
Índice
Ejercicio 1. Gestión de lista de Platos
Ejercicio 2. Gestión de lista de automóviles
Ejercicio 3. Comparación y Búsqueda en Colecciones
Ejercicio 4. Diccionario contador de palabras
Ejercicio 5. Diccionario con Clave Personalizada
Ejercicio 6. Red Social con Diccionarios
Ejercicio 7. Lista de Reproducción Musical (LinkedList)
Ejercicio 8. Sistema de pedidos de restaurante con colecciones especializadas
Ejercicio 9. Implementación de una Pila Genérica (Wrapper)
Ejercicio 10. Patrón Iterator en la Pila Genérica

Ejercicios Unidad 19 - Colecciones
Descargar estos ejercicios

Antes de empezar

Para realizar estos ejercicios, deberás descargar los recursos del enlace de proyecto_poo.
Como puedes ver, la solución está compuesta de varios proyectos. Cada uno de ellos
corresponde con un ejercicio, deberás implementar todo el código, tanto de la Main como de
los métodos que se piden en cada ejercicio. Cada proyecto contiene el test correspondiente,
que deberás pasar para comprobar que has hecho el ejercicio correctamente.



1/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/ejercicios/1_ejercicios/1_ejercicios_poo_colecciones.pdf
file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u19_poo_colecciones/ejercicios/1_ejercicios/recursos/1_ejercicios_poo_colecciones_recurso.zip

Ejercicio 1. Gestión de lista de Platos
Implementa un sistema para gestionar una colección de platos utilizando List<T> y métodos
para realizar operaciones básicas como añadir, eliminar, buscar y filtrar platos según diferentes
criterios.

Ejercicio 1. Gestión de lista de Platos

Lista de Platos:

1. Ensalada - 10,5 - Entrante

2. Solomillo - 20,0 - Principal

3. Tarta de Queso - 6,5 - Postre

Buscando plato Solomillo 20.0:

Plato encontrado en la posición: 1

Buscando plato Solomillo 25.0:

Plato no encontrado.

Eliminando plato en posición 0: Ensalada - 10,5 - Entrante

Lista de Platos:

1. Solomillo - 20,0 - Principal

2. Tarta de Queso - 6,5 - Postre

Plato añadido: Sopa - 8,0 - Entrante

Lista de Platos:

1. Solomillo - 20,0 - Principal

2. Tarta de Queso - 6,5 - Postre

3. Sopa - 8,0 - Entrante

Requisitos

Define una clase Plato con propiedades: Nombre , Precio (decimal), Categoria (enum:
Entrante, Principal, Postre).
Implementa un método ToString() que muestre la información del plato.
Implementa los métodos Equals(object obj) , GetHashCode() y sobrecarga los operadores
 == y != para que dos platos sean iguales si tienen el mismo nombre y precio.
Crea la clase Program con los siguientes métodos estáticos:

Método BuscaPlato que utilice IndexOf para encontrar la posición de un plato en la
lista.
Método AñadePlato que a partir de una lista y un plato, añadirá este a la lista.
 EliminaPlato que eliminará el plato con la posición en la lista que coincida con el
índice i que se haya pasado como argumento.

2/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

 MuestrarLista(List<Plato> lista) muestra el contenido completo de la lista
numerado.
¿Porque crees que funciona IndexOf?, comenta la implementación de Equals,
GetHasCode y los operadores de igualdad y prueba el programa otra vez. ¿Sigue
funcionando?.

Ejercicio 2. Gestión de lista de automóviles
Implementa un sistema para gestionar una colección de automóviles utilizando List<T> y
métodos para realizar operaciones básicas como añadir, eliminar, buscar y filtrar automóviles
según diferentes criterios.

3/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

Ejercicio 2: Gestión de lista de automóviles

=== LISTA INICIAL DE AUTOMÓVILES ===

Añadiendo automóviles a la lista...

