
Índice
Ejercicio 1. Función sin parámetros de entrada y sin retorno
Ejercicio 2. Función con parámetros de entrada y sin retorno
Ejercicio 3. Función con múltiples parámetros y sin retorno
Ejercicio 4. Función sin parámetros de entrada y con parámetros de retorno
Ejercicio 5. Función con parámetro de entrada y de retorno
Ejercicio 6. Función generadora de contraseñas
Ejercicio 7. Calculadora de préstamos
Ejercicio 8. Función con parámetros de entrada complejos
Ejercicio 9. Sobrecarga para cálculos de tiempo
Ejercicio 10. Función con validación de entrada

Ejercicios Unidad 7
Descargar estos ejercicios

Ejercicio 1. Función sin parámetros de entrada y sin retorno
Escribe una función que muestre información personal de forma estructurada. Pedirá los datos necesarios dentro del método y los
mostrará en el mismo.

Ejercicio 1. Función sin parámetros de entrada y sin retorno

Introduce tu nombre: Juan

Introduce tu apellido: García

Introduce tu edad: 25

Introduce tu ciudad: Alicante

=== INFORMACIÓN PERSONAL ===

Nombre completo: Juan García

Edad: 25 años

Ciudad de residencia: Alicante

==========================

Requisitos:

Antes de empezar

Para realizar estos ejercicios, deberás descargar los recursos del enlace de proyecto_funciones anterior. Para probar el
funcionamiento correcto de los ejercicios deberás pasar los Test adjuntos a este proyecto.
Cada ejercicio estará compuesto por dos métodos:

Uno con el mismo nombre del ejercicio que servirá para la recogida de datos y para la llamada al método que realiza la
funcionalidad. Este método viene con el proyecto y tendrás que añadir la funcionalidad sustituyendo las líneas  //TODO:  por el
código de solución del ejercicio.
El o los otros métodos que deberán tener el nombre que se indica en cada uno de los ejercicios.
Seguramente querrás pasar los Test a la vez que vayas resolviendo ejercicios, por lo que deberás comentar los test de los
métodos que todavía no hayas creado, para quitar los errores usa  /* */  incluyendo dentro las líneas de código que no
necesites.



 

1/5 Ejercicios Unidad 7 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u7_funciones/ejercicios/1_ejercicios/1_ejercicios_funciones.pdf
file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u7_funciones/ejercicios/1_ejercicios/recursos/1_ejercicios_funciones_recurso.zip


Define una función estática  void MuestraInformacion() .
Pide al usuario que introduzca los datos necesarios, según salida.
La función debe formatear y mostrar la información con el diseño especificado.
No retorna ningún valor.

Ejercicio 2. Función con parámetros de entrada y sin retorno
Crea una función que calcule el volumen de una esfera dado su radio.

Ejercicio 2. Función sin parámetros de entrada y sin retorno

Introduce el radio de la esfera: 3

El volumen de la esfera es: 113,10

Requisitos:

Define una función estática  void MuestraVolumenEsfera(double radio) .
Usa la fórmula: V = (4.0/3.0) × π × r³
Usa  Math.PI  y  Math.Pow()  para los cálculos.
Muestra el resultado con dos decimales en la propia función.

Ejercicio 3. Función con múltiples parámetros y sin retorno
Crea una función que determine el mayor de tres números enteros.

Ejercicio 3: Función con múltiples parámetros y sin retorno

Introduce el primer número: 15

Introduce el segundo número: 23

Introduce el tercer número: 8

El mayor de los tres números es: 23

Requisitos:

Define una función estática  void Mayor(int a, int b, int c) .
Usa condicionales para determinar el mayor.
La función debe mostrar el valor mayor.
Si los tres números son iguales la función mostrará.

Ejercicio 3: Función con múltiples parámetros y sin retorno

Introduce el primer número: 3

Introduce el segundo número: 3

Introduce el tercer número: 3

Los números son iguales

Ejercicio 4. Función sin parámetros de entrada y con parámetros de
retorno
Escribe una función que a partir del día actual nos devuelve una cadena formateada como se muestra en la salida.

 

2/5 Ejercicios Unidad 7 IES Doctor Balmis



Ejercicio 4. Función que retorna la fecha actual formateada

Hoy estamos a 13 de noviembre de 2025

Requisitos:

Define una función estática  string FormateaFecha() .
Usa la clase DateTime de System.DateTime para conseguir la fecha actual.
Con el método toString del objeto DateTime obtén el mes con formato largo.
Crea la cadena con los datos extraídos del objeto DateTime y con el mes obtenido.
El método retornará la cadena.
Evidentemente, la fecha que se muestra en la salida no será la actual del momento de ejecución de tu programa.

Ejercicio 5. Función con parámetro de entrada y de retorno
Crea una función que valide si un año es bisiesto y úsala en el programa principal.

Ejercicio 5: Función de validación

Introduce un año: 2024

El año 2024 es bisiesto

Requisitos:

Define una función estática  bool EsBisiesto(int año) .
Un año es bisiesto si es divisible por 4, excepto los años divisibles por 100, a menos que también sean divisibles por 400.

Ejercicio 6. Función generadora de contraseñas
Escribe una función que genere una contraseña aleatoria con criterios específicos.

