Unidad 19

Descargar estos apunte en pdf o html

indice

= indice
¥ Colecciones
= |ntroduccion
¥ Lista simple List<T>
= Crear una lista
= Adadir elementos List<T>
= Acceder y modificar elementos List<T>
= Eliminar elementos List<T>
= Ordenar elementos List<T>
= Buscar lineal elementos List<T>
= Buscar binaria elementos List<T>
¥ Tablas Hash, Mapas o Diccionarios
= Crear e inicializar un Diccionario
= Afadir y modificar elementos Dictionary<K, V>
= Borrar elementos Dictionary<K, V>
= Recorriendo elementos en un Dictionary<K, V>
¥ Profundizando en el uso de los diccionarios
= Usando tipos propios como claves
¥ Lista doblemente enlazada o vinculada
= Tipo nodo doblemente enlazado LinkedListNode<T>
¥ Tipo lista doblemente enlazada LinkedList<T>
= Afadir elementos al principio con AddFirst
= Afadir elementos al final con AddLast
= Afadir o insertar antes o después de un nodo
= Borrar elementos con Remove
= Recorriendo una LinkedList<T>
= Transformando LinkedList<T> en otras colecciones
= List vs LinkedList
¥ Pilas (Stacks) y Colas (Queues)
= Las colas en CSharp con (Queue<T>)
= Las pilas en CSharp con (Stack<T>)
Vv El patrén iterador
¥ Interfaz IEnumerable<T>
= Operaciones y uso basico de la abstraccion IEnumerable<T>

1/44 Programacion 1° DAM Unidad 19 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/u19_poo_colecciones.pdf
file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/u19_poo_colecciones.html

= [nterfaz IEnumerator<T>

= Uso de el patrén iterador

¥ Implementando IEnumerable<T> en nuestras colecciones o clases
= Concepto de generacion perezosa de secuencias con yield
» Uso de yield en CSharp

2/44 Programacion 1° DAM Unidad 19 IES Doctor Balmis

Colecciones

Introduccion

Uno de los casos mas comunes de usu de tipos genéricos o parametrizados, son el de las colecciones. Donde
se nos pide que implementemos una coleccion de objetos de un tipo concreto, pero las operaciones de afadir,
eliminar, buscar, etc. son idénticas independientemente del tipo de objeto que se almacene en la coleccion. Por
esta razon, C# utilizara el mecanismo de clases parametrizadas o clases genéricas para poder solucionar
este problema.

Una coleccidn es un tipo de dato cuyos objetos almacenan otros objetos. Un ejemplo tipico son las tablas,
aunque en la BCL se incluyen muchas otras clases de colecciones que iremos viendo a lo largo de este tema.
En las versiones recientes de C# las podemos encontrar en System.Collections.Generic.

Aunque las colecciones predefinidas incluidas en la BCL disponen de miembros propios con los que
manipularlas, todas incluyen al menos los miembros de ICollection<Ts . En realidad la interfaz ICollection<T>
hereda de:

1. La interfaz IEnumerable<T> que permite que sean recorridas con la instruccion foreach usando el patron
iterador.

2. Lainterfaz 1clonable , formada por un Unico método object Clone() que devuelve una copia del objeto
sobre el que se aplica.

Alo largo del tema veremos que hay muchas colecciones parecidas, donde la unica diferencia es la
‘eficiencia’ de un cierto tipo de operaciones sobre otras. Por eso, deberemos escoger cuidadosamente el
tipo de coleccion dependiendo de las casuisticas que se nos puedan dar en nuestro programa.

Con esto en mente, veamos algunas de las colecciones mas utilizadas en C# y cuando utilizarlas.

Lista simple List<T>

Ya hemos hablado de ellas y las venimos usando desde la unidad 14 donde vimos las relaciones todo-parte.
Recordemos que se implementan a través del tipo List<T>, que son equivalentes a los arrays. Esto es,
internamente se almacenan como un array, y su tamano crecera automaticamente cuando se afadan mas
elementos de los que puede almacenar el array interno. Pero estos cambios de tamario estaran optimizados
para que no se realicen con demasiada frecuencia y seran transparentes para el usuario.

por esta razon, permitira accesos y modificaciones eficientes a través del operador [] y un indice entero.
Sin embargo, afadir y borrar elementos puede ser mas costoso. Recordemos por encima su uso...

3/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.collections.generic
https://es.wikipedia.org/wiki/Iterador_(patr%C3%B3n_de_dise%C3%B1o)
https://es.wikipedia.org/wiki/Iterador_(patr%C3%B3n_de_dise%C3%B1o)

Crear una lista

List<int> numerosl = []; // Lista vacia de enteros

List<int> numeros2 = [1, 2, 3, 4, 5]; // Lista de enteros con 5 elementos

List<int> numeros3 = [..numerosl, ..numeros2]; // Lista de enteros con los elementos de numerosl y numeros2

Anadir elementos List<T>

numerosl.Add(6); // Anade el elemento 6 al final de la lista
numerosl.AddRange([7, 8]); // Ahade los elementos 7 y 8 al final de la lista
numerosl.Insert(®, 5); // Inserta el elemento 5 en la posiciodn ©

numerosl.InsertRange(®, [1,2,3,4]); // Inserta los elementos 1,2,3 y 4 en la posicién @

// numerosl ahora es [1,2,3,4,5,6,7,8]

Acceder y modificar elementos List<T>

int primero = numerosl[0]; // primero es 1

numerosl[@] = 10; // Modifica el primer elemento a 10

// numerosl ahora es [10,2,3,4,5,6,7,8]

Eliminar elementos List<T>

numerosl.Remove(10); // Elimina el elemento 10
numerosl.RemoveAt(0); // Elimina el elemento en la posicidén ©
numerosl.RemoveRange(®, 2); // Elimina 2 elementos a partir de la posicioén @

// numerosl ahora es [3,4,5,6,7,8]

Ordenar elementos List<T>

Ya hemos visto en unidades anteriores y cuando explicamos los interfaces que podemos ordenarlas con el
método sort() . Si el tipo de dato almacenado implementa la interfaz IComparable<T> (como los tipos
numeéricos y cadenas) se ordenaran de forma natural.

List<string> nombres = ["Juan", "Pedro", "Luis", "Ana"];

nombres.Sort();

Pero,... 4 Qué sucede si el tipo de dato es una clase que no hemos definido nosotros o no podemos modificar
porque esta en una libreria y por tanto no podemos implementar la interfaz IComparable<Ts ?

En este caso, podemos usar el patron 'Strategy' pasandole al método sort() un objeto que implemente la
interfaz IComparer<T> . Esta interfaz define el método int Compare(T x, T y) que devuelve un valor negativo si
X <y, cero sisoniguales y un valor positivosi x > y.

Ejemplo:

4/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

Supongamos que tenemos la siguiente clase Empleado que no implementa la interfaz IComparable<T> vy la
cual no podemos modificar:

public record Empleado(string Nombre, double Sueldo);
Si ejecutamos el siguiente codigo:

public static void Main()

{

List<Empleado> empleados =

[
new(Nombre: "Manuel", Sueldo: 2009),

new(Nombre: "Ménica", Sueldo: 2800),
new(Nombre: "Francisco", Sueldo: 2400)
15

empleados.Sort();

Console.WriteLine(string.Join("\n", empleados));

> Obtendremos un error en tiempo de ejecucion:

System.InvalidOperationException: 'Failed to compare two elements in the array.'

Ahora implementamos la clase ordenaPorSueldo que implementa la interfaz IComparer<Empleado> Y la
usamos para ordenar la lista de empleados por sueldo:

public class ComparaEmpleadoPorSueldo : IComparer<Empleado>

{
public int Compare(Empleado? x, Empleado? y) => (X, y) switch
{
(null, null) => o,
(null, _) => -1,
(_, null) => 1,
_ => x.Sueldo.CompareTo(y.Sueldo)
¥
¥

Ahora si ejecutamos el siguiente cédigo...

empleados.Sort(new ComparatEmpleadoPorSueldo());

(1 Obtendremos la lista de empleados ordenada por sueldo.

5/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

Buscar lineal elementos List<T>

2" Nota

Es importante destacar que mas adelante en el curso, cuando veamos programacion funcional,
veremos que en C# las listas implementan muchos otros métodos de extension para buscar, filtrar,
transformar, etc. como Find() , FindAll() , Where() , Select() , etc y que de momento no podemos

usar.

Contains(T item) : NOS permite saber si un elemento esta en la lista haciendo una busqueda lineal o

secuencial. Solo deberiamos usarla si:

1. Es un tipo de dato simple como un numero o una cadena.

2. Es unaun record class O record struct .

3. Es una clase que hemos definido nosotros y hemos implementado la interfaz 1Equatable<Ts

4. Es una clase que hemos definido nosotros y hemos sobrescrito los métodos Equals(object? obj) Y

GetHashCode() .

En el siguiente ejemplo, la clase Empleado es un record class Yy por tanto podemos usar el método
Contains() para buscar un empleado en la lista:

public record Empleado(string Nombre, double Sueldo);

empleados.Contains(new (Nombre: "Carmen", Sueldo: 2800));

Pero..., 4 Qué sucede si no podemos modificar la clase Empleado es una clase con estado, no tiene
implementada la interfaz 1Equatable<T> Y no hemos sobrescrito los métodos Equals(object? obj) Y
GetHashCode() ?

public class Empleado Usaremos el patrén 'Strategy’ pasandole al método contains() un objeto

{

SriLde et T s que implemente la interfaz IEqualityComparer<T> como por ejemplo:

public string Nombre {get;}

public double Sueldo {get;} public class IgualdadEmpleadosPorId: IEqualityComparer<Empleado>
{
public Empleado(public bool Equals(Empleado? x, Empleado? y) => (X, y) switch
string id, {
string nombre, (null, null) => true,
double sueldo) (null, _) => false,
{ (_, null) => false,
Id = id; _=> x.Id == y.Id // Compara por el Id
Nombre = nombre; };
Sueldo = sueldo; public int GetHashCode(Empleado obj) => obj.Id.GetHashCode();
b }

6/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

Ahora el siguiente programa principal funcionaria correctamente...

public static void Main()

{
List<Empleado> empleados =
[
new(id: "@01", nombre: "Manuel", sueldo: 2000),
new(id: "@02", nombre: "Mdénica", sueldo: 2800),
new(id: "@@3", nombre: "Francisco", sueldo: 2400)
15
bool encontrado = empleados.Contains(
value: new("@02", "Mdénica", 2800),
comparer: new IgualdadEmpleadosPorId());
¥

IndexOf(T item) : Si queremos encontrar un elemento por posicion. El esquema de pasar una clase que
implemente la estrategia de busqueda no seria posible. Deberiamos poder modificar el tipo T para que
implemente EqualityComparer<T> 0 deberia ya implementarlo. Por lo que no es un método tan flexible como

Contains(T item) .

