero Juega
Jugadores Jugador N

— 7\

. Pide Jugada Genera Jugada Obtén Resultado Muestra Resultado
Nivel 3 :
a Jugador N Maquina Jugadas Jugadas

Nivel 2

Vamos seguir la modularizacién propuesta teniendo en cuenta que:

o Empezaremos con los médulos del nivel mas bajo y nos centraremos en lo que tienen que hacer,
que parametros necesitan y que devuelven. Sin preocuparnos de quien los llama.

» No todos los médulos puede que se sustancien en un método, ya que puede que no tengan la
entidad suficiente para hacerlo o ya estén implementados en el propio lenguaje.

o En este cédigo hemos comentado lo que hacemos por ser un ejemplo aunque en la realidad no lo

haremos.

Partiremos del siguiente esqueleto del programa. Fijate que hemos definido 3 constantes de texto que
nos seran de utilidad durante la implementacion del programa, al tener el modificador const podran ser
usadas por cualquier método estatico de la clase.

EjemploModularizacion junto con el Main().

public class EjemploModularizacion

{
const string PIEDRA = "PIEDRA";

const string PAPEL = "PAPEL";
const string TIJERA = "TIJERA";

public static void Main()

{

1. Como hemos comentado empezamos por los médulos de Nivel 3 definiendo su interfaz.

[Pide Jugada a Jugador N] — static string PideJugada(string jugador)

26/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

Notemos que la signatura completa, incluido el identificador, me dice lo que va ha hacer:

o Identificador: pidelugada
o Entrada: string jugador Nombre del jugador al que le voy a pedir la jugada.
o Salida: string Texto con la jugada de ese jugador "PIEDRA", "PAPEL" o0 "TIJERA".

static string PideJugada(string jugador)

{

// Jugada a retornar por el jugador.

string jugada;

// Flag que me indicard si el Jugador N ha realizado una jugada correcta.

bool jugadaCorrecta;

// Establezco el texto de las jugadas para no tener que repetirlo.

string opciones = $"{PIEDRA}, {PAPEL}, {TIJERA}";

// Bucle que me ira pidiendo una jugada mientras no sea correcta.
do

{

// Indico el jugador que tiene que jugar y que me llega como parametro.
Console.WriteLine($"Jugando {jugador} ...");

Console.Write($"\tIntroduce tu jugada ({opciones}): ");

jugada = Console.ReadlLine()!.ToUpper();

jugadaCorrecta = jugada == PIEDRA || jugada == PAPEL || jugada == TIJERA;

// Si voy a volver a pedir la entrada le indico al jugador su error.
if (!jugadaCorrecta)
Console.WriteLine($"\t{jugada} no es una jugada correcta. Debe ser {opciones}");

} while (!jugadaCorrecta);

return jugada;

[Genera Jugada Maquina] — static string GeneraJugadaMaquina()
Notemos que la signatura completa, incluido el identificador, me dice lo que va ha hacer:
o Identificador: GeneralugadaMaquina
o Entrada: Nada. Aunque en la mayoria de ocasiones seria conveniente pasar la semilla con la
que generar el numero aleatorio. De esta manera, evitaremos valores repetidos.
o Salida: string Texto con la jugada de la maquina "PIEDRA", "PAPEL" o "TIJERA".

27141 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

static string GeneralJugadaMaquina()

{
// Habra muchas formas correctas de implementarlo. Pero por usar la nueva sintaxis de C#8
// Podemos retornar el resultado de evaluar una expresién switch.
return new Random().Next(®, 3) switch
{
0 => PIEDRA,
1 => PAPEL,
2 => TIJERA,
_ => "Jugada no valida" // Este caso no se podra dar, aqui deberiamos generar un error.
¥
}

[Obtén Resultado Jugadas] —
static string Resultado(string jugadaUsuario, string jugadaMaquina)
Notemos que la signatura completa, incluido el identificador, me dice lo que va ha hacer:
 ldentificador: Resultado ObterResultadodugadas seria redundante.
e Entrada:
o string jugadaUsuario Texto con la jugada del usuario.
o string jugadaMaquina Texto con la jugada de la maquina.
Ambos seran "PIEDRA", "PAPEL" o "TIJERA"
o Salida: string Texto el resultado de la jugada a mostrar al usuario "Empate", "He ganado" o

