Unidad 18

Descargar estos apunte en pdf o html

indice

» indice
¥ Genéricos o clases parametrizadas
= |ntroduccion
¥ Clases parametrizadas en CSharp
= |nicializar un dato genérico a su valor por defecto
= Consideraciones especiales al definir clases parametrizadas
= Ejemplo de clase parametrizada con un solo parametro tipo
= Métodos parametrizados en CSharp
= Tipos parametrizados en la BCL
¥ Restricciones en tipos parametrizados
= Ejemplo restriccidon en tipos parametrizados
= Extensores o métodos de extension

119 Programacion 1° DAM Unidad 18 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u18_poo_genericos_y_extensores/u18_poo_genericos_y_extensores.pdf
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u18_poo_genericos_y_extensores/u18_poo_genericos_y_extensores.html

Genéricos o clases parametrizadas

Introduccion

En ocasiones se nos daran clases o métodos cuya funcionalidad y légica es idéntica cambiando
unicamente uno o mas tipos usados. En estos casos se nos generara cédigo practicamente
repetido, donde cambian unicamente algunos tipos usados. Esta situacion es poco deseable y
necesitaremos de algun mecanismo para poder generalizar el cddigo, de forma que podamos
reutilizarlo con diferentes tipos sin necesidad de repetirlo.

Muchos lenguajes orientados a objetos, incluido C#, nos permiten definir los tipos dentro de una
clase de forma parametrizada al instanciar un objeto de la misma. Expresaremos pues, el tipo o
los tipos genéricos a través de una o mas letras mayusculas usadas a lo largo de la definicion de
la clase. Aunque se suele usar la letra T, podremos usar cualquier otra que nos represente el tipo
parametrizado. A estas letras se les denomina parametros tipo y podremos usarlas en clases,

métodos y mas estructuras que veremos mas adelante.

A través de este tipo de definiciones, se aparecera un nuevo tipo
de polimorfismo en la POO, denominado polimorfismo
parameétrico y lo definiremos como aquel que nos permite definir el

tipo dentro de una clase de forma parametrizada, al instanciar un %C@ A T
objeto de la misma. De tal manera que, para objetos diferentes, el
. -dato: T
tipo con el que se instancia podra cambiar.
+A(dato : T)

La forma de representar el tipo parametrizado en los diagramas de
clases UML, es a través de un recuadro en la parte superior

derecha de la definicion.

2/19 Programacién 1° DAM Unidad 18 IES Doctor Balmis

Clases parametrizadas en CSharp
Veamos como se define en C# para acabar de dar forma al concepto.

Definicion: Definiremos los tipos genéricos justo después del identificador de la clase, entre < »> .

public class A<T>

{
public T Dato { get; private set; }
public A(T dato)
{
Dato = dato;
}
}

Uso: Cuando yo instancie un objeto de la clase genérica A ...

A<int> objA = new(4);
public class A

{
En tiempo de ejecucion C# construird una objeto T e
de la clase A como sustituyendo el tipo public A(int dato)
parametrizado por el que le estamos {
.. . L Dato = dato;
indicando en el momento de la instanciacion. En)

nuestra instancia sera un int como se ve en el }
codigo de ejemplo.

Si vamos a usar mas de un tipo a parametrizar. Los separaremos por comas.

------- public class A<K, V>

K, Vi
©a | {
private K clave;
-clave : K vate U val
R CTERY private V valor;
public V GetValor(K clave) { ; }
+GetValor(clave : K) : V }

3/19 Programacién 1° DAM Unidad 18 IES Doctor Balmis

Inicializar un dato genérico a su valor por defecto

class A<T>

{
public T Dato { get; private set; } = null;

En principio no sabemos si el tipo que le vamos a indicar a la clase es valor o referencia. Por lo que
deberiamos usar la expresion default(T)

class A<T>

{
public T Dato { get; private set; } = default(T);

Consideraciones especiales al definir clases parametrizadas

1. No podremos usar los parametros tipo (T, U, K, etc..) como nombre o identificadores de clases,
propiedades o campos.

2. Deberemos llevar cuidado con el polimorfismo funcional. Por ejemplo supongamos la siguiente
definicion...

class A<T>

{
public void IdMetodo(int pl1, string p2) { ; }

public void IdMetodo(T pl, string p2) { ; }

Siinstanciamos A de la siguiente forma ...

A<string> obj = new();

seria correcto y tendriamos dos signaturas. Una con p1 como int y otra con p1 como string .
Pero ... ¢ Qué pasa si declaramos?

A<int> obj = new();

En este caso tendremos dos signaturas iguales y aunque no se produzca error, cuando
lamemos a IdMetodo se ejecutara la no genérica.
3. A un objeto declarado a partir de un parametro tipo:
e En principio, solo podremos aplicarle operaciones como si fuera de tipo object y no
podremos usar operadores.
+ No podremos realizarle un cast explicito, sin pasar previamente a object .