Lista actual (5 automóviles):

1. Toyota Corolla - 1600cc - 2020 - Blanco

2. Honda Civic - 1800cc - 2019 - Negro

3. Ford Focus - 2000cc - 2020 - Rojo

4. Nissan Sentra - 1600cc - 2018 - Azul

5. Volkswagen Golf - 1400cc - 2020 - Blanco

=== BÚSQUEDA POR AÑO DE FABRICACIÓN ===

Automóviles del año 2020:

- Toyota Corolla - 1600cc - 2020 - Blanco

- Ford Focus - 2000cc - 2020 - Rojo

- Volkswagen Golf - 1400cc - 2020 - Blanco

=== BÚSQUEDA POR AÑO Y COLOR ===

Automóviles del año 2020 y color Blanco:

- Toyota Corolla - 1600cc - 2020 - Blanco

- Volkswagen Golf - 1400cc - 2020 - Blanco

=== ELIMINACIÓN DE AUTOMÓVIL ===

Eliminando automóvil en posición 2 (Honda Civic)...

Lista actualizada (4 automóviles):

1. Toyota Corolla - 1600cc - 2020 - Blanco

2. Ford Focus - 2000cc - 2020 - Rojo

3. Nissan Sentra - 1600cc - 2018 - Azul

4. Volkswagen Golf - 1400cc - 2020 - Blanco

=== AÑADIR NUEVO AUTOMÓVIL ===

Añadiendo: BMW Serie 3 - 2000cc - 2021 - Gris

Lista final (5 automóviles):

1. Toyota Corolla - 1600cc - 2020 - Blanco

2. Ford Focus - 2000cc - 2020 - Rojo

3. Nissan Sentra - 1600cc - 2018 - Azul

4. Volkswagen Golf - 1400cc - 2020 - Blanco

5. BMW Serie 3 - 2000cc - 2021 - Gris

Requisitos

Define un record Automovil con propiedades: Marca , Modelo , Cilindrada (int),
 AñoFabricacion (int), Color tipo enumerado.
Implementa un método ToString() que muestre la información del automóvil en formato
como se muestra en la salida.
Crea la clase Program con los siguientes métodos estáticos:

Método AñadeAutomovil que a partir de una lista y un automóvil, añadirá este a la lista.

4/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

 EliminaAutomovil que eliminará el automóvil con la posición en la lista que coincida
con el índice i que se haya pasado como argumento.
Crea un método AutomovilesPorAñoFabricacion , que te permita encontrar en la lista los
coches con una determinada fecha de fabricación y que retorne una nueva lista con
esos datos. Usa un bucle for para recorrer la lista y encontrar los automóviles que
cumplan la condición.
Otro método AutomovilesPorAñoFabricacionYColor que devuelva una sublista con los
coches de la lista que sean de un determinado color y una fecha pasados ambos como
parámetros. Usa un bucle for para recorrer la lista y encontrar los automóviles
que cumplan la condición.
 MostrarLista(List<Automovil> lista) muestra el contenido completo de la lista
numerado.

Validaciones necesarias:
Verificar que el índice sea válido antes de eliminar.
Comprobar que la lista no sea null en todos los métodos.
Manejar casos donde no se encuentren automóviles que coincidan con los criterios de
búsqueda.

En el método Main , demuestra el uso de todos los métodos creando una lista inicial,
realizando búsquedas, eliminaciones y adiciones.

Ejercicio 3. Comparación y Búsqueda en
Colecciones
Vamos a trabajar con diferentes formas de comparación y búsqueda en colecciones.

5/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

Ejercicio 3. Comparación y Búsqueda en Colecciones

--- Parte 1: Búsqueda lineal con Contains ---

¿Existe la publicación 29/12/2025 9:11:00? True

¿Existe con EqualityComparer? True

--- Parte 2: Búsqueda de Usuarios ---

¿Existe el usuario user1? True

--- Parte 3: Búsqueda Binaria ---

Lista ordenada por fecha.

Posición encontrada (BinarySearch): 1

Posición encontrada (BinarySearch con IComparer): 1

Pulsar Enter para salir...

Requisitos

1. Crea un tipo record Usuario con las propiedades: UserName , NombreCompleto y
 FechaRegistro (DateOnly).

2. Crea una clase Publicacion con las propiedades: Id (DateTime con Fecha, hora, minutos
y segundos), Autor (Usuario), Contenido , Likes (int) y una lista de cadenas Comentarios .