Buscar binaria elementos List<T>

BinarySearch(T item) : Nos devolvera el indice del elemento buscado si lo encuentra o un valor negativo si
no lo encuentra. Para ello usara una busqueda binaria como su nombre indica, pero solo funcionara si la
lista esta ordenada y el tipo de dato almacenado implementa la interfaz 1comparable<T> O le pasamos un
objeto que implemente la interfaz 1Comparer<Ts> al método BinarySearch(T item, IComparer<T> comparer) COMO
sucedidé con el método sort() . Por tanto, deberemos usarlo en combinacién con este ultimo método. Por
ejemplo, si partimos del ejemplo de la clase Empleado que no implementa la interfaz IComparable<T> y no
podemos modificarla, podriamos ordenas y buscar un empleado por su 1d de la siguiente forma:

public class ComparaEmpleado : IComparer<Empleado>

{
public int Compare(Empleado? x, Empleado? y) => (X, y) switch
{
(null, null) => 0,
(null, _) => -1,
(_, null) => 1,
_ => x.Id.CompareTo(y.Id)
¥
¥

IComparer<Empleado> comparaEmpleados = new ComparaEmpleado();
empleados.Sort(comparaEmpleados);
bool encontrado = empleados.BinarySearch(

item: new Empleado(id: "@02", nombre: "Ménica", sueldo: 286090),

comparer: comparaEmpleados) >= 0;

¢ Qué ventaja nos aporta BinarySearch() frente a contains() sitengo que ordenar antes?

7144 Programacién 1° DAM Unidad 19 IES Doctor Balmis

Pues que BinarySearch() tiene una complejidad logaritmica frente a la complejidad de lineal de
Contains() . Por tanto, si vamos a realizar muchas busquedas en una lista o esta tiene muchos elementos, es
mejor ordenarla y usar BinarySearch() .

Fl'jate que el numero de ‘Contains()’ (Busqueda Lineal) ‘BinarySearch()’ (Busqueda Binaria)
operaciones que realiza Complejidad Lineal O(n) Complejidad Logaritmica O(log n)
BinarySearch() apenas crece al qpg] Cpereciones va- N7 de clemenios 1y] Operaciones v=. ' de clementos
aumentar el numero de elementos, o

700
600
500
400
300
200
100

mientras que el niumero de
operaciones de Contains() crece

Namero de Operaciones
Namero de Operaciones

linealmente.

CPEPLEE LS TSP

Numero de Elementos (n)

Puedes descargar todo el cédigo visto a lo largo del ejemplo del siguiente enlace busquedas_list.cs

8/44 Programacion 1° DAM Unidad 19 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/assets/ejemplos/busquedas_list_ejemplo.cs

Tablas Hash, Mapas o Diccionarios

Las tablas hash, también conocidas como Mapas o Diccionarios, son otro tipo de colecciones, pero que tienen
un comportamiento particular.

Hasta ahora, todos los elementos de una coleccién se acceden a través de un indice numérico. Si tenemos
una lista, el primer elemento ocupa la posicion 0, el siguiente la 1, etc. Si queremos acceder al cuarto elemento
de una lista llamada miLista , tenemos que poner miLista[3], Yy si no sabemos la posicion debemos usar un
bucle.

Para evitar el bucle y realizar un acceso directo podemos usar tablas hash. En este tipo de colecciones,
cada dato que agregamos a ella no tiene asociado un indice numérico, sino un objeto clave que lo identifica. De
esta manera, si conocemos la clave del dato, podemos acceder directamente a sus datos sin tener que recorrer
toda la lista.

Por jemplo, imaginemos que queremos guardar una serie de personas en una tabla hash, donde la clave sea su
DNI (un string)y el valor un objeto de tipo persona que contenga su nombre y edad.

class Persona

{
public string Nombre { get; }

Clave (string) Valor (persona)
public int Edad { get; private set; }
A "11224441K" { Nombre = "Pepe" Edad = 30 }
string nombre, int edad)
{ "11335499M" { Nombre = "Maria" Edad = 22 }
Nombre = nombre;
Eeen] = ekl "123456780" { Nombre = "Juan" Edad = 33 }
}
DLLLIE wuseris S0nly e i) "13898743Y" { Nombre = "Sara" Edad = 27 }

=> $"{Nombre} {Edad} anos";

¢) Importante

Si quiero consultar los datos de Maria, buscaré por su clave que es su dni. Fijate que la clave puede ser
cualquier tipo de dato. En este caso es un string , pero podrian ser enteros u otro tipo cualquiera,
siempre que nos aseguremos que no haya dos claves repetidas.

Si nos fijamos, el funcionamiento es similar a un diccionario real. Si quiero consultar el significado de una
palabra y sé cual es esa palabra, voy a la pagina donde esta y la consulto, sin tener que ir palabra a palabra
comprobando si es esa la que busco.

Como ya hemos comentado, las tablas hash en C# se manejan con el TAD Dictionary<K, V>y
SortedDictionary<K, V>. La diferencia entre ambos es que el primero no garantiza ningun orden en los

9/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/es-es/dotnet/api/system.collections.generic.sorteddictionary-2

elementos, mientras que el segundo los mantiene ordenados por la clave. Se pierde un poco mas de tiempo
insertando elementos, pero se gana en rapidez en las busquedas porque todas las busquedas por clave
seran binarias.

Crear e inicializar un Diccionario

Es importante tener en cuenta que los elementos de esta coleccion seran objetos del tipo
KeyValuePair<TClave, TValor> que guardara una clave y su valor. No obstante, muy raramente los vamos a
trabajar a través de él.

Podemos crear un diccionario en C# de la siguiente formas...

Dictionary<TClave, TValor> tabla = new Dictionary<TClave, TValor>();

Dictionary<TClave, TValor> tabla

[1;

Podemos inicializarlos por extensién de la siguiente formas...

Dictionary<TClave, TValor> tabla = o
Dictionary<TClave, TValor> tabla = new()

{

new Dictionary<TClave, TValor>()
{
[clavel] = valorl,
{clavel, valori},

[clave2] = valor2,
{clave2, valor2},

. b

Dictionary<string, Persona> personas L. .
L . Dictionary<string, Persona> personas = new()
= new Dictionary<string, Persona>()

. {
["11224441K"] = new ("Pepe", 30),
{"11224441K", new Persona("Pepe", 30)},
["11335499M"] = new ("Maria", 22),
{"11335499M", new Persona("Maria", 22)},
["123456780"] = new ("Juan", 33),
{"123456780", new Persona("Juan", 33)},
["13898743Y"] = new ("Sara", 27)
{"13898743Y", new Persona("Sara", 27)} }
)
s

La forma en la que usamos el operador [] para inicializar se da en versiones mas modernas de C# y es un
poco mas clara.

Anadir y modificar elementos Dictionary<K, V>

Se puede realizar de varias formas, una de ellas es usar el método Add , indicando la clave que queremos
asociar a cada elemento y el elemento en si.

Cuidado

La operacién Add generara una excepcion si afadimos una clave ya existente.

10/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

Si por ejemplo si queremos ir leyendo datos de personas desde la consola y guardandolas en el diccionario
propuesto anteriormente, podriamos hacerlo de la siguiente forma:

public static Dictionary<string, Persona> LeeDatos()

{
Dictionary<string, Persona> personas = [];
Console.Write("Introduce los datos de las personas: ");
int numeroPersonas = int.Parse(Console.ReadlLine()!);
for (int i = @; i < numeroPersonas; i++)
{
Console.Write($"Dni {i + 1}: ");
string dni = Console.ReadLine()!;
Console.Write($"Nombre {i + 1}: ");
string nombre = Console.ReadlLine()!;
Console.Write($"Edad {i + 1}: ");
int edad = int.Parse(Console.ReadLine()!);
// Anadir con el método add.
personas.Add(dni, new(nombre, edad));
¥
return personas;
}

El valor de un dato almacenado en el diccionario, también se puede acceder y modificar a través de su clave
usando el operador [] . Por ejemplo, si queremos modificar el sueldo de un empleado con Id "66668743G"
hariamos lo siguiente:

Dictionary<string, Persona> personas = LeeDatos();

personas["66668743G"] = new Persona("Susana", 27);

En este caso, si la clave "66668743G" no existe, se aftladira un nuevo elemento al diccionario. Basicamente
podemos resumir diciendo que funciona igual que el Add solo que si la clave existe modificara su valor

asociado sin generar una excepcion.

Cuidado

Ademas, como en el caso del borrado, si intentamos acceder a un valor del pictionary del que no existe
la clave el sistema lanzara una excepcion. Por lo que es buena practica utilizar el método
ContainsKey(clave) , para comprobar si existe la clave antes de acceder al valor a través de ella.

Borrar elementos Dictionary<K, V>

Usaremos el método Remove con la clave del valor que queremos eliminar como argumento. Si no existe la

clave obtendremos una excepcion.

personas.Remove("66668743G");

11/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

Recorriendo elementos en un Dictionary<K, V>

Los diccionarios disponen de propiedades para obtener claves y valores por separado. Estas son las
propiedades Keys y Values respectivamente. Las cuales, me devolveran una secuencia que implementa
IEnumerable<T> Yy que por ende puedo transformar a algun tipo de coleccién de las que conocemos ya sea un

array o una lista como hemos visto a lo largo del tema.

