
Unidad 19
Descargar estos apunte en pdf o html

Índice
Índice
Colecciones

Introducción
Lista simple List<T>

Crear una lista
Añadir elementos List<T>
Acceder y modificar elementos List<T>
Eliminar elementos List<T>
Ordenar elementos List<T>
Buscar lineal elementos List<T>
Buscar binaria elementos List<T>

Tablas Hash, Mapas o Diccionarios
Crear e inicializar un Diccionario
Añadir y modificar elementos Dictionary<K, V>
Borrar elementos Dictionary<K, V>
Recorriendo elementos en un Dictionary<K, V>
Profundizando en el uso de los diccionarios

Usando tipos propios como claves
Lista doblemente enlazada o vinculada

Tipo nodo doblemente enlazado LinkedListNode<T>
Tipo lista doblemente enlazada LinkedList<T>

Añadir elementos al principio con AddFirst
Añadir elementos al final con AddLast
Añadir o insertar antes o después de un nodo
Borrar elementos con Remove

Recorriendo una LinkedList<T>
Transformando LinkedList<T> en otras colecciones
List vs LinkedList

Pilas (Stacks) y Colas (Queues)
Las colas en CSharp con (Queue<T>)
Las pilas en CSharp con (Stack<T>)

El patrón iterador
Interfaz IEnumerable<T>

Operaciones y uso básico de la abstracción IEnumerable<T>

1/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/u19_poo_colecciones.pdf
file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/u19_poo_colecciones.html

Interfaz IEnumerator<T>
Uso de el patrón iterador
Implementando IEnumerable<T> en nuestras colecciones o clases

Concepto de generación perezosa de secuencias con yield
Uso de yield en CSharp

2/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Colecciones

Introducción
Uno de los casos más comunes de usu de tipos genéricos o parametrizados, son el de las colecciones. Donde
se nos pide que implementemos una colección de objetos de un tipo concreto, pero las operaciones de añadir,
eliminar, buscar, etc. son idénticas independientemente del tipo de objeto que se almacene en la colección. Por
esta razón, C# utilizará el mecanismo de clases parametrizadas o clases genéricas para poder solucionar
este problema.

Una colección es un tipo de dato cuyos objetos almacenan otros objetos. Un ejemplo típico son las tablas,
aunque en la BCL se incluyen muchas otras clases de colecciones que iremos viendo a lo largo de este tema.
En las versiones recientes de C# las podemos encontrar en System.Collections.Generic.

Aunque las colecciones predefinidas incluidas en la BCL disponen de miembros propios con los que
manipularlas, todas incluyen al menos los miembros de ICollection<T> . En realidad la interfaz ICollection<T>
hereda de:

1. La interfaz IEnumerable<T> que permite que sean recorridas con la instrucción foreach usando el patrón
iterador.

2. La interfaz IClonable , formada por un único método object Clone() que devuelve una copia del objeto
sobre el que se aplica.

A lo largo del tema veremos que hay muchas colecciones parecidas, donde la única diferencia es la
'eficiencia' de un cierto tipo de operaciones sobre otras. Por eso, deberemos escoger cuidadosamente el
tipo de colección dependiendo de las casuísticas que se nos puedan dar en nuestro programa.

Con esto en mente, veamos algunas de las colecciones más utilizadas en C# y cuando utilizarlas.

Lista simple List<T>
Ya hemos hablado de ellas y las venimos usando desde la unidad 14 donde vimos las relaciones todo-parte.
Recordemos que se implementan a través del tipo List<T> , que son equivalentes a los arrays. Esto es,
internamente se almacenan como un array, y su tamaño crecerá automáticamente cuando se añadan más
elementos de los que puede almacenar el array interno. Pero estos cambios de tamaño estarán optimizados
para que no se realicen con demasiada frecuencia y serán transparentes para el usuario.

por esta razón, permitirá accesos y modificaciones eficientes a través del operador [] y un índice entero.
Sin embargo, añadir y borrar elementos puede ser más costoso. Recordemos por encima su uso...

3/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.collections.generic
https://es.wikipedia.org/wiki/Iterador_(patr%C3%B3n_de_dise%C3%B1o)
https://es.wikipedia.org/wiki/Iterador_(patr%C3%B3n_de_dise%C3%B1o)

Crear una lista

List<int> numeros1 = []; // Lista vacía de enteros

List<int> numeros2 = [1, 2, 3, 4, 5]; // Lista de enteros con 5 elementos

List<int> numeros3 = [..numeros1, ..numeros2]; // Lista de enteros con los elementos de numeros1 y numeros2

Añadir elementos List<T>

numeros1.Add(6); // Añade el elemento 6 al final de la lista

numeros1.AddRange([7, 8]); // Añade los elementos 7 y 8 al final de la lista

numeros1.Insert(0, 5); // Inserta el elemento 5 en la posición 0

numeros1.InsertRange(0, [1,2,3,4]); // Inserta los elementos 1,2,3 y 4 en la posición 0

// numeros1 ahora es [1,2,3,4,5,6,7,8]

Acceder y modificar elementos List<T>

int primero = numeros1[0]; // primero es 1

numeros1[0] = 10; // Modifica el primer elemento a 10

// numeros1 ahora es [10,2,3,4,5,6,7,8]

Eliminar elementos List<T>

numeros1.Remove(10); // Elimina el elemento 10

numeros1.RemoveAt(0); // Elimina el elemento en la posición 0

numeros1.RemoveRange(0, 2); // Elimina 2 elementos a partir de la posición 0

// numeros1 ahora es [3,4,5,6,7,8]

Ordenar elementos List<T>

Ya hemos visto en unidades anteriores y cuando explicamos los interfaces que podemos ordenarlas con el
método Sort() . Si el tipo de dato almacenado implementa la interfaz IComparable<T> (como los tipos
numéricos y cadenas) se ordenarán de forma natural.

List<string> nombres = ["Juan", "Pedro", "Luis", "Ana"];

nombres.Sort();

Pero,... ¿Qué sucede si el tipo de dato es una clase que no hemos definido nosotros o no podemos modificar
porque está en una librería y por tanto no podemos implementar la interfaz IComparable<T> ?

En este caso, podemos usar el patrón 'Strategy' pasándole al método Sort() un objeto que implemente la
interfaz IComparer<T> . Esta interfaz define el método int Compare(T x, T y) que devuelve un valor negativo si
 x < y , cero si son iguales y un valor positivo si x > y .

Ejemplo:

4/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Supongamos que tenemos la siguiente clase Empleado que no implementa la interfaz IComparable<T> y la
cual no podemos modificar:

public record Empleado(string Nombre, double Sueldo);

Si ejecutamos el siguiente código:

public static void Main()

{

 List<Empleado> empleados =

 [

 new(Nombre: "Manuel", Sueldo: 2000),

 new(Nombre: "Mónica", Sueldo: 2800),

 new(Nombre: "Francisco", Sueldo: 2400)

];

 empleados.Sort();

 Console.WriteLine(string.Join("\n", empleados));

}

❌ Obtendremos un error en tiempo de ejecución:

System.InvalidOperationException: 'Failed to compare two elements in the array.'

Ahora implementamos la clase OrdenaPorSueldo que implementa la interfaz IComparer<Empleado> y la
usamos para ordenar la lista de empleados por sueldo:

public class ComparaEmpleadoPorSueldo : IComparer<Empleado>

{

 public int Compare(Empleado? x, Empleado? y) => (x, y) switch

 {

 (null, null) => 0,

 (null, _) => -1,

 (_, null) => 1,

 _ => x.Sueldo.CompareTo(y.Sueldo)

 };

}

Ahora si ejecutamos el siguiente código...

empleados.Sort(new ComparaEmpleadoPorSueldo());

✅ Obtendremos la lista de empleados ordenada por sueldo.

5/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Buscar lineal elementos List<T>

 Contains(T item) : nos permite saber si un elemento está en la lista haciendo una búsqueda lineal o
secuencial. Solo deberíamos usarla si:

1. Es un tipo de dato simple como un número o una cadena.
2. Es una un record class o record struct .
3. Es una clase que hemos definido nosotros y hemos implementado la interfaz IEquatable<T>
4. Es una clase que hemos definido nosotros y hemos sobrescrito los métodos Equals(object? obj) y

 GetHashCode() .

En el siguiente ejemplo, la clase Empleado es un record class y por tanto podemos usar el método
 Contains() para buscar un empleado en la lista:

public record Empleado(string Nombre, double Sueldo);

empleados.Contains(new (Nombre: "Carmen", Sueldo: 2800));

Pero..., ¿Qué sucede si no podemos modificar la clase Empleado es una clase con estado, no tiene
implementada la interfaz IEquatable<T> y no hemos sobrescrito los métodos Equals(object? obj) y
 GetHashCode() ?

public class Empleado

{

 public string Id {get;}

 public string Nombre {get;}

 public double Sueldo {get;}

 public Empleado(

 string id,

 string nombre,

 double sueldo)

 {

 Id = id;

 Nombre = nombre;

 Sueldo = sueldo;

 }

}

Usaremos el patrón 'Strategy' pasándole al método Contains() un objeto
que implemente la interfaz IEqualityComparer<T> como por ejemplo:

public class IgualdadEmpleadosPorId: IEqualityComparer<Empleado>

{

 public bool Equals(Empleado? x, Empleado? y) => (x, y) switch

 {

 (null, null) => true,

 (null, _) => false,

 (_, null) => false,

 _ => x.Id == y.Id // Compara por el Id

 };

 public int GetHashCode(Empleado obj) => obj.Id.GetHashCode();

}

Nota

Es importante destacar que más adelante en el curso, cuando veamos programación funcional,
veremos que en C# las listas implementan muchos otros métodos de extensión para buscar, filtrar,
transformar, etc. como Find() , FindAll() , Where() , Select() , etc y que de momento no podemos
usar.