"He perdido".
static string Resultado(string jugadaUsuario, string jugadaMaquina)
{
string resultado;
if (jugadaMaquina == jugadaUsuario)
{
resultado = "Empate";
}
else switch (jugadaMaquina)
{
case PIEDRA when jugadaUsuario == TIJERA:
case PAPEL when jugadaUsuario == PIEDRA:
case TIJERA when jugadaUsuario == PAPEL:
resultado = "E1l ordenador gana";
break;
default:
resultado = "E1 jugador gana";
break;
}
return resultado;
}

[Muestra Resultado Jugadas] — static void WriteLine(...)

No se sustanciara en un método pues mostrar por consola ya esta definido en System.Console

28/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

2. Como hemos comentado empezamos por el médulos de Nivel 2 definiendo su interfaz.
[Pide Numero Jugadores] — static int PideNumeroJugadores()
Notemos que la signatura completa, incluido el identificador, me dice lo que va ha hacer:
o Identificador: PideNumeroJugadores
o Entrada: Nada.
o Salida: int Numero de jugadores que disputan esa ronda introducida por el usuario.

// El esquema algoritmico del método es analogo al de PideJugada

static int PideNumeroJugadores()

{
bool numeroCorrecto;
int jugadores;
do
{
Console.Write("Introduce cuantos jugadores van a participar (1 a 4): ");
string entrada = Console.ReadlLine() ?? "1";
numeroCorrecto = int.TryParse(entrada, out jugadores);
numeroCorrecto = numeroCorrecto && jugadores >= 1 && jugadores <= 4;
if (!numeroCorrecto)
Console.WriteLine($"{entrada} no es correcto. Debe ser un valor entre 1y 4.");
} while (!numeroCorrecto);
return jugadores;
X

[Juega Jugador N] — static void Juega(string jugador)

Notemos que la signatura completa, incluido el identificador, me dice lo que va ha hacer:
o Identificador: Juega
e Entrada: string jugador Nombre del jugador que va a jugar.
» Salida: Nada.

static void Juega(string jugador)
{
// Juega transfiere el control a los 4 médulos en los que lo hemos subdividido
// en el orden correcto (Izquierda a Derecha)
// 1.- Pide Jugada a jugador N
// 2.- Renera Jugada Maquina
// 3.- Obtén Resultado Jugadas
// 4.- Muestra el resultado.

// Al modularizar el médulo queda legible, autodocumentado y ocupa menos de 10 lineas.
string jugadaUsuario = PideJugada(jugador);
string jugadaMaquina = GeneraJugadaMaquina();
string resultado = Resultado(jugadaUsuario, jugadaMaquina);
Console.WriteLine($"\tEl ordenador ha jugado {jugadaMaquina}\n"
+ $"\t{jugador} ha jugado {jugadaUsuario}\n"
+ $"\t{resultado}\n");

29/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

'

. Juega
Nivel 2 Jugador N
. Pide Jugada Genera Jugada Obtén Resultado Muestra Resultado
Nivel 3 .
a Jugador N Maquina Jugadas Jugadas

3. Por ultimo definimos los médulos del Nivel 1 y el Nivel 0 donde estara el modulo principal o Main.
[Juega Ronda] — static void JuegaRonda()
Notemos que la signatura completa, incluido el identificador, me dice lo que va ha hacer:
o ldentificador: juegaRonda
e Entrada: Nada.
» Salida: Nada.

static void JuegaRonda()

{
int jugadores = PideNumeroJugadores();
for (int 1 = @; i < jugadores; i++)
Juega($"Jugador_{i+1}");
¥

[Principal] — public static void Main()

 ldentificador: Main Por la especificacion del lenguaje CSharp
» Entrada: Nada.

» Salida: Nada.