List<string> litaDnis = [..personas.Keys];

Persona[] arrayPersonas = [..personas.Values];

Diccionarios no es lo comun, ya que su acceso es mediante clave. Aunque se puede realizar el acceso a todos

los elementos usando un foreach .

Por ejemplo, este bucle saca las edades de todas las personas:

foreach (string dni in personas.Keys)

Console.WriteLine(personas[dni].Edad);

2" Nota

Es posible que el orden de salida no sea el mismo que cuando se introdujeron los datos, ya que las tablas

hash tienen un mecanismo de ordenacion diferente.

Realmente si tenemos en cuenta que nuestro diccionario realmente es una secuencia de valores del tipo
KeyValuePair<string, Persona> . Podriamos recorrer sus valores también de la siguiente forma...

foreach (KeyValuePair<string, Persona> par in personas)
Console.WriteLine($"{par.Key}: {par.value}");

Sin embargo, esta forma es menos habitual y en C# podemos usar tuplas para descomponer el par clave-valor

en dos variables independientes de forma mas 'natural’ y legible...

foreach ((string dni, Persona persona) in personas)

Console.WriteLine($"{dni}: {personal}");

12/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

Ejemplo:

Veamos un ejemplo sencillo donde se ponen en practica algunas de las operaciones basicas de un
diccionario vistas hasta ahora.

o i La salida del programa seria similar a la
Dictionary<string, Persona> personas = new()

{ siguiente:
["11224441K"] = new("Pepe", 30),
["11335499M"] = new("Maria", 22),
["123456780"] = new("Juan", 33),
["13898743Y"] = new("Sara", 27)

Los datos almacenados son:

- Pepe 30 afos y DNI 11224441K
- Maria 22 afios y DNI 11335499M
- Juan 33 anos y DNI 123456780
- Sara 27 afos y DNI 13898743y
Introduce un DNI para borrar:

}s

Console.WriteLine($"Los datos almacenados son:");
foreach ((string dni, Persona persona) in personas) 123456780

Console.WriteLine($"- {persona} y DNI {dni}"); Jjuan 33 afos ha sido borrado

Los DNIs almacenados son:
Console.WriteLine("Introduce un DNI para borrar:"); - 11224441K
string dniBuscado = Console.ReadlLine()!; - 11335499Mm
string salida = personas.ContainsKey(dniBuscado) - 13898743Y

? $"{personas[dniBuscado]}ha sido borrado"
: $"No se ha encontrado el DNI {dniBuscado}";
personas.Remove(dniBuscado);

Console.WritelLine(salida);

Console.WritelLine($"Los DNIs almacenados son:");

Console.WriteLine($"- {string.Join("\n -", personas.Keys)}");

Puedes descargar el cédigo del ejemplo desde el siguiente enlace diccionario_dni_persona_ejemplo.cs

13/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/assets/ejemplos/diccionario_dni_persona_ejemplo.cs

s

s

14/44

<« Ampliacién opcional:

Vamos a implementar el ejemplo anterior en otros lenguajes de programacién como JavaScript y Kotlin y
asi ver si sabemos encontrar las similitudes en la definicion de esta coleccion y sus operaciones basicas en
otros lenguajes.

JavaScript (Node.js):

const personas = new Map([

["11224441K", new Persona("Pepe", 30)],
["11335499M", new Persona("Maria", 22)],
["123456780", new Persona("Juan", 33)],
["13898743Y", new Persona("Sara", 27)]

console.log("Los datos almacenados son:");

for (const [dni, persona] of personas) {

console.log(- ${persona.toString()} y DNI ${dni});

readline.question('\nIntroduce un DNI para borrar: ', (dniBuscado) => {

let salida;

if (personas.has(dniBuscado)) {
const personaABorrar = personas.get(dniBuscado);
salida = " ${personaABorrar.toString()} ha sido borrado";
personas.delete(dniBuscado);

} else {

salida = "No se ha encontrado el DNI ${dniBuscado} ;
console.log(salida);
console.log("\nLos DNIs almacenados son:");
const dnisRestantes = Array.from(personas.keys()).join("\n- ");

console.log(- ${dnisRestantes});

readline.close();

Programacion 1° DAM Unidad 19 IES Doctor Balmis

Kotlin:

val personas = mutableMapOf(
"11224441K" to Persona("Pepe", 30),
"11335499M" to Persona(“"Maria", 22),
"123456780" to Persona("Juan", 33),
"13898743Y" to Persona("Sara", 27)

println("Los datos almacenados son:")
for ((dni, persona) in personas) {
println("- $persona y DNI $dni")

println("\nIntroduce un DNI para borrar:")

val dniBuscado = readln()

val personaABorrar = personas[dniBuscado]

val salida = if (personaABorrar != null) {
"$personaABorrar ha sido borrado"

} else {

"No se ha encontrado el DNI $dniBuscado"

personas.remove(dniBuscado)
println(salida)

println("\nLos DNIs almacenados son:")
println("- ${personas.keys.joinToString("\n- ")}")

15/44 Programacion 1° DAM Unidad 19 IES Doctor Balmis

Profundizando en el uso de los diccionarios

Para entender alguna de las propiedades y métodos que implementa la clase Dictionary<K, V> deberemos
entender como funcionan los mismos internamente. Para ello, supongamos la tabla de pares clave-valor que
hemos puesto antes de ejemplo. Donde la clave era un string con el DNI y el valor un objeto de tipo Persona .

Una posible aproximacion a como se organiza la informacion internamente podria ser el siguiente....

Tabla de
capacidad 1000
Registros
000 (Pares Clave-Valor)
Claves Hash%1000 ____»| 001 —»| "11224441K" | Nombre = "Pepe" Edad = 30
"11224441K" [
"123456780" | Nombre = "Juan" Edad = 33
"11335499M" | Hash%1000 872
873 f

| Hash%1000——

"123456780" "11335499M" [Nombre = "Maria" Edad = 22

874

13898743Y" | Hash?%1000 : T "13898743Y" | Nombre = "Sara" Edad = 27

T 998

999

Si nos fijamos, internamente el diccionario guarda una tabla de n elementos de capacidad y esto es importante
para que funcionen de manera eficiente. De hecho si a priori conocemos cuantos elementos va a tener
diccionario podremos dimensionarla en el constructor. Por ejemplo, si queremos que tenga una capacidad de
1000 como en nuestro ejemplo podriamos construir el diccionario de la siguiente manara ...

Dictionary<string, Persona> personas = new (1000);

Internamente calcula el Hash de la clave. En C# el Hash es un valor numérico entero que se obtiene a través
del método GetHashCode() que cualquier objeto implemente por estar definido en la clase object como virtual
y que por tanto podremos invalidar en nuestras definiciones de tipos.

Si consultamos como funciona la funcién de Hash por ejemplo en la Wikipedia podemos deducir que, para un
determinado estado de un objeto, esta me devuelve un valor numérico 'tnico'.

Pero... ¢ Para que nos sirve calcular el Hash de la clave?. Si nos fijamos en el diagrama, lo que hace el
diccionario es calcular el médulo del Hash entre la capacidad de la tabla Hash % 1eee esto nos asegurara
obtener un resto entre @ y 999 que son indices validos para la tabla definida. Por tanto, podemos inferir que el
Hash me permitira crear una correspondencia entre los objetos usados como clave (string en nuestro
caso) y un indice dénde guardar el valor asociado en la tabla, tal y como se muestra en la ilustracion.

Pero... ;Si la tabla tiene poca capacidad entonces, las posibilidades de que el resto de dividir el Hash de dos
claves por el tamafio me de el mismo indice es muy alta?. Efectivamente, por eso si nos fijamos en la ilustracion
hay dos DNI que al dar el mismo indice se deben guardar en la misma posicién, por ejemplo a través de una
lista enlazada. Una vez vamos a esa posicion de la tabla deberemos buscar la clave en la lista. Es por esa

16/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.object.gethashcode
https://es.wikipedia.org/wiki/Funci%C3%B3n_hash

razon, que cada registro de la lista guarda pares de clave-valor y no unicamente el valor. Ademas, para saber
buscar la clave en la lista deberemos saber si dos claves son iguales y por ello los objetos que usemos como
clave deben implementar la interfaz IEquatable<T>. Ten en cuenta que no debes preocuparte por los tipos
basicos y los definidos en las BCL, puesto que IEquatable<T> esta implementado en todos ellos.

= Resumen

Podemos decir que para que un tipo pueda hacer de clave debe invalidar GetHashCode() Yy debe
implementar IEquatable<Ts . Afortunadamente, no debemos preocuparnos porque los tipos basicos y

los definidos en las BCL cumplen estas condiciones.

Ademas, del funcionamiento descrito podemos entender los siguiente métodos de optimizacion y

rendimiento de los diccionarios ...

1. int EnsureCapacity(int capacity)
EnsureCapacity me permitira definir el tamafo de la tabla interna del diccionario si tengo muchas

entradas evitando asi que se repitan indices en las claves.

2. void TrimExcess()
TrimExcess si he realizado un Clear() o voy a tener pocos elementos en el diccionario me permitira

reducir el tamano de la tabla adecuandolo al nUmero de entradas.