6/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Ahora el siguiente programa principal funcionaria correctamente...

public static void Main()

{

 List<Empleado> empleados =

 [

 new(id: "001", nombre: "Manuel", sueldo: 2000),

 new(id: "002", nombre: "Mónica", sueldo: 2800),

 new(id: "003", nombre: "Francisco", sueldo: 2400)

];

 bool encontrado = empleados.Contains(

 value: new("002", "Mónica", 2800),

 comparer: new IgualdadEmpleadosPorId());

}

 IndexOf(T item) : Si queremos encontrar un elemento por posición. El esquema de pasar una clase que
implemente la estrategia de búsqueda no sería posible. Deberíamos poder modificar el tipo T para que
implemente EqualityComparer<T> o debería ya implementarlo. Por lo que no es un método tan flexible como
 Contains(T item) .

Buscar binaria elementos List<T>

 BinarySearch(T item) : Nos devolverá el índice del elemento buscado si lo encuentra o un valor negativo si
no lo encuentra. Para ello usará una búsqueda binaria como su nombre indica, pero solo funcionará si la
lista está ordenada y el tipo de dato almacenado implementa la interfaz IComparable<T> o le pasamos un
objeto que implemente la interfaz IComparer<T> al método BinarySearch(T item, IComparer<T> comparer) como
sucedió con el método Sort() . Por tanto, deberemos usarlo en combinación con este último método. Por
ejemplo, si partimos del ejemplo de la clase Empleado que no implementa la interfaz IComparable<T> y no
podemos modificarla, podríamos ordenas y buscar un empleado por su Id de la siguiente forma:

public class ComparaEmpleado : IComparer<Empleado>

{

 public int Compare(Empleado? x, Empleado? y) => (x, y) switch

 {

 (null, null) => 0,

 (null, _) => -1,

 (_, null) => 1,

 _ => x.Id.CompareTo(y.Id)

 };

}

IComparer<Empleado> comparaEmpleados = new ComparaEmpleado();

empleados.Sort(comparaEmpleados);

bool encontrado = empleados.BinarySearch(

 item: new Empleado(id: "002", nombre: "Mónica", sueldo: 2800),

 comparer: comparaEmpleados) >= 0;

¿Qué ventaja nos aporta BinarySearch() frente a Contains() si tengo que ordenar antes?

7/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Pues que BinarySearch() tiene una complejidad logarítmica frente a la complejidad de lineal de
 Contains() . Por tanto, si vamos a realizar muchas búsquedas en una lista o esta tiene muchos elementos, es
mejor ordenarla y usar BinarySearch() .

Fíjate que el número de
operaciones que realiza
 BinarySearch() apenas crece al
aumentar el número de elementos,
mientras que el número de
operaciones de Contains() crece
linealmente.

Puedes descargar todo el código visto a lo largo del ejemplo del siguiente enlace busquedas_list.cs

8/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/assets/ejemplos/busquedas_list_ejemplo.cs

Tablas Hash, Mapas o Diccionarios
Las tablas hash, también conocidas como Mapas o Diccionarios, son otro tipo de colecciones, pero que tienen
un comportamiento particular.

Hasta ahora, todos los elementos de una colección se acceden a través de un índice numérico. Si tenemos
una lista, el primer elemento ocupa la posición 0, el siguiente la 1, etc. Si queremos acceder al cuarto elemento
de una lista llamada miLista , tenemos que poner miLista[3] , y si no sabemos la posición debemos usar un
bucle.

Para evitar el bucle y realizar un acceso directo podemos usar tablas hash. En este tipo de colecciones,
cada dato que agregamos a ella no tiene asociado un índice numérico, sino un objeto clave que lo identifica. De
esta manera, si conocemos la clave del dato, podemos acceder directamente a sus datos sin tener que recorrer
toda la lista.

Por jemplo, imaginemos que queremos guardar una serie de personas en una tabla hash, donde la clave sea su
DNI (un string) y el valor un objeto de tipo Persona que contenga su nombre y edad.

class Persona

{

 public string Nombre { get; }

 public int Edad { get; private set; }

 public Persona(

 string nombre, int edad)

 {

 Nombre = nombre;

 Edad = edad;

 }

 public override string ToString()

 => $"{Nombre} {Edad} años";

}

Clave (string) Valor (Persona)

"11224441K" { Nombre = "Pepe" Edad = 30 }

"11335499M" { Nombre = "María" Edad = 22 }

"12345678O" { Nombre = "Juan" Edad = 33 }

"13898743Y" { Nombre = "Sara" Edad = 27 }

Si nos fijamos, el funcionamiento es similar a un diccionario real. Si quiero consultar el significado de una
palabra y sé cuál es esa palabra, voy a la página donde está y la consulto, sin tener que ir palabra a palabra
comprobando si es esa la que busco.

Como ya hemos comentado, las tablas hash en C# se manejan con el TAD Dictionary<K, V> y
SortedDictionary<K, V>. La diferencia entre ambos es que el primero no garantiza ningún orden en los

Importante

Si quiero consultar los datos de María, buscaré por su clave que es su dni. Fíjate que la clave puede ser
cualquier tipo de dato. En este caso es un string , pero podrían ser enteros u otro tipo cualquiera,
siempre que nos aseguremos que no haya dos claves repetidas.



9/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/es-es/dotnet/api/system.collections.generic.sorteddictionary-2

elementos, mientras que el segundo los mantiene ordenados por la clave. Se pierde un poco más de tiempo
insertando elementos, pero se gana en rapidez en las búsquedas porque todas las búsquedas por clave
serán binarias.

Crear e inicializar un Diccionario

Es importante tener en cuenta que los elementos de esta colección serán objetos del tipo
 KeyValuePair<TClave, TValor> que guardará una clave y su valor. No obstante, muy raramente los vamos a
trabajar a través de él.

Podemos crear un diccionario en C# de la siguiente formas...

Dictionary<TClave, TValor> tabla = new Dictionary<TClave, TValor>();

Dictionary<TClave, TValor> tabla = [];

Podemos inicializarlos por extensión de la siguiente formas...

Dictionary<TClave, TValor> tabla =

new Dictionary<TClave, TValor>()

{

 {clave1, valor1},

 {clave2, valor2},

 ...

};

Dictionary<TClave, TValor> tabla = new()

{

 [clave1] = valor1,

 [clave2] = valor2,

 ...

};

Dictionary<string, Persona> personas

= new Dictionary<string, Persona>()

{

 {"11224441K", new Persona("Pepe", 30)},

 {"11335499M", new Persona("María", 22)},

 {"12345678O", new Persona("Juan", 33)},

 {"13898743Y", new Persona("Sara", 27)}

};

Dictionary<string, Persona> personas = new()

{

 ["11224441K"] = new ("Pepe", 30),

 ["11335499M"] = new ("María", 22),

 ["12345678O"] = new ("Juan", 33),

 ["13898743Y"] = new ("Sara", 27)

};

La forma en la que usamos el operador [] para inicializar se da en versiones más modernas de C# y es un
poco más clara.

Añadir y modificar elementos Dictionary<K, V>

Se puede realizar de varias formas, una de ellas es usar el método Add , indicando la clave que queremos
asociar a cada elemento y el elemento en sí.

Cuidado

La operación Add generará una excepción si añadimos una clave ya existente.



10/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Si por ejemplo si queremos ir leyendo datos de personas desde la consola y guardándolas en el diccionario
propuesto anteriormente, podríamos hacerlo de la siguiente forma:

public static Dictionary<string, Persona> LeeDatos()

{

 Dictionary<string, Persona> personas = [];

 Console.Write("Introduce los datos de las personas: ");

 int numeroPersonas = int.Parse(Console.ReadLine()!);

 for (int i = 0; i < numeroPersonas; i++)

 {

 Console.Write($"Dni {i + 1}: ");

 string dni = Console.ReadLine()!;

 Console.Write($"Nombre {i + 1}: ");

 string nombre = Console.ReadLine()!;

 Console.Write($"Edad {i + 1}: ");

 int edad = int.Parse(Console.ReadLine()!);

 // Añadir con el método add.

 personas.Add(dni, new(nombre, edad));

 }

 return personas;

}

El valor de un dato almacenado en el diccionario, también se puede acceder y modificar a través de su clave
usando el operador [] . Por ejemplo, si queremos modificar el sueldo de un empleado con Id "66668743G"
haríamos lo siguiente:

Dictionary<string, Persona> personas = LeeDatos();

personas["66668743G"] = new Persona("Susana", 27);

En este caso, si la clave "66668743G" no existe, se añadirá un nuevo elemento al diccionario. Básicamente
podemos resumir diciendo que funciona igual que el Add solo que si la clave existe modificará su valor
asociado sin generar una excepción.

Borrar elementos Dictionary<K, V>

Usaremos el método Remove con la clave del valor que queremos eliminar como argumento. Si no existe la
clave obtendremos una excepción.

personas.Remove("66668743G");

Cuidado

Además, como en el caso del borrado, si intentamos acceder a un valor del Dictionary del que no existe
la clave el sistema lanzará una excepción. Por lo que es buena práctica utilizar el método
 ContainsKey(clave) , para comprobar si existe la clave antes de acceder al valor a través de ella.



11/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Recorriendo elementos en un Dictionary<K, V>

Los diccionarios disponen de propiedades para obtener claves y valores por separado. Estas son las
propiedades Keys y Values respectivamente. Las cuales, me devolverán una secuencia que implementa
 IEnumerable<T> y que por ende puedo transformar a algún tipo de colección de las que conocemos ya sea un
array o una lista como hemos visto a lo largo del tema.

List<string> litaDnis = [..personas.Keys];

Persona[] arrayPersonas = [..personas.Values];

Diccionarios no es lo común, ya que su acceso es mediante clave. Aunque se puede realizar el acceso a todos
los elementos usando un foreach .