Parte 1: Búsqueda lineal con Contains

Queremos comprobar si una publicación específica está en la lista usando el método . Crea un
Método EstaPublicación al que le llega una lista de publicaciones y una publicación y usa el
método Contains para devolver si está el elemento en la lista.

Estrategia (Strategy): Intenta buscar la publicación usando una clase externa que
implemente IEqualityComparer<Publicacion> comparando por el Id .
Natural: Modifica la clase Publicacion para que implemente IEquatable<Publicacion>
(comparando por Id) y prueba de nuevo el método Contains sin pasar el comparador
externo.

Parte 2: Búsqueda de Usuarios
Crea un método EstaUsuario al que le llega una lista ade usuarios y un usuario y devuelve si el
usuario pertenece a la lista.

Crea una lista de usuarios y busca uno concreto usando Contains .
Reflexión: Observa que al ser un tipo record , no es necesario implementar nada adicional
para que la igualdad por valor funcione correctamente.

6/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

Parte 3: Búsqueda Binaria
Crea un método BuscaPublicación al que le llega una lista de publicaciones y una publicación y
devuelve la posición del elemento encontrado. Para ellos se deberá:

Realizar una BinarySearch sobre la lista de publicaciones basándonos en el Id . Para que
esto sea posible, primero deberás ordenar la lista. Además de que la clase Publicacion
deberá implementar la interfaz IComparable<Publicacion> comparando por la propiedad
 Id .

Crea un método BuscaPublicacionIComparer que realizará la búsqueda binaria pero usando la
sobrecarga a la que se le pasa un objeto de tipo IComparer<T>

Completa el programa principal para probar todas las funcionalidades creadas.

Ejercicio 4. Diccionario contador de palabras
Utilizando la clase genérica Dictionary<K, V> definida en
System.Collections.Generic,implementa un sencillo programa de consola que pida nombres por
teclado hasta que introduzcamos la cadena "fin".

7/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

Ejercicio 4. Diccionario contador de palabras

Introduce nombres (escribe 'fin' para terminar):

Ana

Pablo

Maria

Ana

Juan

Sofia

Sofia

Laura

Pedro

Pablo

Ana

fin

Nombres introducidos (Claves):

Ana

Pablo

Maria

Juan

Sofia

Laura

Pedro

Conteo de nombres (Pares Clave-Valor):

Ana: 3

Pablo: 2

Maria: 1

Juan: 1

Sofia: 2

Laura: 1

Pedro: 1

Pulsar Enter para salir...

Requisitos

Todo el ejercicio se realizará en un método GestionPalabras que tendrá el diccionario
como variable local.
Cada nombre se deberá guardar como clave, y las veces que se repite se guardará como
valor.
Al introducir "fin" se mostrarán los nombres introducidos y cuantas veces se ha introducido
cada uno.

Idea

8/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

Ejercicio 5. Diccionario con Clave Personalizada
Vamos a crear un inventario de productos donde la clave del diccionario será un objeto de tipo
 Producto y el valor será el stock disponible (un entero). Este ejercicio demostrará la importancia
de implementar correctamente Equals y GetHashCode cuando se usan objetos propios como
claves en un diccionario.

//Salida sin implementación correcta

Ejercicio 5. Diccionario con Clave Personalizada

Añadido p1: Laptop (A001) con stock 10

¿El inventario contiene p2 (misma info que p1)? False

No se pudo recuperar el stock con p2.

//Salida conn implementación correcta

Ejercicio 5. Diccionario con Clave Personalizada

Añadido p1: Laptop (A001) con stock 10

¿El inventario contiene p2 (misma info que p1)? True

Stock recuperado con p2: 10

Requisitos

1. Crea una clase Producto con las propiedades: Codigo (string) y Nombre (string).
2. En un método GestionInventario , crea un Dictionary<Producto, int> llamado

 inventario .
3. Prueba inicial (sin implementar Equals/GetHashCode):

Crea dos instancias de Producto con el mismo código y nombre (por ejemplo, p1 y
 p2).
Añade p1 al diccionario con un stock de 10.