17/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.iequatable-1
https://docs.microsoft.com/es-es/dotnet/api/system.collections.generic.dictionary-2.ensurecapacity
https://docs.microsoft.com/es-es/dotnet/api/system.collections.generic.dictionary-2.trimexcess

Usando tipos propios como claves

Imaginemos que queremos definir un diccionario donde la clave ahora sera la clase Persona que hemos
utilizado a lo largo del tema y el valor sera una lista de cadenas con los nombres de las mascotas de esa
persona. La definicién basica del tipo persona para usarlo como clave seria la siguiente...

class Persona : IEquatable<Persona>
{
public string Nombre { get; }
public int Edad { get; private set; }
public Persona(string nombre, int edad)
{
Nombre = nombre;
Edad = edad;
¥
// Es interesante que redefinamos el ToString para que represente el estado del
// objeto mediante una cadena.
public override string ToString() => $"{Nombre} {Edad} afios";
// Invalidamos GetHashCode() y una forma simple es usar la funcidn
// HashCode.Combine(...) para generar el hashcode a partir de los parametros.
public override int GetHashCode() => HashCode.Combine(Nombre, Edad);
// Implementamos el interfaz, que nos obliga a implementar Equals y podemos
// comparar facilmente dos objetos, viendo si tienen el mismo Hash o no.
public bool Equals(Persona? o)
=> o0 != null & Nombre == o.Nombre && Edad == o.Edad;

Cuidado

Comparar por HasCode en el Equals no seria una opcion valida ya que segun la longitud del Hash
existe la posibilidad de que objetos diferentes me devuelvan el el mismo Hash.

Analicemos la siguiente propuesta cédigo de ejemplo comentado donde usamos la clase Persona que hemos
definido como clave...

// Definimos el diccionario donde la clave es una persona y el valor una lista de mascotas.

Dictionary<Persona, List<string>> mascotasXPersona = [];
// Creamos un objeto persona pepe y para ese objeto anadimos una lista vacia de mascotas.

Persona pepe = new("Pepe", 30);

mascotasXPersona.Add(pepe, [1);

18/44 Programacion 1° DAM Unidad 19 IES Doctor Balmis

mascotasXPersona[pepe].Add("Snowball");
mascotasXPersona[pepe].Add("Velvet");

mascotasXPersona.Add(new("Maria", 22), ["Simba", "Bella"]);

mascotasXPersona[new("Maria", 22)].Add("Lucy");

foreach (Persona p in mascotasXPersona.Keys)
Console.WriteLine($"{p}: {string.Join(", ", mascotasXPersona[p])}");

Prueba a ejecutar este coédigo y comprueba que
funciona correctamente. La salida deberia ser similar Pepe 30 afios: Snowball, velvet

Maria 22 afos: Simba, Bella, Lucy

a la siguiente:

Prueba ahora a eliminar la invalidacion de GetHashCode() de Persona Yy ver que sucede. Deberias obtener un
error al afadir la mascota Lucy a Maria porque no encontraria la clave en el diccionario.

¢) Consejo

En este caso como persona no es una entidad al no tener un Id como pudiera ser un DNI. Podriamos
definir la clase Persona como un record Yy ya no tendremos que preocuparnos por implementar
IEquatable<T> niinvalidar GetHashCode() Yya que el compilador lo hara por nosotros basandose en los
parametros del constructor. Por tanto, la definicion de Persona quedaria mucho mas simple...

record Persona (string Nombre, int Edad)

{

public override string ToString() => $"{Nombre} {Edad} afios";

Haz la prueba y comprueba que el cédigo funciona igual.

19/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/assets/ejemplos/iequatable_en_clave_diccionario_ejemplo.cs

® Caso de estudio:

Vamos su uso a través de un simple programa de ejemplo que realice un pequefio examen sobre las
capitales de la UE. Para ello, el programa preguntara 5 capitales. Puntuando con 2 puntos cada pregunta
acertada. Veamos una posible solucion...

Dictionary<string, string> capitalesPorPais = new()

{
["Espafa"] = "Madrid", // Par clave pais, valor capital.
["Portugal"] = "Lisboa",
["Francia"] = "Paris",
["Irlanda"] = "Dublin”
}s

// Aunque hemos definido por extensidén. Podemos anadir elemetos a posteriori.
capitalesPorPais.Add("Belgica", "Bruselas");

capitalesPorPais["Alemania"] = "Berlin";

// Obtenemos una lista de claves indizable por un entero.
List<string> paises = [..capitalesPorPais.Keys];
// Lista donde almacenaré los paises ya preguntados para no repetirnos.
List<string> paisesPreguntados = [];
const int NUMERO_PREGUNTAS = 5;
Random semilla = new();
int puntos = 0;
for (int i = @; i < NUMERO_PREGUNTAS; i++)
{
string paisPreguntado;
// Buscamos un pais que uUn no hayamos preguntado.
do
{
paisPreguntado = paises[semilla.Next(©, paises.Count)];
} while (paisesPreguntados.Contains(paisPreguntado));

paisesPreguntados.Add(paisPreguntado);

Console.Write($"¢Cual es la capital de {paisPreguntado}? > ");

string capitalRespondida = Console.ReadlLine()!.ToUpper();

bool respuestaCorrecta = capitalRespondida == capitalesPorPais[paisPreguntado].ToUpper();

if (respuestaCorrecta) puntos += 2;

string mensaje = (respuestaCorrecta
? "Correcto !!"
: $"Incorrecto !!\nLa respuesta es {capitalesPorPais[paisPreguntado]}.")
+ $"\nLlevas {puntos} puntos.\n";

Console.WriteLine(mensaje);

}

Console.WritelLine($"Tu nota final es {puntos}.");

20/44 Programacion 1° DAM Unidad 19 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/assets/ejemplos/juego_capitales_con_diccionario_ejemplo.cs

Lista doblemente enlazada o vinculada

Implementan el TAD (Tipo Abstracto de Datos) de programacioén clasico denominado: 'lista doblemente
enlazada’.

Este tipo esta definido de forma analoga en ostros lenguajes como Java o Kotlin y es el tipo mas adecuado, si
voy a necesitar hacer muchas inserciones y borrados pues tienen un coste 0(1) sin en embargo, el acceso a
un elemento por indice es 0o(n) por lo que si necesito hacer muchas busquedas por indice es mejor usar

una List<T> .

Tipo nodo doblemente enlazado LinkedListNode<T>

La clase LinkedListNode<T> representara un nodo de
la lista y contendra tres propiedades principales:

LinkedListNode<T> nodo;

1. value : que contendra el valor del nodo de tipo

Previous Nodo

- _ | T Value | T—> Next
2. Next : que contendra una referencia al siguiente
nodo de la lista o nuLL si es el dltimo nodo.

Representacion de un nodo doblemente enlazado

3. Previous : que contendra una referencia al nodo

anterior de la lista o NULL si es el primer nodo.

Basicamente, cada nodo sabe cual es el siguiente y cual es el anterior y ademas contiene el valor o el dato que
queremos almacenar que podra ser de cualquier tipo T ya sea valor o referencia.

Esta estructura, va a permitir que los datos no estén almacenados de forma contigua en memoria como en
el caso de los arrays o las listas, sino que cada nodo podra estar en cualquier parte de la memoria y se

accedera a ellos a través de las referencias Next Yy Previous .

Si te fijas en la ilustracion, el primer nodo tiene su
referencia Previous a NULL y el Ultimo nodo tiene su

Representacion de la vinculacién del primer nodo con otro

referencia Next a NuLL Yy los nodos no estan

. . . NULL
almacenados de forma contigua en memoria. Sino Nodo

:] .
que la referencia Next de cada nodo apunta a la N P
direccion de memoria del siguiente nodo y me

permitira acceder a él de forma dinamica. Lo mismo

sucede con la referencia previous que me permitira
retroceder en la lista.

La ventaja del doble enlace es que puedo recorrer la lista en ambos sentidos, desde el primero al ultimo
nodo y viceversa.

21/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

https://es.wikipedia.org/wiki/Lista_doblemente_enlazada
https://es.wikipedia.org/wiki/Lista_doblemente_enlazada

Tipo lista doblemente enlazada LinkedList<T>

Representa la lista doblemente enlazada en si misma y contendra referencias al primer nodo a través de la

propiedad First y al ultimo nodo de la lista a través de la propiedad Last . También tendra una propiedad

Count que me indicara el numero de nodos que tiene la lista. Ademas, implementa la interfaz ICollection<T>

por lo que tiene las operaciones basicas de cualquier coleccion.

Si creamos una lista doblemente enlazada
vacia, las referencias First y Last
apuntaran a NULL y el contador Count
valdra 0.

LinkedList<int> list = new ();

Si inicializamos la lista con un solo
elemento, las referencias First Yy Last
apuntaran al mismo nodo y el contador
Count valdra 1.

LinkedList<int> list = new ([56]);

Si inicializamos la lista con dos elementos,
la referencia First apuntara al primer nodo
y la referencia Last al segundo nodo. El
contador count valdra 2.

LinkedList<int> list = new ([56, 94]);

Count=0

NULL NULL

NULL

Count =1

NULL

Ol

NULL <—|» | 56|

i

Count=2

Este proceso de mantener las referencias al primer y ultimo nodo y la cuenta de nodos, se ira repitiendo a

medida que vayamos afadiendo o borrando nodos de la lista. Para ello dispondremos de diferentes métodos

que realizaran las operaciones necesarias para mantener la integridad de las referencias en la lista.

Anadir elementos al principio con AddFirst

Anadira un nodo al principio o la 'cabeza' de

LinkedList<int> 1list = new ([56, 94]);
list.AddFirst(45);

la lista.

Count=3

Pero si la lista ya tenia nodos, se realizara un proceso por pasos como el descrito en la imagen:

22/44 Programacién 1° DAM Unidad 19

IES Doctor Balmis

Paso 1: Se crea un nuevo nodo n con el valor a afadir y haremos que Next apunte al nodo que actualmente
es el primero de la lista (First).

Paso 2: Si la lista no estaba vacia, haremos que el nodo que actualmente es el primero de la lista (First)
tenga su referencia Previous apuntando al nuevo nodo n Yy sila lista estaba vacia, haremos que la referencia
Last apunte al nuevo nodo n (Paso 2').

Paso 3: Finalmente, actualizaremos la referencia First para que apunte al nuevo nodo n y aumentaremos el
contador Count en 1.

Todo este proceso se realizara de forma transparente al usuario cuando llame al método 1list.AddFirst(45); .