Por ejemplo, este bucle saca las edades de todas las personas:

foreach (string dni in personas.Keys)

 Console.WriteLine(personas[dni].Edad);

Realmente si tenemos en cuenta que nuestro diccionario realmente es una secuencia de valores del tipo
 KeyValuePair<string, Persona> . Podríamos recorrer sus valores también de la siguiente forma...

foreach (KeyValuePair<string, Persona> par in personas)

 Console.WriteLine($"{par.Key}: {par.Value}");

Sin embargo, esta forma es menos habitual y en C# podemos usar tuplas para descomponer el par clave-valor
en dos variables independientes de forma más 'natural' y legible...

foreach ((string dni, Persona persona) in personas)

 Console.WriteLine($"{dni}: {persona}");

Nota

Es posible que el orden de salida no sea el mismo que cuando se introdujeron los datos, ya que las tablas
hash tienen un mecanismo de ordenación diferente.



12/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Ejemplo:

Veamos un ejemplo sencillo donde se ponen en práctica algunas de las operaciones básicas de un
diccionario vistas hasta ahora.

Dictionary<string, Persona> personas = new()

{

 ["11224441K"] = new("Pepe", 30),

 ["11335499M"] = new("María", 22),

 ["12345678O"] = new("Juan", 33),

 ["13898743Y"] = new("Sara", 27)

};

Console.WriteLine($"Los datos almacenados son:");

foreach ((string dni, Persona persona) in personas)

 Console.WriteLine($"- {persona} y DNI {dni}");

Console.WriteLine("Introduce un DNI para borrar:");

string dniBuscado = Console.ReadLine()!;

string salida = personas.ContainsKey(dniBuscado)

 ? $"{personas[dniBuscado]}ha sido borrado"

 : $"No se ha encontrado el DNI {dniBuscado}";

personas.Remove(dniBuscado);

Console.WriteLine(salida);

Console.WriteLine($"Los DNIs almacenados son:");

Console.WriteLine($"- {string.Join("\n -", personas.Keys)}");

La salida del programa sería similar a la
siguiente:

Los datos almacenados son:

- Pepe 30 años y DNI 11224441K

- María 22 años y DNI 11335499M

- Juan 33 años y DNI 12345678O

- Sara 27 años y DNI 13898743Y

Introduce un DNI para borrar:

12345678O

Juan 33 años ha sido borrado

Los DNIs almacenados son:

- 11224441K

- 11335499M

- 13898743Y

Puedes descargar el código del ejemplo desde el siguiente enlace diccionario_dni_persona_ejemplo.cs

13/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/assets/ejemplos/diccionario_dni_persona_ejemplo.cs

🚀 Ampliación opcional:

Vamos a implementar el ejemplo anterior en otros lenguajes de programación como JavaScript y Kotlin y
así ver si sabemos encontrar las similitudes en la definición de esta colección y sus operaciones básicas en
otros lenguajes.

JavaScript (Node.js):

const personas = new Map([

 ["11224441K", new Persona("Pepe", 30)],

 ["11335499M", new Persona("María", 22)],

 ["12345678O", new Persona("Juan", 33)],

 ["13898743Y", new Persona("Sara", 27)]

]);

console.log("Los datos almacenados son:");

for (const [dni, persona] of personas) {

 console.log(`- ${persona.toString()} y DNI ${dni}`);

}

readline.question('\nIntroduce un DNI para borrar: ', (dniBuscado) => {

 let salida;

 if (personas.has(dniBuscado)) {

 const personaABorrar = personas.get(dniBuscado);

 salida = `${personaABorrar.toString()} ha sido borrado`;

 personas.delete(dniBuscado);

 } else {

 salida = `No se ha encontrado el DNI ${dniBuscado}`;

 }

 console.log(salida);

 console.log("\nLos DNIs almacenados son:");

 const dnisRestantes = Array.from(personas.keys()).join("\n- ");

 console.log(`- ${dnisRestantes}`);

 readline.close();

});

14/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Kotlin:

val personas = mutableMapOf(

 "11224441K" to Persona("Pepe", 30),

 "11335499M" to Persona("María", 22),

 "12345678O" to Persona("Juan", 33),

 "13898743Y" to Persona("Sara", 27)

)

println("Los datos almacenados son:")

for ((dni, persona) in personas) {

 println("- $persona y DNI $dni")

}

println("\nIntroduce un DNI para borrar:")

val dniBuscado = readln()

val personaABorrar = personas[dniBuscado]

val salida = if (personaABorrar != null) {

 "$personaABorrar ha sido borrado"

} else {

 "No se ha encontrado el DNI $dniBuscado"

}

personas.remove(dniBuscado)

println(salida)

println("\nLos DNIs almacenados son:")

println("- ${personas.keys.joinToString("\n- ")}")

15/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Profundizando en el uso de los diccionarios

Para entender alguna de las propiedades y métodos que implementa la clase Dictionary<K, V> deberemos
entender como funcionan los mismos internamente. Para ello, supongamos la tabla de pares clave-valor que
hemos puesto antes de ejemplo. Donde la clave era un string con el DNI y el valor un objeto de tipo Persona .

Una posible aproximación a como se organiza la información internamente podría ser el siguiente....

Claves

Tabla de
capacidad 1000

Registros
(Pares Clave-Valor)

"12345678O"

872

873

874

Hash%1000

"11224441K"

000

001Hash%1000

"13898743Y"

998

999

Hash%1000

"11335499M" Hash%1000

"11224441K" Nombre = "Pepe" Edad = 30

"11335499M" Nombre = "María" Edad = 22

"13898743Y" Nombre = "Sara" Edad = 27

"12345678O" Nombre = "Juan" Edad = 33

Si nos fijamos, internamente el diccionario guarda una tabla de n elementos de capacidad y esto es importante
para que funcionen de manera eficiente. De hecho si a priori conocemos cuantos elementos va a tener
diccionario podremos dimensionarla en el constructor. Por ejemplo, si queremos que tenga una capacidad de
1000 como en nuestro ejemplo podríamos construir el diccionario de la siguiente manara ...

Dictionary<string, Persona> personas = new (1000);

Internamente calcula el Hash de la clave. En C# el Hash es un valor numérico entero que se obtiene a través
del método GetHashCode() que cualquier objeto implemente por estar definido en la clase Object como virtual
y que por tanto podremos invalidar en nuestras definiciones de tipos.

Si consultamos como funciona la función de Hash por ejemplo en la Wikipedia podemos deducir que, para un
determinado estado de un objeto, esta me devuelve un valor numérico 'único'.

Pero... ¿Para que nos sirve calcular el Hash de la clave?. Si nos fijamos en el diagrama, lo que hace el
diccionario es calcular el módulo del Hash entre la capacidad de la tabla Hash % 1000 esto nos asegurará
obtener un resto entre 0 y 999 que son índices válidos para la tabla definida. Por tanto, podemos inferir que el
Hash me permitirá crear una correspondencia entre los objetos usados como clave (string en nuestro
caso) y un índice dónde guardar el valor asociado en la tabla, tal y como se muestra en la ilustración.

Pero... ¿Si la tabla tiene poca capacidad entonces, las posibilidades de que el resto de dividir el Hash de dos
claves por el tamaño me de el mismo índice es muy alta?. Efectivamente, por eso si nos fijamos en la ilustración
hay dos DNI que al dar el mismo índice se deben guardar en la misma posición, por ejemplo a través de una
lista enlazada. Una vez vamos a esa posición de la tabla deberemos buscar la clave en la lista. Es por esa

16/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.object.gethashcode
https://es.wikipedia.org/wiki/Funci%C3%B3n_hash

razón, que cada registro de la lista guarda pares de clave-valor y no únicamente el valor. Además, para saber
buscar la clave en la lista deberemos saber si dos claves son iguales y por ello los objetos que usemos como
clave deben implementar la interfaz IEquatable<T>. Ten en cuenta que no debes preocuparte por los tipos
básicos y los definidos en las BCL, puesto que IEquatable<T> está implementado en todos ellos.

Resumen

Podemos decir que para que un tipo pueda hacer de clave debe invalidar GetHashCode() y debe
implementar IEquatable<T> . Afortunadamente, no debemos preocuparnos porque los tipos básicos y
los definidos en las BCL cumplen estas condiciones.

Además, del funcionamiento descrito podemos entender los siguiente métodos de optimización y
rendimiento de los diccionarios ...

1. int EnsureCapacity(int capacity)
EnsureCapacity me permitirá definir el tamaño de la tabla interna del diccionario si tengo muchas
entradas evitando así que se repitan índices en las claves.

2. void TrimExcess()
TrimExcess si he realizado un Clear() o voy a tener pocos elementos en el diccionario me permitirá
reducir el tamaño de la tabla adecuándolo al número de entradas.



17/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.iequatable-1
https://docs.microsoft.com/es-es/dotnet/api/system.collections.generic.dictionary-2.ensurecapacity
https://docs.microsoft.com/es-es/dotnet/api/system.collections.generic.dictionary-2.trimexcess

Usando tipos propios como claves

Imaginemos que queremos definir un diccionario donde la clave ahora será la clase Persona que hemos
utilizado a lo largo del tema y el valor será una lista de cadenas con los nombres de las mascotas de esa
persona. La definición básica del tipo Persona para usarlo como clave sería la siguiente...

class Persona : IEquatable<Persona>

{

 public string Nombre { get; }

 public int Edad { get; private set; }

 public Persona(string nombre, int edad)

 {

 Nombre = nombre;

 Edad = edad;

 }

 // Es interesante que redefinamos el ToString para que represente el estado del

 // objeto mediante una cadena.

 public override string ToString() => $"{Nombre} {Edad} años";

 // Invalidamos GetHashCode() y una forma simple es usar la función

 // HashCode.Combine(...) para generar el hashcode a partir de los parámetros.

 public override int GetHashCode() => HashCode.Combine(Nombre, Edad);

 // Implementamos el interfaz, que nos obliga a implementar Equals y podemos

 // comparar fácilmente dos objetos, viendo si tienen el mismo Hash o no.

 public bool Equals(Persona? o)

 => o != null && Nombre == o.Nombre && Edad == o.Edad;

}

Analicemos la siguiente propuesta código de ejemplo comentado donde usamos la clase Persona que hemos
definido como clave...

// Definimos el diccionario donde la clave es una persona y el valor una lista de mascotas.