30/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

public static void Main()
{
do
{
Console.Clear();
// Podriamos pensar que si incluimos el cédigo de JuegaRonda aqui dentro tampoco
// quedaria un método muy complejo.
// Pero tendriamos un bucle dentro de un bucle y eso nos esta indicando que ese
// segundo bucle esta haciendo un proceso que a su ves se puede encapsular en
// un moédulo.
JuegaRonda();
Console.WriteLine("jjj FIN PARTIDA !!!l.");
Console.WriteLine("Pulsa una tecla para jugar otra ronda. ESC para salir.");
} while (Console.ReadKey().Key != ConsoleKey.Escape);
¥

31/41 Programacion 1° DAM Unidad 7 IES Doctor Balmis

Sobrecarga de métodos o polimorfismo funcional

Aunque es una caracteristica de la programacion orientada a objetos, también podemos encontrarla en la
programacion estructurada. La sobrecarga de métodos o polimorfismo funcional es una caracteristica que
nos permite definir varios métodos con el mismo nombre o identificador pero con diferentes parametros.

Esto es muy comun con muchas de las funciones

€ Program.cs 1 @

que ya hemos visto en las BCL, como por ejemplo

ejemplo > € Program.cs

1
void Console.Writeline() }(+ 18 sobrecargas)

Writes the current line terminator to the standard output stream.

Console.WriteLine(...) que tiene varias versiones
con diferentes parametros. En VSCode si situamos
el raton sobre el método nos mostrara un tooltip

Excepciones:

donde nos indicara el nimero de sobrecargas como IOBxception

S N oWV AW N

Console_Writeline()

se aprecia en la imagen de ejemplo.

Es mas si escribimos Console.WriteLine(Yy pulsamos ctrl + Shift + Espacio nos mostrara un listado de las
sobrecargas disponibles, y con las fechas de £l y £ podremos navegar por las diferentes sobrecargas.

€' Programcs 1 @ C* Program.cs 1 @

ejemplo > € Program.cs ejemplo > € Program.cs

1 1

2 N void Console.WritelLine(bocl value)

3) o 3 The value to write.

4 void Console.Writeline() a

5 5 Writes the text representation of the specified Boolean value,

6 ~ IWrites the current line terminator to the standard output 5 X)followed by the current line terminator, to the standard
01/19) stream. B2/19 15 tput stream

7 . 7 ~ p

8 Consule.Wr‘iteLine(bn 8 Console.WriteLine()

9 9

Para C#, dos métodos se consideran sobrecargados si:

o Tienen diferente numero de parametros.

¢ Teniendo el mismo numero de parametros, algun tipo es diferente.

o Sitienen el mismo numero de parametros y los mismos tipos, pero el orden de los tipos es diferente sin
ambigledad.

» .1, Noimporta que el tipo de retorno sea diferente, ya que el compilador no lo tiene en cuenta
para la sobrecarga.

Ejemplo de sobrecarga:

static class EjemploSobrecarga

{
public static void MetodoA(int x) => Console.WritelLine(x);
public static void MetodoA(double x) => Console.WritelLine(x);
public static int MetodoA(int x, int y) => x + y;
public static double MetodoA(string x) => double.Parse(x);

}

32/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

public class MainClass

{
public static void Main()
{
EjemploSobrecarga.MetodoA(5); // Llama a MetodoA(int x)
EjemploSobrecarga.MetodoA(3.14); // Llama a MetodoA(double x)
Console.WritelLine(EjemploSobrecarga.MetodoA(2, 3)); // Llama a MetodoA(int x, int y) y muestra 5
Console.WritelLine(EjemploSobrecarga.MetodoA("4.5")); // Llama a MetodoA(string x) y muestra 4.5
¥
¥

Parametros opcionales o por defecto

Una llamada a un método debe proporcionar los argumentos reales para todos los parametros, sin embargo
se pueden omitir aquellos argumentos de parametros opcionales.

Los parametros opcionales se definen al final de la lista de parametros, después de los parametros
necesarios. Si el autor de la llamada proporciona un argumento para algun parametro de una sucesion de
parametros opcionales, debe proporcionar argumentos para todos los parametros opcionales
anteriores o en su lugar indicar el identificador del parametro formal.