También podremos crea nosotros mismos el nodo y pasarlo al
LinkedList<int> list = new ([56, 94]);
LinkedListNode<int> n = new (45);
list.AddFirst(n);

método AddFirst(LinkedListNode<T> node) . El proceso interno
sera el mismo que en el caso anterior pero con el nodo ya
creado.

Cuidado

Una vez afadido el nodo a la lista, pasara a 'ser de su propiedad' y se encargara de gestionarlo. Por
tanto, no debemos usar mas la referencia al nodo que hemos pasado como argumento.

Si intentamos afadir el mismo nodo a otra lista 0 a la misma lista de nuevo, obtendremos una excepcion.
Lo mismo sucedera si intentamos afadir un nodo que ya pertenece a otra lista.

Anadir elementos al final con AddLast

Afadira un nodo al final o la 'cola’ de la lista.

El proceso sera analogo al de addfrirst pero en este caso
LinkedList<int> list = new ([45, 56, 94]);

] actualizaremos las referencias Last y Next de los nodos
list.AddLast(78);

implicados.

Anadir o insertar antes o después de un nodo

Podremos afiadir un nuevo nodo antes o después de un nodo ya existente en la lista. Para ello usaremos los
métodos AddBefore(LinkedListNode<T> node, T value) Yy AddAfter(LinkedListNode<T> node, T value)
respectivamente.

En el ejemplo de codigo anterior. Buscaremos el nodo con el
valor 94 vy silo encontramos, afadiremos un nuevo nodo con el
valor 66 antes de ese nodo y otro con el valor 98 después de
ese nodo (fijate que es como hacer un AddLast). Finalmente,
afiadiremos un nuevo nodo con el valor 23 antes del primer
nodo de la lista, equivalente a hacer un Addfrirst pero a
diferencia de este ultimo, la lista no esta vacia y por eso nos

23/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

- . . '
LinkedListcints> list = new ([56, 94]); aseguramos de pasar el nodo primero con list.First!

LinkedListNode<int>? nodo94 = list.Find(94); (operador de supresion de null). El cédigo mostrara por
if (nodo94 != null) consola ...
{

list.AddBefore(nodo94, 66);
list.AddAfter(nodo94, 98);
¥
list.AddBefore(list.First!, 23);

Console.WriteLine(string.Join(", ", 1list));

Mostrard por consol: s e = =t [= - = [=[- ™

23, 56, 66, 94; 98 Count=5 @ @

Borrar elementos con Remove

Podremos borrar directamente el primero o el ultimo nodo de la lista con los métodos RemoveFirst() y
RemoveLast() respectivamente.

Ademas, como sucede con otras operaciones, tendremos la posibilidad de borrar un nodo a través de su valor o

a través de una referencia al nodo.

1. bool LinkedList<T>.Remove(T value) : Busca el primer nodo con el valor indicado y si lo encuentra lo borra
devolviendo true , en caso contrario devuelve false .
2. void LinkedList<T>.Remove(LinkedListNode<T> node) : Borra el nodo indicado a través de su referencia. Si el

nodo no pertenece a la lista se generara una excepcion.

LinkedList<int> list = new([23, 56, 66, 94, 98] En el ejemplo de cédigo anterior. Buscaremos el nodo con el

valor e6 Yy silo encontramos, lo borraremos a través de su

LinkedListNode<int>? nodo66 = list.Find(66); referencia. A continuacion, borraremos el nodo con el valor 56
if (nodo66 != null)

list.Remove(nodo66);
list.Remove(56); ultimo nodo de la lista.

a través de su valor. Finalmente, borraremos el primer y el

list.RemoveFirst(); El codigo mostrara por consola ...
list.Removelast();

Console.WriteLine(string.Join(", ", 1list)); 94

Como vemos tras todos los borrados, unicamente queda el nodo con el valor 94 en la lista y las referencias

First y Last apuntaran a ese nodo.

Recorriendo una LinkedList<T>

No podremos usar un indice entero para acceder a los elementos de la lista y por tanto el operador [] no
esta definido para este tipo. Esto es debido a que el acceso por indice es costoso en este tipo de listas ya que
deberiamos recorrer la lista desde el primer nodo hasta llegar al indice indicado y esto tiene un coste o(n) .

24/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

Podremos recorrer los datos con un foreach de la siguiente manera:

LinkedList<int> list = new([23, 56, 66, 94, 98]);
foreach (int valor in list)

Console.WritelLine(valor);

También podremos recorrerla en ambos sentidos con un nodo a modo de iterador.

LinkedList<int> list = new([23, 56, 66, 94, 98]);

for (LinkedListNode<int>? it = list.First; it != null; it = it.Next)
Console.WritelLine(it.Value);

for (LinkedListNode<int>? it = list.Last; it != null; it = it.Previous)

Console.WriteLine(it.Value);

Transformando LinkedList<T> en otras colecciones

Ya hemos visto que el constructor me permite crear una lista a partir de una array u otra coleccion. Pero, § Como
transformamos de nuevo la lista en un array si hemos terminado de por ejemplo de hacer inserciones y
borrados?

En C# es tan sencillo como usar expresiones de coleccion con el operador de extension [..] .

LinkedList<int> linkedList = new([23, 56, 66, 94, 98]);

int[] array = [.. linkedList];
List<int> list = [.. linkedList];

List vs LinkedList

Aunque al principio del tema hemos comentado que las listas enlazadas son mas apropiadas para realizar
muchas inserciones y borrados, en la practica las diferencias de rendimiento no son tan evidentes. Es por
ello que salvo Java, C#. Otros lenguajes como Python, JavaScript o Kotlin no disponen de este tipo de listas
en sus librerias estandar.

¢Por qué en la practica en un 95% de los casos es mejor y mas eficiente usar List<T> en lugar de
LinkedList<T> ?

1. El castigo del "Cache Miss": Las listas enlazadas no almacenan los datos de forma contigua en memoria.
Por tanto, el procesador no puede aprovechar la localidad espacial de los datos y se producen mas fallos
de caché (cache misses) al acceder a los nodos, lo que ralentiza el rendimiento.

2. Mayor sobrecarga de memoria "Overhead”: Las listas enlazadas son "despilfarradoras" con la memoria.
Ya que por ejemplo, en un List<int> solo guardas los enteros. Sin embargo, en una LinkedList<int> por
cada entero guardas...

o El valor entero (4 bytes).

25/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

¢ Un puntero al nodo siguiente (8 bytes).

¢ Un puntero al nodo anterior (8 bytes).

o Referencia al objeto LinkedList al que pertenece el nodo (8 bytes).

o Metadatos del objeto Nodo que contiene los datos (8 bytes).
Con todo ello, una simple lista doblemente enlazada consume aproximadamente 5 o 6 veces la
memoria que una lista normal.

3. Operaciones de insercion y borrado no tan rapidas: La teoria dice que insertar en una LinkedList es
o(1) (tiempo constante), mientras que en una List es 0(n) porque hay que desplazar elementos. Sin
embargo:

e Salvo en los extremos, para insertar en una lista enlazada, primero tienes que encontrar el nodo. Esa
busqueda es 0(n) .

» En la practica, anadir a una listas es bastante rapido gracias a que los procesadores estan
optimizados para mover bloques de memoria contiguos. Sobre todo si la lista no es muy grande.

o Crear un nodo y gestionar las referencias en una lista enlazada también tiene su coste temporal

Entonces..., § Cuando usar LinkedList<T> en lugar de List<T> ?

1. Inserciones y borrados muy frecuentes: Si la aplicacion requiere muchas inserciones y borrados en
posiciones arbitrarias de la lista y el acceso por indice es inexistente.

2. Sistemas Operativos: Para gestionar colas de procesos donde el tamafio cambia constantemente y no
puedes permitirte "re-alojar" grandes bloques de memoria.

3. Implementacién de otras estructuras: Son |la base para crear Queues (Colas) o Stacks (Pilas) eficientes.

4. Sistemas con memoria muy fragmentada: Donde no hay espacio para un bloque contiguo grande, pero
si para muchos trozos pequenos.

5. Almacenamos un 'value type' muy grande: Si el valor que almacenamos es un record struct muy
grande, puede ser mas eficiente usar una LinkedList para evitar copiar grandes bloques de memoria al
redimensionar una List .

26/44

Programacién 1° DAM Unidad 19

* Asumiendo que ya tienes el nodo localizado*

IES Doctor Balmis

= Resumen
Operacion List<T> LinkedList<T> Ganador
Acceso por indice O(1) (Instantaneo) O(n) (Debe recorrer) List
Afiadir al final O(1) O(1) Empate
Insertar/Borrar en el medio O(n) (Desplaza datos) ~ O(1) (Solo referencias) * LinkedList
Uso de Memoria Bajo / Eficiente Alto (Punteros extra) List
Caché del CPU Excelente Pobre List

Pilas (Stacks) y Colas (Queues)

Se trata de dos tipos de colecciones muy usadas en la programacion tradicional que implementan los TAD
(Tipos Abstractos de Datos) Pila y Cola respectivamente. Son tipos muy sencillos que nos permiten almacenar
datos de forma ordenada y acceder a ellos siguiendo unas reglas muy concretas.

De hecho, ambos tipos son concreciones del TAD Lista pero con restricciones en las operaciones que
podemos realizar sobre ellos. De esta manera nos aseguramos que los datos se gestionan siguiendo dichas

operaciones y no otras.

Existen muchos algoritmos clasicos que usan ambos tipos de colecciones para resolver problemas concretos.
Como hemos comentado, podriamos usar una List<T> O una LinkedList<T> pero al tener estos tipos las
operaciones especificas que necesitamos, el cédigo es mas claro y sencillo de mantener.

Internamente en C#, ambos tipos usan un Array para almacenar los datos como base al igual que List<T> .
Por tanto, las operaciones de insercion y borrado tienen un coste amortizado de o(1) y el acceso a los
elementos es o(1) .

Las colas en CSharp con (Queue<T>)

Los elementos se afiaden por el final y se suprimen por el principio denominado frente de la cola. Por esta
razon, también se les conoce como estructuras FIFO, acronimo en ingles de ‘Primero en Entrar, Primero en
Salir'.