Dictionary<Persona, List<string>> mascotasXPersona = [];

// Creamos un objeto persona pepe y para ese objeto añadimos una lista vacía de mascotas.

Persona pepe = new("Pepe", 30);

mascotasXPersona.Add(pepe, []);

Cuidado

Comparar por HasCode en el Equals no sería una opción válida ya que según la longitud del Hash
existe la posibilidad de que objetos diferentes me devuelvan el el mismo Hash.



18/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

// Usamos la misma referencia al objeto pepe para acceder

// a su lista de mascotas y añadir dos nombres.

mascotasXPersona[pepe].Add("Snowball");

mascotasXPersona[pepe].Add("Velvet");

// Creamos un objeto persona de nombre María del que no nos guardamos la

// referencia y añadimos una lista inicializada en la definición con dos mascotas.

mascotasXPersona.Add(new("María", 22), ["Simba", "Bella"]);

// Añadimos una tercera mascota a María, pero volvemos a instanciar otro objeto

// Persona para María porque no nos guardamos la referencia como con pepe.

// No debería ser problema porque ambos deberían generar el mismo Hash y además

// sabemos comparar objetos persona con Equal.

mascotasXPersona[new("María", 22)].Add("Lucy");

// Mostramos la lista de mascotas por persona.

foreach (Persona p in mascotasXPersona.Keys)

 Console.WriteLine($"{p}: {string.Join(", ", mascotasXPersona[p])}");

Prueba a ejecutar este código y comprueba que
funciona correctamente. La salida debería ser similar
a la siguiente:

Pepe 30 años: Snowball, Velvet

María 22 años: Simba, Bella, Lucy

Prueba ahora a eliminar la invalidación de GetHashCode() de Persona y ver que sucede. Deberías obtener un
error al añadir la mascota Lucy a María porque no encontraría la clave en el diccionario.

Consejo

En este caso como persona no es una entidad al no tener un Id como pudiera ser un DNI. Podríamos
definir la clase Persona como un record y ya no tendremos que preocuparnos por implementar
 IEquatable<T> ni invalidar GetHashCode() ya que el compilador lo hará por nosotros basándose en los
parámetros del constructor. Por tanto, la definición de Persona quedaría mucho más simple...

record Persona (string Nombre, int Edad)

{

 public override string ToString() => $"{Nombre} {Edad} años";

}

Haz la prueba y comprueba que el código funciona igual.



19/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/assets/ejemplos/iequatable_en_clave_diccionario_ejemplo.cs

🎓 Caso de estudio:

Vamos su uso a través de un simple programa de ejemplo que realice un pequeño examen sobre las
capitales de la UE. Para ello, el programa preguntará 5 capitales. Puntuando con 2 puntos cada pregunta
acertada. Veamos una posible solución...

Dictionary<string, string> capitalesPorPais = new()

{

 ["España"] = "Madrid", // Par clave país, valor capital.

 ["Portugal"] = "Lisboa",

 ["Francia"] = "Paris",

 ["Irlanda"] = "Dublin"

};

// Aunque hemos definido por extensión. Podemos añadir elemetos a posteriori.

capitalesPorPais.Add("Belgica", "Bruselas");

capitalesPorPais["Alemania"] = "Berlin";

// Obtenemos una lista de claves indizable por un entero.

List<string> paises = [..capitalesPorPais.Keys];

// Lista donde almacenaré los países ya preguntados para no repetirnos.

List<string> paisesPreguntados = [];

const int NUMERO_PREGUNTAS = 5;

Random semilla = new();

int puntos = 0;

for (int i = 0; i < NUMERO_PREGUNTAS; i++)

{

 string paisPreguntado;

 // Buscamos un país que ún no hayamos preguntado.

 do

 {

 paisPreguntado = paises[semilla.Next(0, paises.Count)];

 } while (paisesPreguntados.Contains(paisPreguntado));

 paisesPreguntados.Add(paisPreguntado);

 Console.Write($"¿Cual es la capital de {paisPreguntado}? > ");

 string capitalRespondida = Console.ReadLine()!.ToUpper();

 bool respuestaCorrecta = capitalRespondida == capitalesPorPais[paisPreguntado].ToUpper();

 if (respuestaCorrecta) puntos += 2;

 string mensaje = (respuestaCorrecta

 ? "Correcto !!"

 : $"Incorrecto !!\nLa respuesta es {capitalesPorPais[paisPreguntado]}.")

 + $"\nLlevas {puntos} puntos.\n";

 Console.WriteLine(mensaje);

}

Console.WriteLine($"Tu nota final es {puntos}.");

20/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/assets/ejemplos/juego_capitales_con_diccionario_ejemplo.cs

Lista doblemente enlazada o vinculada
Implementan el TAD (Tipo Abstracto de Datos) de programación clásico denominado: 'lista doblemente
enlazada'.

Este tipo está definido de forma análoga en ostros lenguajes como Java o Kotlin y es el tipo más adecuado, si
voy a necesitar hacer muchas inserciones y borrados pues tienen un coste O(1) sin en embargo, el acceso a
un elemento por índice es O(n) por lo que si necesito hacer muchas búsquedas por índice es mejor usar
una List<T> .

Tipo nodo doblemente enlazado LinkedListNode<T>

La clase LinkedListNode<T> representará un nodo de
la lista y contendrá tres propiedades principales:

1. Value : que contendrá el valor del nodo de tipo
 T .

2. Next : que contendrá una referencia al siguiente
nodo de la lista o NULL si es el último nodo.

3. Previous : que contendrá una referencia al nodo
anterior de la lista o NULL si es el primer nodo.

Representación de un nodo doblemente enlazado

LinkedListNode<T> nodo;

Nodo

T Value Next

nodo

Previous

Básicamente, cada nodo sabe cual es el siguiente y cual es el anterior y además contiene el valor o el dato que
queremos almacenar que podrá ser de cualquier tipo T ya sea valor o referencia.

Esta estructura, va a permitir que los datos no estén almacenados de forma contigua en memoria como en
el caso de los arrays o las listas, sino que cada nodo podrá estar en cualquier parte de la memoria y se
accederá a ellos a través de las referencias Next y Previous .

Si te fijas en la ilustración, el primer nodo tiene su
referencia Previous a NULL y el último nodo tiene su
referencia Next a NULL y los nodos no están
almacenados de forma contigua en memoria. Sino
que la referencia Next de cada nodo apunta a la
dirección de memoria del siguiente nodo y me
permitirá acceder a él de forma dinámica. Lo mismo
sucede con la referencia Previous que me permitirá
retroceder en la lista.

Representación de la vinculación del primer nodo con otro

Nodo

dato1

Nodo

dato2 NULL

nodo

NULL

La ventaja del doble enlace es que puedo recorrer la lista en ambos sentidos, desde el primero al último
nodo y viceversa.

21/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

https://es.wikipedia.org/wiki/Lista_doblemente_enlazada
https://es.wikipedia.org/wiki/Lista_doblemente_enlazada

Tipo lista doblemente enlazada LinkedList<T>

Representa la lista doblemente enlazada en sí misma y contendrá referencias al primer nodo a través de la
propiedad First y al último nodo de la lista a través de la propiedad Last . También tendrá una propiedad
 Count que me indicará el número de nodos que tiene la lista. Además, implementa la interfaz ICollection<T>
por lo que tiene las operaciones básicas de cualquier colección.

Si creamos una lista doblemente enlazada
vacía, las referencias First y Last
apuntarán a NULL y el contador Count
valdrá 0.

LinkedList<int> list = new ();

First NULL Last NULL

Count = 0list

Si inicializamos la lista con un solo
elemento, las referencias First y Last
apuntarán al mismo nodo y el contador
 Count valdrá 1.

LinkedList<int> list = new ([56]);

56 NULL

First LastCount = 1

NULLlist

Si inicializamos la lista con dos elementos,
la referencia First apuntará al primer nodo
y la referencia Last al segundo nodo. El
contador Count valdrá 2.

LinkedList<int> list = new ([56, 94]);

56 94 NULL

First LastCount = 2

NULLlist

Este proceso de mantener las referencias al primer y último nodo y la cuenta de nodos, se irá repitiendo a
medida que vayamos añadiendo o borrando nodos de la lista. Para ello dispondremos de diferentes métodos
que realizarán las operaciones necesarias para mantener la integridad de las referencias en la lista.

Añadir elementos al principio con AddFirst

Añadirá un nodo al principio o la 'cabeza' de la lista.

LinkedList<int> list = new ([56, 94]);

list.AddFirst(45);

45

56

1
2 94 NULL

First

3

Last

2'

Count = 3

NULL

n

list

Pero si la lista ya tenía nodos, se realizará un proceso por pasos como el descrito en la imagen:

22/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Paso 1: Se crea un nuevo nodo n con el valor a añadir y haremos que Next apunte al nodo que actualmente
es el primero de la lista (First).
Paso 2: Si la lista no estaba vacía, haremos que el nodo que actualmente es el primero de la lista (First)
tenga su referencia Previous apuntando al nuevo nodo n y si la lista estaba vacía, haremos que la referencia
 Last apunte al nuevo nodo n (Paso 2').
Paso 3: Finalmente, actualizaremos la referencia First para que apunte al nuevo nodo n y aumentaremos el
contador Count en 1.

Todo este proceso se realizará de forma transparente al usuario cuando llame al método list.AddFirst(45); .

LinkedList<int> list = new ([56, 94]);

LinkedListNode<int> n = new (45);

list.AddFirst(n);

También podremos crea nosotros mismos el nodo y pasarlo al
método AddFirst(LinkedListNode<T> node) . El proceso interno
será el mismo que en el caso anterior pero con el nodo ya
creado.

Añadir elementos al final con AddLast

Añadirá un nodo al final o la 'cola' de la lista.

LinkedList<int> list = new ([45, 56, 94]);

list.AddLast(78);

El proceso será análogo al de AddFirst pero en este caso
actualizaremos las referencias Last y Next de los nodos
implicados.