Ejemplo de parametrizaciéon opcional:

public static class Ejemplo
{
static void Metodo(
string cadenaRequerida, int enteroRequerido,
// No puedo definir ninguin opcional antes del uUltimo requerido.

string cadenaOpcional = , int enteroOpcional = 10) =>

Console.WiritelLine($"Cadena requerida: {cadenaRequerida}\nEntero requerido: {enteroRequerido}\n

+ $"Cadena opcional: {cadenaOpcional}\nEntero opcional: {enteroOpcionall}l");

public static void Main()
{
// Correcto
Metodo("Cadena obligatoria", 3, "Cadena Opcional", 33);
// Correcto enteroOpcional = 10
Metodo("Cadena obligatoria", 3, "Cadena Opcional");
// Correcto cadenaOpcional = "" y enteroOpcional = 10
Metodo("Cadena obligatoria”, 3);
// Si sabemos el nombre del identificador del parametro en el método...
// Correcto y cadenaOpcional = ""

Metodo("Cadena obligatoria", 3, enteroOpcional: 10);

33/41 Programacion 1° DAM Unidad 7 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/programming-guide/classes-and-structs/named-and-optional-arguments#optional-arguments

Nota

Se pueden definir en multitud de lenguajes como C#, Python, Javascript, Kotlin, etc. Sin embargo, Java
no los permite porque tienen inconvenientes:

e .1, Mal usados, pueden dar lugar a baja cohesiéon (métodos 'navaja suiza' o que hacen muchas
cosas segun los parametros que le lleguen).
e Ralentizan la ejecucion.

e Lleva a confusion a los usuarios de una clase.

Por las razones anteriores. No deberiamos usarlos en métodos publicos .
(@ fijate que Microsoft apenas los usa en sus BCL y si la sobrecarga)

2

Most papers in computer science describe
how their author learned what someone
else already knew.

- Peter Landin. (He coined 'Syntactic Sugar' term.)

34/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

«” Ampliacion opcional:

Veamos como definir el ejemplo anterior de parametrizacién opcional en otros lenguajes como Python o
Kotlin para que puedas reconocer equivalencias con C#.

Python:

def metodo(
cadena_requerida: str, entero_requerido: int,

cadena_opcional: str = "", entero_opcional: int = 10
print(f"Cadena requerida: {cadena_requerida}\nEntero requerido: {entero_requerido}\n"

f"Cadena opcional: {cadena_opcional}\nEntero opcional: {entero_opcionall}")

Correcto: Se proporcionan todos los argumentos posicionalmente.

metodo("Cadena obligatoria", 3, "Cadena Opcional", 33)

Correcto: Se omite el ultimo argumento, 'entero_opcional' tomard su valor por defecto (190).
metodo("Cadena obligatoria", 3, "Cadena Opcional")

Correcto: Se omiten los dos argumentos opcionales.

metodo("Cadena obligatoria"”, 3)

Correcto: Se utilizan argumentos de palabra clave (keyword arguments)

para especificar un parametro opcional saltando el anterior.

'cadena_opcional' tomara su valor por defecto ("").

metodo("Cadena obligatoria", 3, entero_opcional=10)

Kotlin:

fun metodo(
cadenaRequerida: String, enteroRequerido: Int,
cadenaOpcional: String = "", enteroOpcional: Int = 10
) = println("Cadena requerida: $cadenaRequerida\nEntero requerido: $enteroRequerido\n" +
"Cadena opcional: $cadenaOpcional\nEntero opcional: $enteroOpcional")
fun main() {
// Correcto: Se proporcionan todos los argumentos.
metodo("Cadena obligatoria", 3, "Cadena Opcional”, 33)
// Correcto: Se omite el ultimo argumento, 'enteroOpcional' tomara su valor por defecto (10).
metodo("Cadena obligatoria", 3, "Cadena Opcional")
// Correcto: Se omiten los dos argumentos opcionales.