Operaciones del TAD Cola y su equivalente en C# a través de Queue<T> c = new() :

e Encolar (c.Enqueue(T dato)).

Desencolar (c.Dequeue() » T).

Borrar toda la cola (c.clear())

Consultar el frente de la cola sin desencolar (c.pPeek() > T).

Ver si esta vacia (c.Count == @).

4]

c.Enqueue(2) .Enqueue(3) .Enqueue(4) fEnqueue(S)

(=]
[>]]

Operaciones FIFO 1
sobre una Cola ¢

L.Dequeue() —1 LDequeue() —2 .Dequeue() — 3

.Peek() — 4

-

[+]

27144 Programacién 1° DAM Unidad 19 IES Doctor Balmis

El siguiente codigo equivaldria a las public static void Main()

operaciones descritas en la ilustracion y {

mostrara por consola: Queue<int> c = new ([1]);
Console.WritelLine($"Cola -> {string.Join(", ", c)}");

Cola -> 1 for (int i = 2; i <= 5; i++)

Encolando el 2 {

Cola -> 1, 2 c.Enqueue(i);

Encolando el 3 Console.WriteLine($"Encolando el {i}");
cola -> 1, 2, 3

Encolando el 4 }
cola -> 1, 2, 3, 4

Encolando el 5

Console.WriteLine($"Cola -> {string.Join(", ", c)}");

while (c.Count > 2)

cola -> 1, 2, 3, 4, 5

Desencolado el 1 {

cola -> 2. 3. 4. 5 Console.WriteLine($"Desencolado el {c.Dequeue()}");
Desenco1ac’lo é] é Console.WriteLine($"Cola -> {string.Join(", ", <)}");
cola -> 3, 4, 5 ¥

Desencolado el 3

cola -> 4, 5 Console.WriteLine($"E1l frente de la cola es {c.Peek()}");
E1 frente de 1a cola es 4 Console.WritelLine($"Cola -> {string.Join(", ", c)}");

cola -> 4, 5 }

Como hemos comentado, aunque a simple vista son una concrecién de las listas, puede ser interesante tener
solo un subconjunto de operaciones mas limitado, enfocado a ciertos problemas y que nos pueda proporcionar
mas 'robustez' de cara a errores, legibilidad del cédigo e incluso rendimiento en la ejecucion del mismo.
Normalmente las colas se usar para gestionar datos, eventos o procesos asincronos por orden de llegada. El
ejemplo mas paradigmatico seria la cola de impresion, que ira encolando los 'trabajos' de impresion y
desencolandolos por orden conforme quede libre un recurso de impresion.

28/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

Ejemplo:

Vamos a implementar con una Cola programa que simule "El juego de la bomba' en el cual una bomba
programada para explotar en un tiempo aleatorio. Es pasada entre los jugadores de forma rotativa del tal
manera que cada jugador la retendra un tiempo 'aleatorio’ que el estime oportuno para que le explote a un
companero y no le vuelva a llegar.

Esto es, el jugador que coge la bomba se desencolara del frente de la cola, esperara un tiempo aleatorio
y si la bomba no ha explotado, volvera a encolarse pasandosela al siguiente jugador que desencolaremos
a continuacion y asi sucesivamente hasta que la bomba explote. Una posible solucion seria la siguiente...

public static void Main()

{
Queue<string> jugadores = new Queue<string>([
"Pepe", "Maria", "Juan", "Sara"
s
Random seed = new ();
int segundosHastaExplosion = seed.Next(30, 60);
bool explosion;
do
{
// Desencolamos al jugador que recibira la bomba.
string jugador = jugadores.Dequeue();
int espera = seed.Next(5, 10);
Console.WriteLine($"{jugador} esperando para pasar la bomba.");
Console.WriteLine($"En cola quedan {string.Join(", ", jugadores)}");
Thread.Sleep(espera * 1000); // Espera aleatoria.
segundosHastaExplosion -= espera;
explosion = segundosHastaExplosion <= ©; // Comprobamos si ha explotado.
if (!explosion)
// Si no ha explotado encolamos de nuevo al jugador para que vuelva a recibir la bomba.
jugadores.Enqueue(jugador);
else
Console.WriteLine($"La bomba le ha explotado a {jugador}.");
}
while (!explosion);
jugadores.Clear();
}

29/44 Programacion 1° DAM Unidad 19 IES Doctor Balmis

Las pilas en CSharp con (Stack<T>)

Los elementos se afiaden y extraen por el mismo extremo que denominaremos cabeza de la pila. Por esta
razon, también se les conoce como estructuras LIFO, acrénimo en ingles de ‘Ultimo en Entrar, Primero en
Salir'.

Operaciones del TAD Pila y su equivalente en C# a través de Stack<T> p = new() :

e Apilar (p.push(T dato)).
Desapilar (p.Pop() » T).

Borrar toda la pila (p.Clear())

Consultar la cabeza de la cola sin desapilar (p.Peek() > T).

Ver si esta vacia (p.Count == @).

.Push(2) p-Push(3) p.Push(4) fPush(S) T.Pop() —5 .Pop() — 4 .Pop() —» 3 %).Peek() — 2
: |
4 !
Operaciones LIFO T
sobre una Pila p . . .
1 — 1 1
2
1
El siguiente cédigo equivaldria a las public static void Main()

operaciones descritas en la ilustracion y {
. Stack<int> p = new ([1]);
mostrara por consola:

Console.WriteLine($"Pila -> {string.Join(", ", p)}");

Pila -> 1
Apilando el 2
Pila -> 2, 1 {

Apilando el 3 p.Push(i);

Pila -> 3, 2, 1 Console.WriteLine($"Apilando el {i}");

for (int i = 2; i <= 5; i++)

Apilando el 4 Console.WriteLine($"Pila -> {string.Join(", ", p)}");
Ppila -> 4, 3, 2, 1 }

Apilando el 5

Pila -> 5, 4, 3, 2, 1 while (p.Count > 2)

Desapilando el 5 {

Pila -> 4, 3, 2, 1 Console.WritelLine($"Desapilando el {p.Pop()}");
Desapilando el 4 Console.WritelLine($"Pila -> {string.Join(", ", p)}");
Pila -> 3, 2, 1 }

Desapilando el 3

Pila -> 2, 1

La cabeza de Ta pila es 2
Pila -> 2, 1

Console.WriteLine($"La cabeza de la pila es {p.Peek()}");
Console.WriteLine($"Pila -> {string.Join(", ", p)}");

30/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

Ejemplo:

Un tipico ejemplo de uso de pilas es comprobar si una expresion esta balanceada o no. Por ejemplo,
((3+4) % (2 —5/(2%4))) esta balanceada porque se abren tantos paréntesis como se cierran de
forma correcta.

Para ello, vamos a definir un método estatico denominado bool VerificaParentesis(string expresion) que
me diga si la cadena con la expresion de entrada lo esta o no.

El algoritmo consistira en recorrer la cadena y cada vez que encontremos el caracter '(' apilarloy
cuando encontremos un ')' desapilar de la cadena. Si desapilamos y no hay nada en la pila, significara
que no hay ningun paréntesis de apertura para el de cierre que acabamos de encontrar. Ademas, si tras
recorrer todas la expresion quedan elementos en la pila significara que no todos los paréntesis de apertura

se has logrado cerrar.

static bool VerificaParentesis(string expresion)

{
Stack<char> p = new ();
bool balanceados = true;
for (int i = @; i < expresion.Length &% balanceados; i++)
{
if (expresion[i] == "'(")
p.Push('(");
else if (expresion[i] == ')")
balanceados = p.Count > © && p.Pop() == "'(';
}
balanceados = balanceados && p.Count == 0;
return balanceados;
¥

static void Main()

{
Console.WriteLine(VerificaParentesis("((3 + 4) * (2 - 5/ (2 * 4)))")); // true
Console.WriteLine(VerificaParentesis("(3 + 4) * (2 - 5/ (2 * 4)))")); // false
Console.WriteLine(VerificaParentesis("((3 + 4) * (2 - 5/ (2 * 4))")); // false
}

31/44 Programacion 1° DAM Unidad 19 IES Doctor Balmis

<« Ampliacién opcional:

Vamos a implementar la funcidon verificaParentesis el ejemplo anterior en otros lenguajes de

programacion como JavaScript y Python. Fijate que aunque en ambos lenguajes no existe un tipo

especifico para pilas, podemos usar los arrays que tienen métodos equivalentes a push y pop para

simular su comportamiento.

JavaScript (Node.js):

function verificaParentesis(expresion) {

const pila = [];

let balanceados = true;

E}

for (let i = @; i < expresion.length && balanceados; i++) {
if (expresion[i] === "(") {
pila.push('(");
} else if (expresion[i] === ")") {
balanceados = pila.length > @ && pila.pop() === "(';
¥
}
balanceados = balanceados && pila.length === 0;
return balanceados;
X
Python:

def verifica_parentesis(expresion):

p =11
balanceados = True
i=o0

while i < len(expresion) and balanceados:
caracter = expresion[i]
if caracter == '(':
p.append(’ (")
elif caracter == ")":
if len(p) > ©:
p.pop()
else:
balanceados = False

return balanceados and len(p) ==

32/44

Programacion 1° DAM Unidad 19 IES Doctor Balmis

El patrén iterador

Es un patréon de diseio orientado a objetos ideado para recorrer cualquier coleccidon de datos. Ademas, en el
lenguaje C# cobra especial importancia para aplicar ciertos esquemas de programacion funcional que
trataremos en temas posteriores.

Este patron se implementa en C# a través de la definicion de la interfaz genérica IEnumerable<T> asi como su
antecesora IEnumerable . Ambas ofrecen un mecanismo para la iteracion sobre los elementos de una
secuencia, generalmente con la vista puesta en aplicar a esa secuencia la instruccién de programacion
foreach para recorrerla.