Añadir o insertar antes o después de un nodo

Podremos añadir un nuevo nodo antes o después de un nodo ya existente en la lista. Para ello usaremos los
métodos AddBefore(LinkedListNode<T> node, T value) y AddAfter(LinkedListNode<T> node, T value)
respectivamente.

En el ejemplo de código anterior. Buscaremos el nodo con el
valor 94 y si lo encontramos, añadiremos un nuevo nodo con el
valor 66 antes de ese nodo y otro con el valor 98 después de
ese nodo (fíjate que es como hacer un AddLast). Finalmente,
añadiremos un nuevo nodo con el valor 23 antes del primer
nodo de la lista, equivalente a hacer un AddFirst pero a
diferencia de este último, la lista no está vacía y por eso nos

Cuidado

Una vez añadido el nodo a la lista, pasará a 'ser de su propiedad' y se encargará de gestionarlo. Por
tanto, no debemos usar más la referencia al nodo que hemos pasado como argumento.
Si intentamos añadir el mismo nodo a otra lista o a la misma lista de nuevo, obtendremos una excepción.
Lo mismo sucederá si intentamos añadir un nodo que ya pertenece a otra lista.



23/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

LinkedList<int> list = new ([56, 94]);

LinkedListNode<int>? nodo94 = list.Find(94);

if (nodo94 != null)

{

 list.AddBefore(nodo94, 66);

 list.AddAfter(nodo94, 98);

}

list.AddBefore(list.First!, 23);

Console.WriteLine(string.Join(", ", list));

aseguramos de pasar el nodo primero con list.First!
(operador de supresión de null). El código mostrará por
consola ...

Mostrará por consola:

23, 56, 66, 94, 98

23 56 66 94 98 NULL

First LastCount = 5

NULLlist

Borrar elementos con Remove

Podremos borrar directamente el primero o el último nodo de la lista con los métodos RemoveFirst() y
 RemoveLast() respectivamente.

Además, como sucede con otras operaciones, tendremos la posibilidad de borrar un nodo a través de su valor o
a través de una referencia al nodo.

1. bool LinkedList<T>.Remove(T value) : Busca el primer nodo con el valor indicado y si lo encuentra lo borra
devolviendo true , en caso contrario devuelve false .

2. void LinkedList<T>.Remove(LinkedListNode<T> node) : Borra el nodo indicado a través de su referencia. Si el
nodo no pertenece a la lista se generará una excepción.

LinkedList<int> list = new([23, 56, 66, 94, 98]

LinkedListNode<int>? nodo66 = list.Find(66);

if (nodo66 != null)

 list.Remove(nodo66);

list.Remove(56);

list.RemoveFirst();

list.RemoveLast();

Console.WriteLine(string.Join(", ", list));

En el ejemplo de código anterior. Buscaremos el nodo con el
valor 66 y si lo encontramos, lo borraremos a través de su
referencia. A continuación, borraremos el nodo con el valor 56
a través de su valor. Finalmente, borraremos el primer y el
último nodo de la lista.
El código mostrará por consola ...

94

Como vemos tras todos los borrados, únicamente queda el nodo con el valor 94 en la lista y las referencias
 First y Last apuntarán a ese nodo.

Recorriendo una LinkedList<T>

No podremos usar un índice entero para acceder a los elementos de la lista y por tanto el operador [] no
está definido para este tipo. Esto es debido a que el acceso por índice es costoso en este tipo de listas ya que
deberíamos recorrer la lista desde el primer nodo hasta llegar al índice indicado y esto tiene un coste O(n) .

24/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Podremos recorrer los datos con un foreach de la siguiente manera:

LinkedList<int> list = new([23, 56, 66, 94, 98]);

foreach (int valor in list)

 Console.WriteLine(valor);

También podremos recorrerla en ambos sentidos con un nodo a modo de iterador.

LinkedList<int> list = new([23, 56, 66, 94, 98]);

for (LinkedListNode<int>? it = list.First; it != null; it = it.Next)

 Console.WriteLine(it.Value);

// Recorrido inverso.

for (LinkedListNode<int>? it = list.Last; it != null; it = it.Previous)

 Console.WriteLine(it.Value);

Transformando LinkedList<T> en otras colecciones

Ya hemos visto que el constructor me permite crear una lista a partir de una array u otra colección. Pero, ¿Cómo
transformamos de nuevo la lista en un array si hemos terminado de por ejemplo de hacer inserciones y
borrados?

En C# es tan sencillo como usar expresiones de colección con el operador de extensión [..] .

LinkedList<int> linkedList = new([23, 56, 66, 94, 98]);

int[] array = [.. linkedList];

List<int> list = [.. linkedList];

List vs LinkedList

Aunque al principio del tema hemos comentado que las listas enlazadas son más apropiadas para realizar
muchas inserciones y borrados, en la práctica las diferencias de rendimiento no son tan evidentes. Es por
ello que salvo Java, C#. Otros lenguajes como Python, JavaScript o Kotlin no disponen de este tipo de listas
en sus librerías estándar.

¿Por qué en la práctica en un 95% de los casos es mejor y más eficiente usar List<T> en lugar de
 LinkedList<T> ?

1. El castigo del "Cache Miss": Las listas enlazadas no almacenan los datos de forma contigua en memoria.
Por tanto, el procesador no puede aprovechar la localidad espacial de los datos y se producen más fallos
de caché (cache misses) al acceder a los nodos, lo que ralentiza el rendimiento.

2. Mayor sobrecarga de memoria "Overhead": Las listas enlazadas son "despilfarradoras" con la memoria.
Ya que por ejemplo, en un List<int> solo guardas los enteros. Sin embargo, en una LinkedList<int> por
cada entero guardas...

El valor entero (4 bytes).

25/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Un puntero al nodo siguiente (8 bytes).
Un puntero al nodo anterior (8 bytes).
Referencia al objeto LinkedList al que pertenece el nodo (8 bytes).
Metadatos del objeto Nodo que contiene los datos (8 bytes).

Con todo ello, una simple lista doblemente enlazada consume aproximadamente 5 o 6 veces la
memoria que una lista normal.

3. Operaciones de inserción y borrado no tan rápidas: La teoría dice que insertar en una LinkedList es
 O(1) (tiempo constante), mientras que en una List es O(n) porque hay que desplazar elementos. Sin
embargo:

Salvo en los extremos, para insertar en una lista enlazada, primero tienes que encontrar el nodo. Esa
búsqueda es O(n) .
En la práctica, añadir a una listas es bastante rápido gracias a que los procesadores están
optimizados para mover bloques de memoria contiguos. Sobre todo si la lista no es muy grande.
Crear un nodo y gestionar las referencias en una lista enlazada también tiene su coste temporal

Entonces..., ¿Cuándo usar LinkedList<T> en lugar de List<T> ?

1. Inserciones y borrados muy frecuentes: Si la aplicación requiere muchas inserciones y borrados en
posiciones arbitrarias de la lista y el acceso por índice es inexistente.

2. Sistemas Operativos: Para gestionar colas de procesos donde el tamaño cambia constantemente y no
puedes permitirte "re-alojar" grandes bloques de memoria.

3. Implementación de otras estructuras: Son la base para crear Queues (Colas) o Stacks (Pilas) eficientes.
4. Sistemas con memoria muy fragmentada: Donde no hay espacio para un bloque contiguo grande, pero

sí para muchos trozos pequeños.
5. Almacenamos un 'value type' muy grande: Si el valor que almacenamos es un record struct muy

grande, puede ser más eficiente usar una LinkedList para evitar copiar grandes bloques de memoria al
redimensionar una List .

Resumen

Operación List<T> LinkedList<T> Ganador

Acceso por índice (Instantáneo) (Debe recorrer) List

Añadir al final Empate

Insertar/Borrar en el medio (Desplaza datos) (Solo referencias) * LinkedList

Uso de Memoria Bajo / Eficiente Alto (Punteros extra) List

Caché del CPU Excelente Pobre List

* Asumiendo que ya tienes el nodo localizado*



O(1) O(n)

O(1) O(1)

O(n) O(1)

26/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Pilas (Stacks) y Colas (Queues)
Se trata de dos tipos de colecciones muy usadas en la programación tradicional que implementan los TAD
(Tipos Abstractos de Datos) Pila y Cola respectivamente. Son tipos muy sencillos que nos permiten almacenar
datos de forma ordenada y acceder a ellos siguiendo unas reglas muy concretas.

De hecho, ambos tipos son concreciones del TAD Lista pero con restricciones en las operaciones que
podemos realizar sobre ellos. De esta manera nos aseguramos que los datos se gestionan siguiendo dichas
operaciones y no otras.

Existen muchos algoritmos clásicos que usan ambos tipos de colecciones para resolver problemas concretos.
Como hemos comentado, podríamos usar una List<T> o una LinkedList<T> pero al tener estos tipos las
operaciones específicas que necesitamos, el código es más claro y sencillo de mantener.

Internamente en C#, ambos tipos usan un Array para almacenar los datos como base al igual que List<T> .
Por tanto, las operaciones de inserción y borrado tienen un coste amortizado de O(1) y el acceso a los
elementos es O(1) .

Las colas en CSharp con (Queue<T>)

Los elementos se añaden por el final y se suprimen por el principio denominado frente de la cola. Por esta
razón, también se les conoce como estructuras FIFO, acrónimo en ingles de 'Primero en Entrar, Primero en
Salir'.

Operaciones del TAD Cola y su equivalente en C# a través de Queue<T> c = new() :

Encolar (c.Enqueue(T dato)).
Desencolar (c.Dequeue() → T).
Borrar toda la cola (c.Clear())
Consultar el frente de la cola sin desencolar (c.Peek() → T).
Ver si está vacía (c.Count == 0).