Para mostrar el resultado, deberás mostrar por un lado las claves y posteriormente el par
clave valor. Para ello tendrás que recorre el diccionario 2 veces, una con un foreach para
las claves y otra con un foreach para el diccionario obteniendo pares clave valor con la
siguiente clase KeyValuePair<K, V>

9/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

Intenta obtener el valor usando p2 como clave (inventario[p2]) o verifica si existe
con inventario.ContainsKey(p2) .
Observa y comenta qué sucede (debería fallar o no encontrarlo).

4. Implementación correcta:
Modifica la clase Producto para que implemente la interfaz IEquatable<Producto> .
Sobrescribe el método Equals(object obj) y GetHashCode() . Dos productos deben
considerarse iguales si tienen el mismo Codigo .

5. Prueba final:
Repite la prueba del paso 3. Ahora inventario.ContainsKey(p2) debería devolver true
y permitirte acceder al stock, demostrando que el diccionario identifica correctamente la
clave por su contenido y no por su referencia.

Ejercicio 6. Red Social con Diccionarios
Vamos a crear una estructura básica para una red social utilizando las clases Usuario y
 Publicacion del ejercicio anterior, pero gestionándolas con diccionarios para un acceso
eficiente.

Ejercicio 6. Red Social con Diccionarios

Usuarios registrados correctamente.

Publicaciones añadidas.

--- Todas las Publicaciones (Cronológico) ---

29/12/2025 13:35:15 - dev_master: Hola mundo! (5 likes)

29/12/2025 13:40:15 - code_ninja: Aprendiendo C# (10 likes)

29/12/2025 13:45:15 - dev_master: Diccionarios son útiles (3 likes)

--- Publicaciones de dev_master ---

29/12/2025 13:35:15 - dev_master: Hola mundo! (5 likes)

29/12/2025 13:45:15 - dev_master: Diccionarios son útiles (3 likes)

--- Publicaciones de code_ninja ---

29/12/2025 13:40:15 - code_ninja: Aprendiendo C# (10 likes)

Pulsar Enter para salir...

Requisitos

1. Reutiliza las clases Usuario y Publicacion definidas en el Ejercicio 3.

10/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

2. Crea una clase RedSocial que contenga las siguientes colecciones:
 Dictionary<string, Usuario> usuarios : Donde la clave es el UserName y el valor es el
objeto Usuario .
 SortedDictionary<DateTime, Publicacion> publicaciones : Donde la clave es el Id de
la publicación y el valor es el objeto Publicacion . Esto mantendrá las publicaciones
ordenadas cronológicamente.
 Dictionary<string, List<long>> publicacionesPorUsuario : Donde la clave es el
 UserName y el valor es una lista de enteros que representan los Id de las
publicaciones de ese usuario.

3. Implementa los siguientes métodos en la clase RedSocial :
 RegistraUsuario(Usuario usuario) : Añade un usuario al sistema. Debe verificar si el
usuario ya existe, lanzando una excepción del tipo RedSocialExcepción indicando que
ha ocurrido.
 private void AñadePublicacionAUsuario(Usuario usuario, long idPublicacion) :
Método privado que añade el Id de la publicación a la lista de publicaciones del
usuario correspondiente en el diccionario publicacionesPorUsuario . Deberá realizar las
comprobaciones necesarias, para que no se repitan ID en el usuario.
 public void AñadePublicacion(Publicacion publicacion) : Añade una publicación al
 SortedDictionary de publicaciones y llama al método AñadePublicacionAUsuario para
vincularla con su autor.
 MostrarPublicacionesUsuario(string userName) : Muestra todas las publicaciones de un
usuario específico, recuperándolas a partir de sus IDs.
 MostrarTodasPublicaciones() : Muestra todas las publicaciones ordenadas por fecha
(gracias al SortedDictionary).

4. En el método Main , instancia la RedSocial , registra varios usuarios, crea y añade
publicaciones, y prueba los métodos de visualización.

Ejercicio 7. Lista de Reproducción Musical
(LinkedList)
Vamos a simular una lista de reproducción de música donde el orden de las canciones es
importante y queremos poder navegar entre ellas (siguiente, anterior) así como insertar
canciones en posiciones específicas de forma eficiente. Para ello utilizaremos LinkedList<T> .