Dicho interfaz debera ser implementada por la clase o tipo que implemente la secuencia o contenga una serie
de datos que nos interese recorrer de forma secuencial. Por tanto, todas las colecciones genéricas que hemos
visto en este tema como List<T>, LinkedList<T>, Stack<T> O Queue<T> implementan dicha interfaz.

Representara pues la abstracciéon maxima de una secuencia iterable de datos y nos permitira recorrerlos sin
preocuparnos de la implementacion interna de la coleccion que los contiene. Por tanto, es usada como
abstraccion en multitud de métodos definidos en las librerias estandar de C# que necesitan recorrer secuencias
de datos como por ejemplo el método estatico

public static string Join<T>(string? separator, IEnumerable<T> values) que venimos usando durante todo el
curso para mostrar colecciones por consola sparadas por comas u otro separador. Este métiodo, solo
necesita recorrer la secuencia de datos que le pasemos sin importar si es una lista, una pila, una cola o
cualquier otra coleccion que implemente la interfaz IEnumerable<Ts .

Interfaz IEnumerable<T>

Definira un método que me permitira ontener intancias de un iterador que implemente la interfaz

IEnumerator<T> que veremos a continuacion.

La definicién de IEnumerable<T> e IEnumerable es la siguiente:

public interface IEnumerable

{

IEnumerator GetEnumerator();

public interface IEnumerable<T> : IEnumerable

{

IEnumerator<T> GetEnumerator();

Nota

33/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

https://es.wikipedia.org/wiki/Iterador_(patr%C3%B3n_de_dise%C3%B1o)

Fijate que la interfaz se apoya en su contrapartida no genérica, para tener compatibilidad con la misma y
por tanto hacia versiones anteriores de las BCL.

Operaciones y uso basico de la abstraccion IEnumerable<T>

Como ya hemos comentado en la introduccion, todas las colecciones implementan este interfaz, podremos
hacer la sustitucion de cualquier coleccion concreta por su interfaz genérica IEnumerable<Ts . Por ejemplo,
podriamos definir un método que reciba como parametro cualquier coleccion que implemente dicha interfaz y
nos muestre sus elementos por consola.

static void MostrarElementos<T>(IEnumerable<T> secuencia)

{
foreach (T elemento in secuencia)
{
Console.WritelLine(elemento);
}
}

static void Main()

{
int[] array = [23, 56, 66, 94, 98];
List<int> lista = new([23, 56, 66, 94, 98]);
LinkedList<string> linkedList = new (["Hola", "Mundo", "Desde", "CSharp"]);
MostrarElementos(array);
MostrarElementos(lista);
MostrarElementos(linkedList);
¥

Podremos hacer el proceso inverso y generar cualquier coleccion a partir de una secuencia que implemente
IEnumerable<T> . Fijate que segun el tipo tendremos diferentes alternativas ...

IEnumerable<int> secuencia = [23, 56, 66, 94, 98];

int[] array2 = secuencia.ToArray();

int[] array3

[.. secuencia];

List<int> lista = new (secuencia);

List<int> lista2 = secuencia.TolList();

List<int> lista3 = [.. secuencia];
LinkedList<int> listaEnlazadal = new (secuencia);

Aunque profundizaremos mas adelante en este aspecto. Dispondremos de multitud de métodos de utiliadad
aplicables a IEnumerable<T> . Algunos ejemplos son:

e Método de clase, 1Enumerable<int> Enumerable.Range(int start, int count) que genera una secuencia de
enteros empezando en start, con count elementos.

34/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

e Meétodo de instancia, IEnumerable<T> IEnumerable<T>.Skip(int count) que devolvera la secuencia
resultante de haber saltado count posiciones en el objeto secuencia al que aplicamos la operacion.
o Método de instancia, T IEnumerable<Ts.First() que devolvera el primer elemento del objeto secuencia al

que aplicamos la operacion.

List<int> secuencia = Enumerable.Range(2, 4).TolList();
List<int> secuencia = [2, 3, 4, 5]; // Equivalente a la linea anterior.

secuencia.Skip(2).First(); // Se evaluarad al entero 4

Interfaz IEnumerator<T>

Clase iterador que nos permitira recorrer la secuencia de datos de forma ordenada a través de los objetos

instanciados de la misma. Es

La definicion de IEnumerator<T> € IEnumerator es la siguiente:

// Definido dentro de System.Collections

public interface IEnumerator

{
object Current { get; }
void Reset();
bool MoveNext();

}

// Definido dentro de System.Collections.Generic
public interface IEnumerator<T> : IDisposable, IEnumerator

{

T Current { get; }

Como vemos en la definicidn, las clases que implementen este interfaz deben implementar los siguientes

miembros:

current : Devuelve el elemento actual apuntado por el iterador interno en la secuencia.
Reset() : Establecera el iterador a un estado inicial justo antes del primer elemento. Este método, sera

llamado desde el constructor del objeto y el estado indicara en siguiente MoveNext() que debo ir al primer
elemento.

e MoveNext() : Desplaza el enumerador al siguiente elemento de la secuencia devolviendo true si he podido
hacerlo o false sino he podido avanzar porque ya estaba al final de la misma. Como hemos comentado
antes, en la primera llamada tras el Reset() se situara al principio de la secuencia.

e Dispose() : Restablece el iterador a su valor inicial y libera cualquier recurso no administrado asociado al
mismo.

Uso de el patrén iterador

Como ya hemos comentado nos permite recorrer secuencias con la instruccién foreach y pasar como
parametro o guardar cualquier coleccion como la generalizacidon secuencia iterable IEnumerable<T> .

35/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

Una instrucciéon foreach ... realmente esta haciendo...

List<int> lista = new([23, 56, 66, 94, 98]); List<int> lista = new([23, 56, 66, 94, 98]);

IEnumerator<int> it = lista.GetEnumerator();

foreach (int valor in lista) while (it.MoveNext())
{ {

Console.WriteLine(valor); Console.WritelLine(it.Current);
¥ }

Pero ... Por qué crear un objeto aparte para iterar y no dejar que las colecciones implementen
directamente IEnumerator<T> ?

La respuesta tiene que ver con la necesidad de permitir la ejecucion de iteraciones anidadas sobre una
misma secuencia. Si la secuencia implementara directamente la interfaz enumeradora, solo se dispondria de
un unico 'estado de iteracion' en cada momento y seria imposible implementar bucles anidados foreach sobre
una misma secuencia.

Veamoslo a través de una ejemplo de uso de dos iteradores sobre un mismo objeto LinkedList<T> :

Un doble foreach ... realmente esta haciendo...

LinkedList<int> list = new([23, 56, 66, 94, 98] LinkedList<int> list

new([23, 56, 66, 94, 98]);

IEnumerator<int> itl = list.GetEnumerator();

foreach (int vall in list) IEnumerator<int> it2 = list.GetEnumerator();
{ while (itl.MoveNext())
foreach (int val2 in list) {
{ while (it2.MoveNext())
Console.Write($"[{vall}, {val2}]"); Console.Write($"[{itl.Current}, {it2.Current}]");
} it2.Reset();
} }

Cada objeto iterador it1, it2 mantiene su propio estado de iteracion y por tanto, podemos tener varios
iteradores activos sobre la misma secuencia sin que interfieran entre ellos.

36/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

37/44

O

NULL <———

23

56

66

94

Count=5

98

— NULL

9 ¢

Programacién 1° DAM Unidad 19

IES Doctor Balmis

Implementando IEnumerable<T> en nuestras colecciones o clases

Siguiendo la definicidn de los interfaces. La clase que queremos que sea recorrible deberia implementar la
interfaz 1Enumerable<T> Y definir el método GetEnumerator() que devolvera una instancia de una clase que
implemente la interfaz IEnumerator<T> . Ademas deberemos definir otra clase que implemente IEnumerator<T>
con los métodos y propiedades necesarias para recorrer la coleccion.

Esto en ocasiones puede llegar a ser tedioso y repetitivo. Por suerte, C# nos proporciona una forma mucho mas
sencilla de implementar el patron iterador a través del uso de la palabra clave yield que veremos a
continuacion.

Concepto de generacion perezosa de secuencias con yield

El concepto de generador en informatica lo vamos a encontrar ademas de en C#, en otros lenguajes de
programacion tales como: JavaScript, Python, Kotlin, etc. Asociado a la normalmente a la palabra reservada
yield que tendra un significado y uso similar, aunque con variaciones en la sintaxis.

Es interesante indicar que una posible traduccion del inglés del verbo to yield es 'generar o producir'. Por lo
que normalmente esta instruccion se utiliza para generar secuencias de forma perezosa (/azy evaluation) sin
necesidad de definir explicitamente las clases que implementan los interfaces IEnumerable<T> e

IEnumerator<T> .
¢Por qué usar generacion perezosa de secuencias?

Imaginemos un escenario, cada dia mas comun, de big data, donde vamos a disponer de una gran cantidad de
datos a procesar y donde no es tan importante el tiempo de proceso. Si vamos a procesar estos datos en forma
de secuencia y los cargamos todos en una coleccion se nos pueden dar ciertos problemas en el proceso, como:

1. Nos quedamos sin memoria ya que hay demasiados datos y debamos realizar el proceso, cargando en
varias secuencias con todo lo que ello conlleva de complejidad final.

2. Los datos pueden cargar en memoria pero tenemos que solicitarlos a un determinado servicio en Internet
(endpoint). Sin embargo, son tantos datos que va a tardar mucho en mandarmelos todos a la vez, ademas
de que lo vamos a sobrecargar con nuestra peticion.

3. Derivado del anterior, no sabemos el tiempo que puede tardar el endpoint en generar cada dato y debemos
procesar la secuencia de forma asincrona. Esto es, el procesador estara atendiendo a otras tareas mientras
se genera cada dato y en el momento que se genere un dato lo procesa en la secuencia.

4. Tenemos un stream a un fichero en disco con Terabytes (TB) de informacion a tratar y queremos
aprovechar las funcionalidades de las secuencias para hacerlo.

5. Necesitemos hacer un busqueda en una gran coleccion de objetos, de los que solo vamos a necesitar unos
pocos hasta encontrar lo que buscabamos. Sin embargo, hemos tenido que cargar previamente todos en la
coleccién para realizar la busqueda.