Operaciones FIFO
sobre una Cola c

2

1

c.Enqueue(2)

3

2

1

c.Enqueue(3)

4

3

2

1

c.Enqueue(4)

5

4

3

2

1

c.Enqueue(5)

5

4

3

2

1

5

4

3

2

1

c.Dequeue() → 1

5

4

3

2

c.Dequeue() → 2

5

4

3

c.Dequeue() → 3

5

4

4

c.Peek() → 4

27/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

El siguiente código equivaldría a las
operaciones descritas en la ilustración y
mostrará por consola:

Cola -> 1

Encolando el 2

Cola -> 1, 2

Encolando el 3

Cola -> 1, 2, 3

Encolando el 4

Cola -> 1, 2, 3, 4

Encolando el 5

Cola -> 1, 2, 3, 4, 5

Desencolado el 1

Cola -> 2, 3, 4, 5

Desencolado el 2

Cola -> 3, 4, 5

Desencolado el 3

Cola -> 4, 5

El frente de la cola es 4

Cola -> 4, 5

public static void Main()

{

 Queue<int> c = new ([1]);

 Console.WriteLine($"Cola -> {string.Join(", ", c)}");

 for (int i = 2; i <= 5; i++)

 {

 c.Enqueue(i);

 Console.WriteLine($"Encolando el {i}");

 Console.WriteLine($"Cola -> {string.Join(", ", c)}");

 }

 while (c.Count > 2)

 {

 Console.WriteLine($"Desencolado el {c.Dequeue()}");

 Console.WriteLine($"Cola -> {string.Join(", ", c)}");

 }

 Console.WriteLine($"El frente de la cola es {c.Peek()}");

 Console.WriteLine($"Cola -> {string.Join(", ", c)}");

}

Como hemos comentado, aunque a simple vista son una concreción de las listas, puede ser interesante tener
solo un subconjunto de operaciones más limitado, enfocado a ciertos problemas y que nos pueda proporcionar
más 'robustez' de cara a errores, legibilidad del código e incluso rendimiento en la ejecución del mismo.
Normalmente las colas se usar para gestionar datos, eventos o procesos asíncronos por orden de llegada. El
ejemplo más paradigmático sería la cola de impresión, que irá encolando los 'trabajos' de impresión y
desencolándolos por orden conforme quede libre un recurso de impresión.

28/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Ejemplo:

Vamos a implementar con una Cola programa que simule 'El juego de la bomba' en el cual una bomba
programada para explotar en un tiempo aleatorio. Es pasada entre los jugadores de forma rotativa del tal
manera que cada jugador la retendrá un tiempo 'aleatorio' que el estime oportuno para que le explote a un
compañero y no le vuelva a llegar.

Esto es, el jugador que coge la bomba se desencolará del frente de la cola, esperará un tiempo aleatorio
y si la bomba no ha explotado, volverá a encolarse pasándosela al siguiente jugador que desencolaremos
a continuación y así sucesivamente hasta que la bomba explote. Una posible solución sería la siguiente...

public static void Main()

{

 Queue<string> jugadores = new Queue<string>([

 "Pepe", "María", "Juan", "Sara"

]);

 Random seed = new ();

 int segundosHastaExplosion = seed.Next(30, 60);

 bool explosion;

 do

 {

 // Desencolamos al jugador que recibirá la bomba.

 string jugador = jugadores.Dequeue();

 int espera = seed.Next(5, 10);

 Console.WriteLine($"{jugador} esperando para pasar la bomba.");

 Console.WriteLine($"En cola quedán {string.Join(", ", jugadores)}");

 Thread.Sleep(espera * 1000); // Espera aleatoria.

 segundosHastaExplosion -= espera;

 explosion = segundosHastaExplosion <= 0; // Comprobamos si ha explotado.

 if (!explosion)

 // Si no ha explotado encolamos de nuevo al jugador para que vuelva a recibir la bomba.

 jugadores.Enqueue(jugador);

 else

 Console.WriteLine($"La bomba le ha explotado a {jugador}.");

 }

 while (!explosion);

 jugadores.Clear();

}

29/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Las pilas en CSharp con (Stack<T>)

Los elementos se añaden y extraen por el mismo extremo que denominaremos cabeza de la pila. Por esta
razón, también se les conoce como estructuras LIFO, acrónimo en ingles de 'Último en Entrar, Primero en
Salir'.

Operaciones del TAD Pila y su equivalente en C# a través de Stack<T> p = new() :

Apilar (p.Push(T dato)).
Desapilar (p.Pop() → T).
Borrar toda la pila (p.Clear())
Consultar la cabeza de la cola sin desapilar (p.Peek() → T).
Ver si está vacía (p.Count == 0).

Operaciones LIFO
sobre una Pila p

2

1

p.Push(2)

3

2

1

p.Push(3)

4

3

2

1

p.Push(4)

5

4

3

2

1

p.Push(5)

5

4

3

2

1

5

4

3

2

1

p.Pop() → 5

4

3

2

1

p.Pop() → 4

3

2

1

p.Pop() → 3

2

2

1

p.Peek() → 2

El siguiente código equivaldría a las
operaciones descritas en la ilustración y
mostrará por consola:

Pila -> 1

Apilando el 2

Pila -> 2, 1

Apilando el 3

Pila -> 3, 2, 1

Apilando el 4

Pila -> 4, 3, 2, 1

Apilando el 5

Pila -> 5, 4, 3, 2, 1

Desapilando el 5

Pila -> 4, 3, 2, 1

Desapilando el 4

Pila -> 3, 2, 1

Desapilando el 3

Pila -> 2, 1

La cabeza de la pila es 2

Pila -> 2, 1

public static void Main()

{

 Stack<int> p = new ([1]);

 Console.WriteLine($"Pila -> {string.Join(", ", p)}");

 for (int i = 2; i <= 5; i++)

 {

 p.Push(i);

 Console.WriteLine($"Apilando el {i}");

 Console.WriteLine($"Pila -> {string.Join(", ", p)}");

 }

 while (p.Count > 2)

 {

 Console.WriteLine($"Desapilando el {p.Pop()}");

 Console.WriteLine($"Pila -> {string.Join(", ", p)}");

 }

 Console.WriteLine($"La cabeza de la pila es {p.Peek()}");

 Console.WriteLine($"Pila -> {string.Join(", ", p)}");

}

30/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Ejemplo:

Un típico ejemplo de uso de pilas es comprobar si una expresión está balanceada o no. Por ejemplo,
 está balanceada porque se abren tantos paréntesis como se cierran de

forma correcta.

Para ello, vamos a definir un método estático denominado bool VerificaParentesis(string expresion) que
me diga si la cadena con la expresión de entrada lo está o no.

El algoritmo consistirá en recorrer la cadena y cada vez que encontremos el caracter '(' apilarlo y
cuando encontremos un ')' desapilar de la cadena. Si desapilamos y no hay nada en la pila, significará
que no hay ningún paréntesis de apertura para el de cierre que acabamos de encontrar. Además, si tras
recorrer todas la expresión quedan elementos en la pila significará que no todos los paréntesis de apertura
se has logrado cerrar.

static bool VerificaParentesis(string expresion)

{

 Stack<char> p = new ();

 bool balanceados = true;

 for (int i = 0; i < expresion.Length && balanceados; i++)

 {

 if (expresion[i] == '(')

 p.Push('(');

 else if (expresion[i] == ')')

 balanceados = p.Count > 0 && p.Pop() == '(';

 }

 balanceados = balanceados && p.Count == 0;

 return balanceados;

}

static void Main()

{

 Console.WriteLine(VerificaParentesis("((3 + 4) * (2 - 5 / (2 * 4)))")); // true

 Console.WriteLine(VerificaParentesis("(3 + 4) * (2 - 5 / (2 * 4)))")); // false

 Console.WriteLine(VerificaParentesis("((3 + 4) * (2 - 5 / (2 * 4))")); // false

}

((3 + 4) ∗ (2 − 5/(2 ∗ 4)))

31/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

🚀 Ampliación opcional:

Vamos a implementar la función VerificaParentesis el ejemplo anterior en otros lenguajes de
programación como JavaScript y Python. Fíjate que aunque en ambos lenguajes no existe un tipo
específico para pilas, podemos usar los arrays que tienen métodos equivalentes a push y pop para
simular su comportamiento.

JavaScript (Node.js):

function verificaParentesis(expresion) {

 const pila = [];

 let balanceados = true;

 for (let i = 0; i < expresion.length && balanceados; i++) {

 if (expresion[i] === '(') {

 pila.push('(');

 } else if (expresion[i] === ')') {

 balanceados = pila.length > 0 && pila.pop() === '(';

 }

 }

 balanceados = balanceados && pila.length === 0;

 return balanceados;

}

Python:

def verifica_parentesis(expresion):

 p = []

 balanceados = True

 i = 0

 while i < len(expresion) and balanceados:

 caracter = expresion[i]

 if caracter == '(':

 p.append('(')

 elif caracter == ')':

 if len(p) > 0:

 p.pop()

 else:

 balanceados = False

 i += 1

 return balanceados and len(p) == 0

32/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

El patrón iterador
Es un patrón de diseño orientado a objetos ideado para recorrer cualquier colección de datos. Además, en el
lenguaje C# cobra especial importancia para aplicar ciertos esquemas de programación funcional que
trataremos en temas posteriores.

Este patrón se implementa en C# a través de la definición de la interfaz genérica IEnumerable<T> así como su
antecesora IEnumerable . Ambas ofrecen un mecanismo para la iteración sobre los elementos de una
secuencia, generalmente con la vista puesta en aplicar a esa secuencia la instrucción de programación
 foreach para recorrerla.

Dicho interfaz deberá ser implementada por la clase o tipo que implemente la secuencia o contenga una serie
de datos que nos interese recorrer de forma secuencial. Por tanto, todas las colecciones genéricas que hemos
visto en este tema como List<T> , LinkedList<T> , Stack<T> o Queue<T> implementan dicha interfaz.