11/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

Ejercicio 7. Reproductor de Música con LinkedList

--- Reproduciendo (Inicio a Fin) ---

Reproduciendo: Imagine - John Lennon

Reproduciendo: Bohemian Rhapsody - Queen

Reproduciendo: Stairway to Heaven - Led Zeppelin

Insertando 'Hotel California' después de 'Imagine'...

--- Reproduciendo (Inicio a Fin) ---

Reproduciendo: Imagine - John Lennon

Reproduciendo: Hotel California - Eagles

Reproduciendo: Bohemian Rhapsody - Queen

Reproduciendo: Stairway to Heaven - Led Zeppelin

Eliminando 'Stairway to Heaven'...

--- Reproduciendo (Inicio a Fin) ---

Reproduciendo: Imagine - John Lennon

Reproduciendo: Hotel California - Eagles

Reproduciendo: Bohemian Rhapsody - Queen

--- Reproduciendo (Fin a Inicio) ---

Reproduciendo: Bohemian Rhapsody - Queen

Reproduciendo: Hotel California - Eagles

Reproduciendo: Imagine - John Lennon

Pulsar Enter para salir...

Requisitos

1. Crea una clase Cancion con las propiedades: Titulo , Artista y Duracion (TimeSpan).
2. Crea una clase ReproductorMusica que gestione una LinkedList<Cancion> llamada

 listaReproduccion .
3. Implementa los siguientes métodos en ReproductorMusica :

 AgregaCancionAlFinal(Cancion cancion) : Añade una canción al final de la lista
(AddLast).
 AgregaCancionAlPrincipio(Cancion cancion) : Añade una canción al principio de la lista
(AddFirst).
 InsertaDespuesDe(string tituloCancionExistente, Cancion nuevaCancion) : Busca una
canción por su título y, si existe, inserta la nueva canción justo después (AddAfter).
Necesitarás usar Find para obtener el nodo.

Aviso

Como Find busca por valor, necesitarás implementar Equals en Cancion .



12/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

 EliminaCancion(string titulo) : Busca y elimina la primera canción que coincida con
el título (Remove).
 Reproduce() : Simula la reproducción recorriendo la lista desde el principio hasta el
final. Muestra por consola "Reproduciendo: [Titulo] - [Artista]".
 ReproduceInverso() : Simula la reproducción en orden inverso (desde la última hasta la
primera).

4. En el método Main , crea una instancia del reproductor, añade varias canciones, prueba a
insertar una entre dos existentes, elimina una y reproduce la lista en ambos sentidos.

Ejercicio 8. Sistema de pedidos de restaurante con
colecciones especializadas
Desarrolla un sistema para gestionar pedidos de un restaurante usando colecciones apropiadas
para cada tipo de operación: menú ordenado, ingredientes únicos, cola de pedidos y histórico de
clientes.

13/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

Ejercicio 8: Sistema de pedidos de restaurante

=== MENÚ DEL DÍA (por categorías) ===

ENTRANTES:

 - Ensalada César ($8,50)

 - Bruschetta ($6,00)

PRINCIPALS:

 - Paella Valenciana ($15,20)

 - Salmón a la plancha ($18,50)

POSTRES:

 - Tiramisu ($7,80)

 - Flan casero ($5,50)

=== COLA DE PEDIDOS ===

Cola actual (3 pedidos esperando):

1. 29/12/2025 - Mesa 5: Paella Valenciana, Tiramisu - Total: 23,00

2. 29/12/2025 - Mesa 2: Ensalada César, Salmón a la plancha - Total: 27,00

3. 29/12/2025 - Mesa 8: Bruschetta, Flan casero - Total: 11,50

Cocinando pedido de Mesa 5...

Pedido completado. Cola actualizada (2 pedidos).

Cliente Juan Martínez - Visitas: 6, Gasto promedio: $18,47

Pedidos:

 29/12/2025 - Mesa 0: Paella Valenciana - Total: 15,20

 29/12/2025 - Mesa 0: Paella Valenciana - Total: 15,20

 29/12/2025 - Mesa 0: Paella Valenciana - Total: 15,20

 05/10/2025 - Mesa 5: Paella Valenciana, Tiramisu - Total: 23,00

 02/10/2025 - Mesa 5: Ensalada César, Salmón a la plancha - Total: 27,00

 28/09/2025 - Mesa 5: Paella Valenciana - Total: 15,20

Pulsar Enter para salir...