// 'cadenaOpcional' sera y 'enteroOpcional' sera 10.

metodo("Cadena obligatoria", 3)

// Correcto: Se usan argumentos con nombre (named arguments) para especificar un
// parametro opcional saltando los anteriores. Es idéntico a la sintaxis de C#.

metodo("Cadena obligatoria", 3, enteroOpcional = 10)

35/41 Programacion 1° DAM Unidad 7 IES Doctor Balmis

® Caso de estudio:

Vamos a tratar un ejemplo de como evitar parametros opcionales en los métodos publicos o en
lenguajes que no nos los permitan como Java, a través de C#.

Si recordamos de temas anteriores, definimos una estructura Punto2D que ahora va a tener el método
Desplaza con el valor del angulo a 0 de forma opcional.

public static class Geometria2D

{
public static (double X, double Y) Desplaza(
(double X, double Y) punto,
double distancia,
double anguloGrados = ©.0D)
{
double anguloRadianes = anguloGrados * Math.PI / 180.0;
double nuevoX = punto.X + distancia * Math.Cos(anguloRadianes);
double nuevoY = punto.Y + distancia * Math.Sin(anguloRadianes);
return (nuevoX, nuevoY);
}
}

El método Desplaza nos permite desplazar un punto en el plano cartesiano, con una distancia y un
angulo opcional. Si no se especifica el angulo, se asume que es 0 grados (desplazamiento horizontal) y
podriamos usarlo de la siguiente manera:

public static class Program

{
public static void Main()
{
(double X, double Y) p1 = (X: 2.9, Y: 4.9);
Console.WritelLine($"Punto original: ({pl.X:G2}, {pl.Y:G2})");
(double X, double Y) p2 = Geometria2D.Desplaza(pl, 4.0);
Console.WriteLine($"Punto tras desplazar 4 unidades a °: ({p2.X:G2}, {p2.Y:G2})");
(double X, double Y) p3 = Geometria2D.Desplaza(pl, 3.0, 90.0);
Console.WriteLine($"Punto tras desplazar 3 unidades a 90°: ({p3.X:G2}, {p3.Y:G2})");
}
}

Planteamiento

Como deberiamos refactorizar el codigo anterior usando polimorfismo funcional o sobrecarga y
asi evitar el uso de parametros opcionales en el método Desplaza que es publico o si no
disponemos de ellos en el lenguaje que usamos.

36/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

La forma mas comun seria la siguiente...

public static class Geometria2D

{
private static (double X, double Y) _desplaza(
(double X, double Y) punto,
double distancia,

double anguloGrados)

double anguloRadianes = anguloGrados * Math.PI / 1860.0;
double nuevoX = punto.X + distancia * Math.Cos(anguloRadianes);
double nuevoY = punto.Y + distancia * Math.Sin(anguloRadianes);

return (nuevoX, nuevoY);

public static (double X, double Y) Desplaza(s
(double X, double Y) punto,

double distancia) => _desplaza(punto, distancia, 0.0);

public static (double X, double Y) Desplaza(
(double X, double Y) punto,
double distancia,

double angulo) => _desplaza(punto, distancia, angulo);

2

Controlling complexity is the essence of
computer programming.

24

- Brian Kernighan.

37/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

Anexo I: Otros pasos de parametros menos comunes en
CSharp

0 Enlaces

» Modificador parametro in

» Modificador parametro ref

» Modificador parametro ref readonly
¢ Modificador parametro out

Paso por referencia con in (entrada tipos valor inmutable sin copia)

o Al poner el modificador o clausula in al identificador del parametro formal. El paso sera por referencia,
pero no lo podremos modificar dentro del método.

¢ Por tanto, si es un tipo valor sera una referencia al mismo objeto en memoria y si pasamos un tipo
referencia, se tratara de una referencia a la referencia.

e En lallamada al método, deberemos anteponer al parametro real la clausula in .

public class Ejemplo

{
static void RestaUno(in int d)
{
Console.Write(d);
}

public static void Main()

{
int dato = 5;
RestaUno(in dato);
Console.Write(dato);
}

38/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/in-parameter-modifier
https://learn.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/method-parameters#ref-parameter-modifier
https://learn.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/method-parameters#ref-readonly-modifier
https://learn.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/method-parameters#out-parameter-modifier

Paso por referencia con ref (entrada/salida)
Utilizaremos el modificador ref antes del tipo para indicar un paso por referencia.