Representará pues la abstracción máxima de una secuencia iterable de datos y nos permitirá recorrerlos sin
preocuparnos de la implementación interna de la colección que los contiene. Por tanto, es usada como
abstracción en multitud de métodos definidos en las librerías estándar de C# que necesitan recorrer secuencias
de datos como por ejemplo el método estático
 public static string Join<T>(string? separator, IEnumerable<T> values) que venimos usando durante todo el
curso para mostrar colecciones por consola sparadas por comas u otro separador. Este métiodo, solo
necesita recorrer la secuencia de datos que le pasemos sin importar si es una lista, una pila, una cola o
cualquier otra colección que implemente la interfaz IEnumerable<T> .

Interfaz IEnumerable<T>
Definirá un método que me permitirá ontener intanciás de un iterador que implemente la interfaz
 IEnumerator<T> que veremos a continuación.

La definición de IEnumerable<T> e IEnumerable es la siguiente:

// Definido dentro de System.Collections

public interface IEnumerable

{

 IEnumerator GetEnumerator();

}

// Definido dentro de System.Collections.Generic

public interface IEnumerable<T> : IEnumerable

{

 IEnumerator<T> GetEnumerator();

}

Nota

33/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

https://es.wikipedia.org/wiki/Iterador_(patr%C3%B3n_de_dise%C3%B1o)

Operaciones y uso básico de la abstracción IEnumerable<T>

Como ya hemos comentado en la introducción, todas las colecciones implementan este interfaz, podremos
hacer la sustitución de cualquier colección concreta por su interfaz genérica IEnumerable<T> . Por ejemplo,
podríamos definir un método que reciba como parámetro cualquier colección que implemente dicha interfaz y
nos muestre sus elementos por consola.

static void MostrarElementos<T>(IEnumerable<T> secuencia)

{

 foreach (T elemento in secuencia)

 {

 Console.WriteLine(elemento);

 }

}

static void Main()

{

 int[] array = [23, 56, 66, 94, 98];

 List<int> lista = new([23, 56, 66, 94, 98]);

 LinkedList<string> linkedList = new (["Hola", "Mundo", "Desde", "CSharp"]);

 MostrarElementos(array);

 MostrarElementos(lista);

 MostrarElementos(linkedList);

}

Podremos hacer el proceso inverso y generar cualquier colección a partir de una secuencia que implemente
 IEnumerable<T> . Fíjate que según el tipo tendremos diferentes alternativas ...

IEnumerable<int> secuencia = [23, 56, 66, 94, 98];

int[] array2 = secuencia.ToArray();

int[] array3 = [.. secuencia];

List<int> lista = new (secuencia);

List<int> lista2 = secuencia.ToList();

List<int> lista3 = [.. secuencia];

LinkedList<int> listaEnlazada1 = new (secuencia);

Aunque profundizaremos más adelante en este aspecto. Dispondremos de multitud de métodos de utiliadad
aplicables a IEnumerable<T> . Algunos ejemplos son:

Método de clase, IEnumerable<int> Enumerable.Range(int start, int count) que genera una secuencia de
enteros empezando en start , con count elementos.

Fíjate que la interfaz se apoya en su contrapartida no genérica, para tener compatibilidad con la misma y
por tanto hacia versiones anteriores de las BCL.

34/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Método de instancia, IEnumerable<T> IEnumerable<T>.Skip(int count) que devolverá la secuencia
resultante de haber saltado count posiciones en el objeto secuencia al que aplicamos la operación.
Método de instancia, T IEnumerable<T>.First() que devolverá el primer elemento del objeto secuencia al
que aplicamos la operación.

List<int> secuencia = Enumerable.Range(2, 4).ToList();

List<int> secuencia = [2, 3, 4, 5]; // Equivalente a la línea anterior.

secuencia.Skip(2).First(); // Se evaluará al entero 4

Interfaz IEnumerator<T>
Clase iterador que nos permitirá recorrer la secuencia de datos de forma ordenada a través de los objetos
instanciados de la misma. Es

La definición de IEnumerator<T> e IEnumerator es la siguiente:

// Definido dentro de System.Collections

public interface IEnumerator

{

 object Current { get; }

 void Reset();

 bool MoveNext();

}

// Definido dentro de System.Collections.Generic

public interface IEnumerator<T> : IDisposable, IEnumerator

{

 T Current { get; }

}

Como vemos en la definición, las clases que implementen este interfaz deben implementar los siguientes
miembros:

 Current : Devuelve el elemento actual apuntado por el iterador interno en la secuencia.
 Reset() : Establecerá el iterador a un estado inicial justo antes del primer elemento. Este método, será
llamado desde el constructor del objeto y el estado indicará en siguiente MoveNext() que debo ir al primer
elemento.
 MoveNext() : Desplaza el enumerador al siguiente elemento de la secuencia devolviendo true si he podido
hacerlo o false si no he podido avanzar porque ya estaba al final de la misma. Como hemos comentado
antes, en la primera llamada tras el Reset() se situará al principio de la secuencia.
 Dispose() : Restablece el iterador a su valor inicial y libera cualquier recurso no administrado asociado al
mismo.

Uso de el patrón iterador
Como ya hemos comentado nos permite recorrer secuencias con la instrucción foreach y pasar como
parámetro o guardar cualquier colección como la generalización secuencia iterable IEnumerable<T> .

35/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Una instrucción foreach ...

List<int> lista = new([23, 56, 66, 94, 98]);

foreach (int valor in lista)

{

 Console.WriteLine(valor);

}

realmente está haciendo...

List<int> lista = new([23, 56, 66, 94, 98]);

IEnumerator<int> it = lista.GetEnumerator();

while (it.MoveNext())

{

 Console.WriteLine(it.Current);

}

Pero ... ¿Por qué crear un objeto aparte para iterar y no dejar que las colecciones implementen
directamente IEnumerator<T> ?

La respuesta tiene que ver con la necesidad de permitir la ejecución de iteraciones anidadas sobre una
misma secuencia. Si la secuencia implementara directamente la interfaz enumeradora, solo se dispondría de
un único 'estado de iteración' en cada momento y sería imposible implementar bucles anidados foreach sobre
una misma secuencia.

Veamoslo a través de una ejemplo de uso de dos iteradores sobre un mismo objeto LinkedList<T> :

Un doble foreach ...

LinkedList<int> list = new([23, 56, 66, 94, 98]

foreach (int val1 in list)

{

 foreach (int val2 in list)

 {

 Console.Write($"[{val1}, {val2}]");

 }

}

realmente está haciendo...

LinkedList<int> list = new([23, 56, 66, 94, 98]);

IEnumerator<int> it1 = list.GetEnumerator();

IEnumerator<int> it2 = list.GetEnumerator();

while (it1.MoveNext())

{

 while (it2.MoveNext())

 Console.Write($"[{it1.Current}, {it2.Current}]");

 it2.Reset();

}

Cada objeto iterador it1 , it2 mantiene su propio estado de iteración y por tanto, podemos tener varios
iteradores activos sobre la misma secuencia sin que interfieran entre ellos.

36/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

23 56 66 94 98 NULL

First LastCount = 5

NULL

Current

Current

it1

it2

list

37/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Implementando IEnumerable<T> en nuestras colecciones o clases
Siguiendo la definición de los interfaces. La clase que queremos que sea recorrible debería implementar la
interfaz IEnumerable<T> y definir el método GetEnumerator() que devolverá una instancia de una clase que
implemente la interfaz IEnumerator<T> . Además deberemos definir otra clase que implemente IEnumerator<T>
con los métodos y propiedades necesarias para recorrer la colección.

Esto en ocasiones puede llegar a ser tedioso y repetitivo. Por suerte, C# nos proporciona una forma mucho más
sencilla de implementar el patrón iterador a través del uso de la palabra clave yield que veremos a
continuación.

Concepto de generación perezosa de secuencias con yield

El concepto de generador en informática lo vamos a encontrar además de en C#, en otros lenguajes de
programación tales como: JavaScript, Python, Kotlin, etc. Asociado a la normalmente a la palabra reservada
yield que tendrá un significado y uso similar, aunque con variaciones en la sintaxis.

Es interesante indicar que una posible traducción del inglés del verbo to yield es 'generar o producir'. Por lo
que normalmente esta instrucción se utiliza para generar secuencias de forma perezosa (lazy evaluation) sin
necesidad de definir explícitamente las clases que implementan los interfaces IEnumerable<T> e
 IEnumerator<T> .

¿Por qué usar generación perezosa de secuencias?

Imaginemos un escenario, cada día más común, de big data, donde vamos a disponer de una gran cantidad de
datos a procesar y donde no es tan importante el tiempo de proceso. Si vamos a procesar estos datos en forma
de secuencia y los cargamos todos en una colección se nos pueden dar ciertos problemas en el proceso, como:

1. Nos quedamos sin memoria ya que hay demasiados datos y debamos realizar el proceso, cargando en
varias secuencias con todo lo que ello conlleva de complejidad final.

2. Los datos pueden cargar en memoria pero tenemos que solicitarlos a un determinado servicio en Internet
(endpoint). Sin embargo, son tantos datos que va a tardar mucho en mandármelos todos a la vez, además
de que lo vamos a sobrecargar con nuestra petición.

3. Derivado del anterior, no sabemos el tiempo que puede tardar el endpoint en generar cada dato y debemos
procesar la secuencia de forma asíncrona. Esto es, el procesador estará atendiendo a otras tareas mientras
se genera cada dato y en el momento que se genere un dato lo procesa en la secuencia.

4. Tenemos un stream a un fichero en disco con Terabytes (TB) de información a tratar y queremos
aprovechar las funcionalidades de las secuencias para hacerlo.

5. Necesitemos hacer un búsqueda en una gran colección de objetos, de los que solo vamos a necesitar unos
pocos hasta encontrar lo que buscábamos. Sin embargo, hemos tenido que cargar previamente todos en la
colección para realizar la búsqueda.

38/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

https://es.wikipedia.org/wiki/Generador_(inform%C3%A1tica)
https://learn.microsoft.com/es-es/dotnet/csharp/language-reference/statements/yield
https://es.wikipedia.org/wiki/Macrodatos

En estos casos es mejor ir generando los elementos de la secuencia, conforme los necesitemos para su
proceso y no todos a la vez como sucedería al cargarlos en una colección.