4/19 Programacién 1° DAM Unidad 18 IES Doctor Balmis

Ejemplo de clase parametrizada con un solo parametro tipo

Vamos a definir una clase Matriz que haga de Visualizacién de Matriz y su Transpuesta

envoltorlo 0 'Wrapper’ Sobre tabla dentada de Se muestra una matriz original de 3x4 y su correspondiente matriz transpuesta de 4x3.
cualquier tipo. Esta clase nos permitira definir Matriz Transpuesta (AT)
Matriz Original (A)
operaciones de utilidad para este tipo de 1 5 9
. . 1 2 3 4
matrices. Por ejemplo, obtener su traspuesta 2 6 10
. 5 6 7 8
como se ve en la imagen. 3 7w
9 10 " 12
. . 4 8 12
Un diagrama que represente la clase descrita
tendria una propiedad privada de solo lectura que =
contendra la tabla dentada donde guardaremos © Matriz
la matriz original. Fijate que ademas, la clase es -datos : T[][]
genérica y por tanto, el tipo de la tabla dentada -Copia(in datos : T[][])_: TI][]

+Matriz(in datos : T[][])
+Traspuesta() : Matriz<T>
-GetDatos() : T[][]

Para seguir ejemplo, puedes descargar el coédigo A+ ToString() : string

tambiénloes T[][] .

desde el siguiente enlace: matriz_generica.cs.

Parametrizamos la clase Matriz con un solo parametro de tipo genérico T que sera el tipo de los datos
que contendra la matriz. Fijate que el constructor recibe una tabla dentada para y se asegura de que

las dimensiones sean compatibles con una matriz.

public class Matriz<T>
{
private T[][] Datos { get; }
public Matriz(T[][] datos)
{
if (datos.Length <= 0)
throw new ArgumentException("Debes proporcionar al menos una fila de datos");
if (datos[@] == null || datos[@].Length <= @)
throw new ArgumentException("Debes proporcionar al menos una columna de datos");
for (int i = 1; i < datos.Length; i++)
{
if (datos[i] == null)
throw new ArgumentException("Ninguna fila puede ser null");
if (datos[i].Length != datos[@].Length)
throw new ArgumentException("Todas las filas deben tener las mismas columnas");

}

Datos = datos;

5/19 Programacién 1° DAM Unidad 18 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u18_poo_genericos_y_extensores/assets/codigo/matriz_generica_ejemplo.cs

Definimos la propiedad Traspuesta que nos devolvera una nueva matriz con la traspuesta de la
original. Fijate que el tipo de la traspuesta es también Matriz<T> .

public class Matriz<T>
{
//... céodigo omitido por abreviar
public Matriz<T> Traspuesta
{
get
{
int filas = Datos.Length;
int columnas = Datos[@].Length;
T[][] transpuesta = new T[columnas][];
for (int i = 9; i < columnas; i++)
{
transpuesta[i] = new T[filas];
for (int j = @; j < filas; j++)
{
transpuesta[i][j] = Datos[j][i];

}

return new Matriz<T>(transpuesta);

Por ultimo, invalidamos el método ToString para que nos muestre la matriz de forma adecuada.

public class Matriz<T>

{
//... céodigo omitido por abreviar
public override string ToString()
{
string resultado = string.Empty;
foreach (var fila in Datos)
{
resultado += string.Join(", ", fila) + "\n";
}
return resultado.TrimEnd('\n");
}
by

6/19 Programacién 1° DAM Unidad 18 IES Doctor Balmis

public static void Main() Si ejecutamos el siguiente cédigo de ejemplo,

{ donde se crea una matriz de enteros y otra de

Matriz<int> ml = new(caracteres, y se obtiene su traspuesta...
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]

Mostrara por la consola:

1); Matriz enteros original:
1, 2, 3, 4
Console.WritelLine("Matriz enteros original:"); 5, 6, 7, 8
Console.WritelLine(ml); 9, 10, 11, 12
Matriz enteros traspuesta:

Matriz<int> mlt = ml.Traspuesta; 1, 5,9
2, 6, 10
3, 7, 11
4, 8, 12

Console.WritelLine("Matriz enteros traspuesta:");
Console.WriteLine(mlt);
Console.WriteLine();

) Matriz caracteres original:
Matriz<char> m2 = new(

a, b,
[d, e,
[*a', 'b"', 'c'], g, h,
['d', 'e’, "f'], i, k,
['g"> "', "], Matriz caracteres traspuesta:
['3', 'k', '1'] a, d, i

J
1; k
1

Console.WriteLine("Matriz caracteres original:");

Console.WriteLine(m2);
Matriz<char> m2t = m2.Traspuesta;
Console.WriteLine("Matriz caracteres traspuesta:

Console.WriteLine(m2t);

24

Generics allow you to define type-safe
data structures, without committing to
actual dasta types.