¢ lgual que in pero podremos modificar el valor del parametro formal por eso consideramos que es
un parametro que 'entra' con un valor y 'sale' con otro.

e .1, Deberemos evitarlos en la medida de lo posible, pues dan lugar a efectos laterales y acoplamiento
oo

e En lallamada al método, deberemos anteponer al parametro real la clausula ref .

public class Ejemplo

{
static void RestaUno(ref int d)
{
// ELl parametro formal con id. 'd' es una referencia
// a dato que se pasé como parametro real.
--d; // Ahora podemos modificar sin problema el valor del parametro.
Console.Write(d); // Muestra 4
} // el parametro de entrada 'd' deja de existir y por tanto la referencia a dato.
// pero dato sigue existiendo.
public static void Main()
{
int dato = 5;
// Se pasa una referencia a la zona de memoria donde esta dato.
// El valor podrd modificarse internamente.
RestaUno(ref dato); //Linea 20 anteponer ref
Console.Write(dato); // Muestra 4
}
}

* ¢Qué sucede si pasamos por referencia un tipo-referencia en lugar de un tipo-Valor?
Veamos que pasa con el ejemplo que usamos en el paso por valor.

public class Ejemplo

{
static void PonExclamaciones(ref string t)
{
// t es una referencia a la referencia texto.
t=t+ "1
// al cambiar ahora t estaremos cambiando el valor de la referencia texto.
}
public static void Main()
{
// texto sera una referencia a un objeto cadena.
string texto = "Adios";
// Al pasar por valor hacemos pasaremos una referencia a la referencia.
PonExclamaciones(ref texto);
Console.Write(texto); // Muestra "Adios!"
}
¥

39/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

Después de ... t =t + "IllI"; tendremos...

Antes de ... t =t + "IIII"; tendremos...
t, texto : string
"Adios"
t, texto : string t, texto : string
"Adios" "Adios!!!!"

Paso por referencia con out (solo salida)

Antes de existir el tipo tupla, se utilizaba la palabra reservada out precediendo al tipo para indicar un
parametro de salida.

o Equivale al paso por referencia, pero solo de salida, es decir los parametros reales no tienen que
estar inicializados.

e Su uso muy aclaratorio para el programador, cuando un método tiene mas de un parametro de salida y
no disponemos de tuplas, ademas la devolucion por referencia es menos costosa.

¢ En la llamada deberemos anteponer al parametro real la clausula out . Ademas, out nos permite
declarar el tipo del parametro en la misma llamada.

El ejemplo que hemos visto con las tuplas, en versiones antiguas de CSharp, lo hariamos asi:

public class Ejemplo

{

// Es conveniente colocarlos al final del interfaz.

public static void Direccion(
double x1, double y1,
double x2, double y2,
out double sen, out double cos)

{
double anguloRad = Math.Atan2(y2 - yl1, x2 - x1);
// Como estan marcados de salida si se quedan sin asignar
// el compilador me dara un error.
sen = Math.Sin(anguloRad);
cos = Math.Cos(anguloRad);

¥

public static void Main()

{
// Se pueden declarar en la misma llamada a la funcidn.
Direccion(2.5d, 6d, 4.5d, 8d, out double sen, out double cos); //Linea 19 anteponer out
Console.WritelLine($"Sen = {sen:F3}");
Console.WritelLine($"Cos = {cos:F3}");

3

}

40/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

Anexo ll: Caso de estudio

En el siguiente enlace puedes encontrar un caso de estudio el cual te propone la resolucion de un ejercicio
de bucles complejo. Es interesante su realizacion para ver el proceso de descomposicion en moédulos
cuando no se ha definido una division modular previa.

1. Primero se propone una solucién sin modularizar, escribiendo todo el codigo en el método Main() .

2. Se va planteando una modularizacién de dicha solucion, de tal manera que se van identificando los
modulos que intervienen y se va definiendo la interfaz de cada uno de ellos de tal manera que se
aplicaran los conceptos de modularizacion vistos en este tema.

41/41 Programacioén 1° DAM Unidad 7 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u7_funciones/caso_estudio.html