Ejercicio 6. Función generadora de contraseñas

Introduce la longitud deseada: 12

¿Incluir números? (s/n): s

¿Incluir símbolos? (s/n): n

Contraseña generada: AbcDefGhiJkL

Requisitos:

Define una función estática:  string GeneraContraseña(int longitud, bool incluirNumeros, bool incluirSimbolos) 
Usa siempre letras mayúsculas y minúsculas.
Si  incluirNumeros = true , añade dígitos  0-9 .
Si  incluirSimbolos = true , añade símbolos como  !#"$%& 
Usa  Random  para generar caracteres aleatorios. Como ya sabemos el Random nos puede proporcionar números aleatorios,
pero lo que necesitamos en este ejercicio son caracteres, por lo que vamos a convertir el número generado en carácter:

Para ello generaremos los números que se asocian en la tabla ASCII, a los caracteres que necesitamos. Por ejemplo, para
los caracteres especiales podemos coger el rango entre  33 y 38 . El número generado tendrás que convertirlo a char
usando  Convert.ToChar()  o una conversión más explícita con el casting directo  (char)numero 

Además podremos mejorar el ejercicio si para cada nuevo carácter que queremos generar, le damos aleatoriedad de forma
que pueda ser mayúscula, minúscula, número o carácter especial indistintamente. Para ello podremos generar números
aleatorios entre 1 y 4 y con switch de expresión con when optar por una de las opciones.

 

3/5 Ejercicios Unidad 7 IES Doctor Balmis

https://learn.microsoft.com/en-us/dotnet/api/system.datetime.addhours
https://es.wikipedia.org/wiki/ASCII


Deberemos generar números mientras la contraseña no tenga la longitud deseada.

Ejercicio 7. Calculadora de préstamos
Implementa una función que calcule los pagos mensuales de un préstamo.

Ejercicio 7. Calculadora de préstamos

Introduce el monto del préstamo: 10000

Introduce la tasa de interés anual (%): 5

Introduce el plazo en años: 3

=== DETALLES DEL PRÉSTAMO ===

Monto: 10.000,00

Tasa anual: 5,00%

Plazo: 3 años (36 meses)

Pago mensual: 299,71

Total a pagar: 10.789,66

Intereses totales: 789,66

============================

Requisitos:

Define una función estática:
 (double pagoMensual, double totalPagar, double interesesTotales) CalculaPrestamo(double monto, double tasaAnual, int años) 

Valida que todos los valores sean positivos con  Debug.Assert() .
Usa la fórmula de amortización, donde PMT es el pago mensual:

Donde P = monto, r = tasa mensual, n = número de pagos
r es  tasaAnual/100/12 
n es los años de plazo multiplicados por los 12 meses del año.
El  totalPagar  se calcula multiplicando el pago mensual por el número de pagos.
Los  interesesTotales  es total a pagar menos el monto.
Retorna tupla con pago mensual, total a pagar e intereses totales.

Ejercicio 8. Función con parámetros de entrada complejos
Escribe una función que calcule la distancia entre dos puntos en un plano cartesiano usando tuplas.

Ejercicio 8. Función con parámetros de entrada complejos

Introduce las coordenadas del primer punto:

X1: 1

Y1: 2

Introduce las coordenadas del segundo punto:

X2: 4

Y2: 6

La distancia entre los puntos es: 5,00

Requisitos:

Define una función estática:  double Distancia((double x, double y) p1, (double x, double y) p2) 
Usa la fórmula:

PMT = P ⋅ ​

(1 + r) − 1n

r(1 + r)n

 

4/5 Ejercicios Unidad 7 IES Doctor Balmis



Usa  Math.Sqrt()  para calcular la raíz cuadrada.
Muestra el resultado con dos decimales.

Ejercicio 9. Sobrecarga para cálculos de tiempo
Crea múltiples versiones sobrecargadas de una función para convertir tiempo a segundos.

Ejercicio 9. Sobrecarga para cálculos de tiempo

Introduce los días: 1

Introduce las horas: 2

Introduce los minutos: 30

Tiempo total en segundos: 95400

Requisitos:

Define tres funciones sobrecargadas llamadas  TiempoASegundos :
 int TiempoASegundos(int minutos) 

 int TiempoASegundos(int horas, int minutos) 

 int TiempoASegundos(int dias, int horas, int minutos) 

Prueba los tres métodos con distintas llamadas.

Ejercicio 10. Función con validación de entrada
Escribe una función que lea y valide un número entero dentro de un rango específico.

Ejercicio 10. Función con validación de entrada

Introduce un número entre 1 y 100: 150

Número fuera de rango. Introduce un número entre 1 y 100: -5

Número fuera de rango. Introduce un número entre 1 y 100: 50

Número válido introducido: 50

Requisitos:

Define una función estática  int LeeEnteroEnRango(int min, int max) .
La función debe validar que el número esté en el rango especificado.
Si no es válido, debe seguir pidiendo hasta obtener un valor correcto.
Usa  int.TryParse()  para validar que la entrada sea un número.

d = ​(x ​ − x ​) + (y ​ − y ​)2 1
2

2 1
2

 

5/5 Ejercicios Unidad 7 IES Doctor Balmis