38/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

https://es.wikipedia.org/wiki/Generador_(inform%C3%A1tica)
https://learn.microsoft.com/es-es/dotnet/csharp/language-reference/statements/yield
https://es.wikipedia.org/wiki/Macrodatos

En estos casos es mejor ir generando los elementos de la secuencia, conforme los necesitemos para su
proceso y no todos a la vez como sucederia al cargarlos en una coleccion.

Como puedes ver en el cuadro resumen, si vamos a usar la abstraccion IEnumerable<T> €S mejor usar un
generador con yield en lugar de crear una coleccion intermedia como una List<T> para obtener la

secuencia.

IEnumerable<T> obtenido a

. una coleccion (List) un generador (yield)
partir de ...
Carga de datos Todo a la vez (Eager) Uno a uno (Lazy)
_ . Constante (solo un
Consumo de RAM Proporcional al tamafo total
elemento)
. L) Instantaneo (entrega el
Tiempo de inicio Lento (debe llenar la lista)]
primero)
Al convertirse en IEnumerable<T>)
. ,) o Debo iterar
Acceso aleatorio pierde la indexacion directa y debo

.) secuencialmente
iterar secuencialmente

39/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

Uso de yield en CSharp

En C# yield ira seguido de las clausulas return O break .

yield return <expression>;

yield break;

Vamos a ver a través de un ejemplo sencillo los conceptos vistos en el puntoa anterior. Para ello, supongamos

el siguiente cédigo simple donde NO usamos yield

Vamos a definir un método estatico denominado

IEnumerable<int> ObtieneMultiplosDeN(int n, int ini, int fin) que me devuelve una secuencia genérica

con los multiplos de un numero n en el rango [ini, fin) .

public static IEnumerable<int> ObtieneMultiplosDeN(Si ejECUtamOS el programa prinCipaI y
int n, int ini, int fin) vemos la salida por la consola, comprobado

{ que hemos generado todos los multiplos

List<int> multimplos = []; .
en el rango dado. Para el rango del ejemplo

for (int i = ini; i < fin; i++) son 8 pero podria ser un nimero muy
{ elevado y que ademas deberemos tener
if (i %n ==0) . .
; en un lista en memoria.
Console.WriteLine($"Obtenido {i}"); obtenido 320
multimplos.Add(i); obtenido 322
} Obtenido 324
} Obtenido 326

Obtenido 328

Obtenido 330
Obtenido 332
Obtenido 334
} E1 4to multiplo es 326

return multimplos;

public static void Main()

{
int cuartoMultObt = ObtieneMultiplosDeN(2, 320, 335).Skip(3).First();

Console.WriteLine($"E1 4to multiplo es {cuartoMultObt}");
Al generar la secuencia con una coleccion intermedia, hemos tenido que generar todos los multiplos y

almacenarlos en memoria haciendo un Unico return al final del método.

Vamos ahota a reimplementar el cédigo de nuestro método y ahora Si usaremos yield ...

40/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/assets/ejemplos/ienumerable_multiplos_con_list_ejemplo.cs
file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/assets/ejemplos/ienumerable_multiplos_con_yield_ejemplo.cs

static IEnumerable<int> ObtieneMultiplosDeN(int n, int ini,

{
for (int i = ini; i < fin; i++)
{
if (i % n == 0)
{
Console.WritelLine($"Producido {i}");
yield return ij;
¥
}
¥

static void Main()

int fin)

{
int cuartoMultObt = ObtieneMultiplosDeN(2, 320, 335).Skip(3).First();
Console.WriteLine($"E1l 4to multiplo es {cuartoMultObt}");
¥
¢) Importante

Fijate que al hacer un yield return dato; C# lo interpretara como que el método retorna una secuencia

IEnumerable<TipoDato> , esto es, la abstraccion de una secuencia iterable.

El flujo de ejecucion frente al anterior

seria....

1.

Linea 15 : Llamamos al métodos y la
pasamos el control de ejecucion.

Main

2. Lineas 8 : Obtenemos el siguiente valor __4p-int cuartoMultObt = ObtieneMultiplosDeN(2, 320, 335) -.
de la secuencia y retornamos el control -Ekirig:) ,
H .First(); /
ala 1linea 15 en ella si procesara’ el :’ Console.WriteLine($"El 4to multiplo es {cuartoMultObt}"); /
1 /I
. . | g
elemento de la secuencio y si \ Dovsenvedl /Al iterar el siguiente
. \ : . rimera /" elemento de la
necesitamos otro cuando llamemos al EZTZZ'SL Lae :iiraacwn lamada /" cecuencia. vuelve el
it.MoveNext() del iterador / control después del yiled
. N ObtieneMultiplosDeN ~ /
(IEnumerator) proporcionado por la /
. , for_(int i = ini; i < fin; i++)
secuencia devuelta, se volvera a pasar AN /
. .z A == ///
el control de ejecucion a la linea 9 '{f (‘\/i’\” o /
; \\\ Console.Writekine($"Producido {i}");
para que el algoritmo me vuelva a “~=—-yield retum ¢’
generar otro elemento de la secuencia) } <«
de llegar al yield return i; y de no
ser asi porque ha acabado el for
entonces el it.MoveNext() devolvera
false .
41/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

Si ejecutamos el programa y comprobamos
el log de salida, veremos que hemos

generado solo los multiplos hasta el 4 en Producido 320
Producido 322
el rango dado, en lugar de todos como producido 324

antes. Esto sera asi independientemente del Producido 326

, E1 4to multiplo es 326
rango que le pasemos al método para

obtener los multiplos.

Bien ya hemos visto como funciona yield y hemos conseguido que un método devuelva una secuencia
perezosa en forma de IEnumerable<T> sin necesidad de definir las clases que implementan los interfaces del
patron iterador. Pero, ¢ Como podriamos implementar 1enumerable<T> en una clase propia usando yield ?

Veamoslo a través de una clase que no es una coleccion propiamente dicha pero que contiene una serie de
datos que nos interesa recorrer de forma secuencial. Por ejemplo, una clase que represente una direcciéon
IPv4Address COMO por ejemplo 192.168.1.1 y que contenga los 4 bytes que la componen.

Definimos las clase como un record class ('value object') con 4 propiedades de tipo byte que representan
cada uno de los octetos de la direccion IP. Ademas, implementamos la interfaz 1Enumerable<byte> para poder
iterar secuencialmente los bytes que componen la direccion IP.

¢) Importante

En este caso los diferentes yield return de los bytes los implementamos en el método GetEnumerator()
y en lugar de generarnos un IEnumerable<byte> , NOos va a devolver un iterador IEnumerator<byte> que es
el que nos permitira recorrer la secuencia de bytes de forma perezosa.

Puedes descargar el cdédigo completo de este ejemplo desde este enlace.

public record class IPv4Address(byte Bytel, byte Byte2, byte Byte3, byte Byte4) : IEnumerable<byte>
{

public IEnumerator<byte> GetEnumerator()

{
yield return Bytel;

yield return Byte2;
yield return Byte3;
yield return Byte4;

System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() => GetEnumerator();

42/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/assets/ejemplos/implementando_ienumerable_en_ipv4_ejemplo.cs

public IPv4Address(string ip)
: this(
byte.Parse(ip.Split('.')[@]), byte.Parse(ip.Split('."')[1]),
byte.Parse(ip.Split('."')[2]), byte.Parse(ip.Split('."')[3]))
{1}

public override string ToString() => $"{Bytel}.{Byte2}.{Byte3}.{Byte4}";

public string ToBinaryString()

{
StringBuilder ipBinario = new();
foreach (byte b in this)
ipBinario.Append($"{b:b8}.");
return ipBinario.ToString().TrimEnd('.");
}

Si ejecutamos el siguiente programa principal de test. Deberia mostrar por consola:

IPl: 192.168.1.1 11000000.10101000.00000001.00000001

Mascara: 255.255.255.0 111111311.11111111.11111111.00000000

class Program

{
static void Main()
{
IPv4Address ip = new(192, 168, 1, 1);
IPv4Address mascara = new("255.255.255.0");
Console.WriteLine($" IP1: {ip,-15} {ip.ToBinaryString()}");
Console.WriteLine($"Mascara: {mascara,-15} {mascara.ToBinaryString()}");
¥
}

43/44 Programacién 1° DAM Unidad 19 IES Doctor Balmis

«” Ampliacién opcional:

¢, Serias capaz de interpretar los conceptos del uso del patrén iterador y la generacion perezosa de
secuencias con yield en otros lenguajes de programacion como JavaScript, Kotlin o Python a través
de la conversion del ejemplo sencillo propuesto en C#?

Ejemplo C#: Equivalente en JavaScript:

static IEnumerable<int> Datos() function* datos() {
{ yield 23;

yield return 23; yield 56;

yield return 56; yield 66;

yield return 66; yield 94;

yield return 94; }
¥

const it = datos();

var it = Datos().GetEnumerator(); while (!(current = it.next()).done) {
while (it.MoveNext()) console.log(current.value);
{ }

Console.WriteLine(it.Current);
} // Recorriendo la secuencia con for...of
for (const valor of datos()) {

// Recorriendo la secuencia con foreach console.log(valor);
foreach (int valor in Datos()) }
{
Console.WritelLine(valor);
¥
Equivalente en Kotlin: Equivalente en Python:
fun datos(): Sequence<Int> = sequence { def datos():
yield(23) yield 23
yield(56) yield 56
yield(66) yield 66
yield(94) yield 94
¥
it = datos()
fun main() { while True:
val it = datos().iterator() try:
while (it.hasNext()) { current = next(it)
val current = it.next() print(current)
println(current) except StopIteration:
} break
// Recorriendo la secuencia con for # Recorriendo la secuencia con for
for (valor in datos()) { for valor in datos():
println(valor) print(valor)
¥
}

44/44 Programacion 1° DAM Unidad 19 IES Doctor Balmis