Resumen

Cómo puedes ver en el cuadro resumen, si vamos a usar la abstracción IEnumerable<T> es mejor usar un
generador con yield en lugar de crear una colección intermedia como una List<T> para obtener la
secuencia.

IEnumerable<T> obtenido a
partir de ...

una colección (List) un generador (yield)

Carga de datos Todo a la vez (Eager) Uno a uno (Lazy)

Consumo de RAM Proporcional al tamaño total
Constante (solo un
elemento)

Tiempo de inicio Lento (debe llenar la lista)
Instantáneo (entrega el
primero)

Acceso aleatorio
Al convertirse en IEnumerable<T>
pierde la indexación directa y debo
iterar secuencialmente

Debo iterar
secuencialmente



39/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Uso de yield en CSharp

En C# yield irá seguido de las clausulas return o break .

yield return <expression>;

yield break;

Vamos a ver a través de un ejemplo sencillo los conceptos vistos en el puntoa anterior. Para ello, supongamos
el siguiente código simple donde NO usamos yield ...

Vamos a definir un método estático denominado
 IEnumerable<int> ObtieneMultiplosDeN(int n, int ini, int fin) que me devuelve una secuencia genérica
con los múltiplos de un número n en el rango [ini, fin) .

public static IEnumerable<int> ObtieneMultiplosDeN(

 int n, int ini, int fin)

{

 List<int> multimplos = [];

 // Para ello, vamos añadiendo a una colección dichos números.

 for (int i = ini; i < fin; i++)

 {

 if (i % n == 0)

 {

 // Vamos generando un log del proceso.

 Console.WriteLine($"Obtenido {i}");

 multimplos.Add(i);

 }

 }

 // Hemos tenido que rellenar toda la colección y la

 // retornaremos en su forma de secuencia IEnumerable<T>

 return multimplos;

}

Si ejecutamos el programa principal y
vemos la salida por la consola, comprobado
que hemos generado todos los múltiplos
en el rango dado. Para el rango del ejemplo
son 8 pero podría ser un número muy
elevado y que además deberemos tener
en un lista en memoria.

Obtenido 320

Obtenido 322

Obtenido 324

Obtenido 326

Obtenido 328

Obtenido 330

Obtenido 332

Obtenido 334

El 4to multiplo es 326

// En el programa principal, vamos a obtener el 4º múltiplo de 2 entre 320 y 335

// pero ObtieneMultiplosDeN nos devuelve ya toda la secuencia de múltiplos cargada en memoria.

public static void Main()

{

 int cuartoMultObt = ObtieneMultiplosDeN(2, 320, 335).Skip(3).First();

 Console.WriteLine($"El 4to multiplo es {cuartoMultObt}");

}

Al generar la secuencia con una colección intermedia, hemos tenido que generar todos los múltiplos y
almacenarlos en memoria haciendo un único return al final del método.

Vamos ahota a reimplementar el código de nuestro método y ahora SÍ usaremos yield ...

40/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/assets/ejemplos/ienumerable_multiplos_con_list_ejemplo.cs
file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/assets/ejemplos/ienumerable_multiplos_con_yield_ejemplo.cs

El flujo de ejecución frente al anterior
sería....

1. Línea 15 : Llamamos al métodos y la
pasamos el control de ejecución.

2. Líneas 8 : Obtenemos el siguiente valor
de la secuencia y retornamos el control
a la línea 15 en ella si procesará el
elemento de la secuencio y si
necesitamos otro cuando llamemos al
 it.MoveNext() del iterador
(IEnumerator) proporcionado por la
secuencia devuelta, se volverá a pasar
el control de ejecución a la línea 9
para que el algoritmo me vuelva a
generar otro elemento de la secuencia
de llegar al yield return i; y de no
ser así porque ha acabado el for
entonces el it.MoveNext() devolverá
 false .

Main

ObtieneMultiplosDeN

int cuartoMultObt = ObtieneMultiplosDeN(2, 320, 335)
 .Skip(3)
 .First();
Console.WriteLine($"El 4to multiplo es {cuartoMultObt}");

for (int i = ini; i < fin; i++)
{
 if (i % n == 0)
 {

Console.WriteLine($"Producido {i}");
yield return i;

 }
}

Primera
llamada

Al iterar el siguiente
elemento de la
secuencia, vuelve el
control después del yiled

Devuelve el
control a la iteración
de la secuencia

static IEnumerable<int> ObtieneMultiplosDeN(int n, int ini, int fin)

{

 for (int i = ini; i < fin; i++)

 {

 if (i % n == 0)

 {

 Console.WriteLine($"Producido {i}");

 yield return i;

 }

 }

}

static void Main()

{

 int cuartoMultObt = ObtieneMultiplosDeN(2, 320, 335).Skip(3).First();

 Console.WriteLine($"El 4to multiplo es {cuartoMultObt}");

}

8

15

Importante

Fíjate que al hacer un yield return dato; C# lo interpretará como que el método retorna una secuencia
 IEnumerable<TipoDato> , esto es, la abstracción de una secuencia iterable.



41/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

Si ejecutamos el programa y comprobamos
el log de salida, veremos que hemos
generado solo los múltiplos hasta el 4 en
el rango dado, en lugar de todos como
antes. Esto será así independientemente del
rango que le pasemos al método para
obtener los múltiplos.

Producido 320

Producido 322

Producido 324

Producido 326

El 4to multiplo es 326

Bien ya hemos visto cómo funciona yield y hemos conseguido que un método devuelva una secuencia
perezosa en forma de IEnumerable<T> sin necesidad de definir las clases que implementan los interfaces del
patrón iterador. Pero, ¿Cómo podríamos implementar IEnumerable<T> en una clase propia usando yield ?

Veamoslo a través de una clase que no es una colección propiamente dicha pero que contiene una serie de
datos que nos interesa recorrer de forma secuencial. Por ejemplo, una clase que represente una dirección
 IPv4Address cómo por ejemplo 192.168.1.1 y que contenga los 4 bytes que la componen.

Definimos las clase como un record class ('value object') con 4 propiedades de tipo byte que representan
cada uno de los octetos de la dirección IP. Además, implementamos la interfaz IEnumerable<byte> para poder
iterar secuencialmente los bytes que componen la dirección IP.

Puedes descargar el código completo de este ejemplo desde este enlace.

public record class IPv4Address(byte Byte1, byte Byte2, byte Byte3, byte Byte4) : IEnumerable<byte>

{

 public IEnumerator<byte> GetEnumerator()

 {

 yield return Byte1;

 yield return Byte2;

 yield return Byte3;

 yield return Byte4;

 }

 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() => GetEnumerator();

Importante

En este caso los diferentes yield return de los bytes los implementamos en el método GetEnumerator()
y en lugar de generarnos un IEnumerable<byte> , nos va a devolver un iterador IEnumerator<byte> que es
el que nos permitirá recorrer la secuencia de bytes de forma perezosa.



42/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/assets/ejemplos/implementando_ienumerable_en_ipv4_ejemplo.cs

Si ejecutamos el siguiente programa principal de test. Debería mostrar por consola:

 IP1: 192.168.1.1 11000000.10101000.00000001.00000001

Mascara: 255.255.255.0 11111111.11111111.11111111.00000000

class Program

{

 static void Main()

 {

 IPv4Address ip = new(192, 168, 1, 1);

 IPv4Address mascara = new("255.255.255.0");

 Console.WriteLine($" IP1: {ip,-15} {ip.ToBinaryString()}");

 Console.WriteLine($"Mascara: {mascara,-15} {mascara.ToBinaryString()}");

 }

}

 // Constrctor secundario para crear la IP a partir de una cadena.

 public IPv4Address(string ip)

 : this(

 byte.Parse(ip.Split('.')[0]), byte.Parse(ip.Split('.')[1]),

 byte.Parse(ip.Split('.')[2]), byte.Parse(ip.Split('.')[3]))

 { }

 public override string ToString() => $"{Byte1}.{Byte2}.{Byte3}.{Byte4}";

 public string ToBinaryString()

 {

 StringBuilder ipBinario = new();

 // Podemos recorrer los bytes de la IP (this) gracias a que implementa IEnumerable<byte>

 foreach (byte b in this)

 ipBinario.Append($"{b:b8}.");

 return ipBinario.ToString().TrimEnd('.');

 }

}

1

13

15

43/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

🚀 Ampliación opcional:

¿Serías capaz de interpretar los conceptos del uso del patrón iterador y la generación perezosa de
secuencias con yield en otros lenguajes de programación como JavaScript, Kotlin o Python a través
de la conversión del ejemplo sencillo propuesto en C#?

Ejemplo C#:

static IEnumerable<int> Datos()

{

 yield return 23;

 yield return 56;

 yield return 66;

 yield return 94;

}

var it = Datos().GetEnumerator();

while (it.MoveNext())

{

 Console.WriteLine(it.Current);

}

// Recorriendo la secuencia con foreach

foreach (int valor in Datos())

{

 Console.WriteLine(valor);

}

Equivalente en JavaScript:

function* datos() {

 yield 23;

 yield 56;

 yield 66;

 yield 94;

}

const it = datos();

while (!(current = it.next()).done) {

 console.log(current.value);

}

// Recorriendo la secuencia con for...of

for (const valor of datos()) {

 console.log(valor);

}

Equivalente en Kotlin:

fun datos(): Sequence<Int> = sequence {

 yield(23)

 yield(56)

 yield(66)

 yield(94)

}

fun main() {

 val it = datos().iterator()

 while (it.hasNext()) {

 val current = it.next()

 println(current)

 }

 // Recorriendo la secuencia con for

 for (valor in datos()) {

 println(valor)

 }

}

Equivalente en Python:

def datos():

 yield 23

 yield 56

 yield 66

 yield 94

it = datos()

while True:

 try:

 current = next(it)

 print(current)

 except StopIteration:

 break

Recorriendo la secuencia con for

for valor in datos():

 print(valor)

44/44 Programación 1º DAM Unidad 19 IES Doctor Balmis