Requisitos

Usa la clase Plato del ejercicio 1.
Clase Pedido : NumeroMesa , Platos (List), FechaHora (DateTime), Total (calculado).
Clase Cliente : Nombre , HistorialPedidos (List), propiedades calculadas: NumeroVisitas ,
 GastoPromedio .
Clase Restaurante que use:

 SortedDictionary<Categoria, List<Plato>> para menú organizado.
 Queue<Pedido> para cola de cocina.
 Dictionary<string, Cliente> para clientes frecuentes.

Métodos principales:
 AgregaPlato(Plato plato) - organiza por categoría.

14/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

 EncolaPedido(Pedido pedido) - añade a cola de cocina.
 ProcesaPedido() - saca de la cola y procesa.
 ActualizaCliente(string nombre, Pedido pedido) - actualiza historial.
 TopClientesFrecuentes(int cantidad) - ordena por número de visitas.

Ejercicio 9. Implementación de una Pila Genérica
(Wrapper)
Vamos a crear nuestra propia implementación de una pila (Stack) genérica, pero en lugar de
usar un array interno (como hace Stack<T> de .NET), utilizaremos una List<T> privada para
almacenar los elementos. Esto nos permitirá "capar" la funcionalidad de la lista y exponer solo
las operaciones LIFO (Last In, First Out).

Ejercicio 9. Implementación de una Pila Genérica

--- Pila de Enteros ---

Pila con 3 elementos

Cima (Peek): 30

Desapilando (Pop): 30

Nueva Cima (Peek): 20

¿Está vacía?: False

--- Pila de Cadenas (desde Array) ---

Pila con 3 elementos

Desapilando: C#

Desapilando: Mundo

Desapilando: Hola

Excepción esperada: La pila está vacía.

Fin de la demostración de la pila.

Requisitos

1. Crea una clase genérica Pila<T> .
2. Define un campo privado List<T> _elementos donde se almacenarán los datos.
3. Implementa los siguientes constructores:

Constructor vacío: Inicializa la lista interna.
Constructor con IEnumerable<T> : Permite inicializar la pila con los elementos de
cualquier colección existente (Array, List, etc.).

15/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

4. Implementa los métodos típicos de una pila:
 Push(T elemento) : Añade un elemento a la cima de la pila (final de la lista).
 Pop() : Devuelve y elimina el elemento de la cima. Debe lanzar una excepción
 InvalidOperationException si la pila está vacía.
 Peek() : Devuelve el elemento de la cima sin eliminarlo. También debe lanzar
excepción si está vacía.
 EstaVacia() : Devuelve true si no hay elementos.

5. Implementa una propiedad Count que devuelva el número de elementos.
6. Sobrescribe ToString() para mostrar el contenido de la pila.
7. En el método Main , crea una pila de enteros, apila varios números, desapila uno, y prueba

a crear otra pila de cadenas a partir de un array de strings usando el segundo constructor.

Ejercicio 10. Patrón Iterator en la Pila Genérica
Vamos a ampliar la clase Pila<T> del ejercicio anterior para que sea posible recorrer sus
elementos utilizando un bucle foreach .

Ejercicio 10. Patrón Iterator en la Pila Genérica

Recorriendo la pila con foreach (LIFO):

Cuarto

Tercero

Segundo

Primero

Pulsar Enter para salir...

Requisitos

1. Intento inicial: En el Main , intenta recorrer una instancia de tu Pila<T> con un bucle
 foreach . Observarás que el compilador da un error porque tu clase no implementa
 IEnumerable ni tiene un método GetEnumerator .

2. Implementación del Iterador:
Modifica la clase Pila<T> para que implemente la interfaz IEnumerable<T> .
Implementa el método GetEnumerator() utilizando la palabra clave yield return .
Nota: El recorrido debe hacerse desde la cima (último elemento añadido) hacia el
fondo, respetando la naturaleza LIFO de la estructura.

3. Prueba final:

16/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

Vuelve a probar el bucle foreach en el Main . Ahora debería funcionar correctamente y
mostrar los elementos de la pila.

17/17 Ejercicios Unidad 19 - Colecciones IES Doctor Balmis