9

- Anders Hejlsberg

7119 Programacién 1° DAM Unidad 18 IES Doctor Balmis

Ejemplo doble parametrizacion:

En el siguiente ejemplo, vamos a definir un patrén 'Union-Type' similar al del tema de
abstraccion, a través de una clase denominada Resultado<T, E> que nos permita representar el
resultado de una operacion que puede ser exitosa o fallida. En caso de éxito, contendra un valor
del tipo T y en caso de fallo, un error del tipo E .

Basicamente, definiremos dos clases anidadas dentro de Resultado<T, E> denominadas Exito Yy
Fallo que contendran el estado de éxito o fallo respectivamente usando los tipos genéricos T y
E.

public abstract record class Resultado<T, E>

{
public record Exito(T Value) : Resultado<T, E>
{
public override string ToString() => $"{Value}";
}
public record Fallo(E Error) : Resultado<T, E>
{
public override string ToString() => $"Fallo: {Error}";
}
}

Definimos una clase de utilidad denominada calculadora que demomento definira dos tipos de

division.

1. Una para enteros donde devolvera un Resultado<int, string> el resultado sera otro entero
en caso de éxito o un texto de error en caso de fallo.

2. Una para numeros reales donde devolvera un Resultado<double, Exception> el resultado
sera otro double en caso de éxito o una excepcién en caso de fallo.

public static class Calculadora
{
public static Resultado<int, string> Divide(int dividendo, int divisor) =>
divisor == 0
? new Resultado<int, string>.Fallo("No se puede dividir por cero.")

: new Resultado<int, string>.Exito(dividendo / divisor);

// Fijate que en caso de fallo devolvemos una instancia de DivideByZeroException
public static Resultado<double, Exception> Divide(double dividendo, double divisor) =>
divisor < 1le-5
? new Resultado<double, Exception>.Fallo(new DivideByZeroException())

: new Resultado<double, Exception>.Exito(double.Round(dividendo / divisor, 2));

8/19 Programacion 1° DAM Unidad 18 IES Doctor Balmis

Definimos un sencillo programa principal de test que gestionara los dos tipos de resultados...

class Program

{

static void Main()

{

Resultado<int, string> resultadol = Calculadora.Divide(10, ©0);

Console.WritelLine(resultadol);

Resultado<int, string> resultado2 = Calculadora.Divide(10, 3);

Console.WriteLine(resultado2);
Console.WritelLine();

Resultado<double, Exception> resultado3 = Calculadora.Divide(led, od);

Console.WriteLine(resultado3);

Resultado<double, Exception> resultado4 = Calculadora.Divide(1ed, 3d);

Console.WritelLine(resultado4);

Mostrara por la consola:

Fallo: No se puede dividir por cero.
3

Fallo: System.DivideByzeroException: Attempted to divide by zero.
3,33

Métodos parametrizados en CSharp

C# permite definir no solo clases genéricas, sino que también puede hacerse genéricos métodos
individuales, tanto de instancia como estaticos, sin necesidad de que lo sea la clase o estructura en la

que el método esta definido.
La sintaxis para parametrizar un método sera analoga a la que hemos usado para las clases.

En la mayoria de los casos, este tipo de parametrizacion de métodos, tendra mas sentido con
métodos de utilidad estaticos. Ya que como operaciones sobre un objeto no sera 'inmediato’
relacionarlos con los tipos de los campos que definen el estado de la clase.

9/19 Programacién 1° DAM Unidad 18 IES Doctor Balmis

// La clase puede o no estar parametrizada.

public static class A

{
public static void Metodo<T>(T parametro)
{
// Podremos usar el tipo genérico T tanto en
// los parametros formales, como en el cuerpo
// del método.
}
public static void Metodo(int parametro)
{
// Para C# aunque este método tenga el mismo id
// que el anterior, tendran signaturas diferentes
// y por tanto sabra distinguirlos como diferentes.
}
}

Por ejemplo, vamos a definir un método genérico denominado CreaArrayInicializado<T> que nos
permita crear un array de cualquier tipo T e inicializarlo con un valor por defecto.

public static T[] CreaArrayInicializado<T>(int tamafo, T valorInicial)

{
T[] array = new T[tamafio];
for (int 1 = 9; i < tamafio; i++)
{
array[i] = valorInicial;
}
return array;
}

Fijate que no hace falta indicar el tipo T al llamar al método, ya que el compilador es capaz de inferirlo
a partir del tipo del parametro valorInicial . De todas formas, si lo deseamos, podriamos indicarlo
explicitamente como en el ultimo ejemplo del array de booleanos.

public static void Main(string[] args)

{
int[] integerArray = CreaArraylInicializado(5, 9);
Console.WriteLine($"Array de enteros: [{string.Join(", ", integerArray)}]");
string[] stringArray = CreaArrayInicializado(3, "vacio");
Console.WriteLine($"Array de cadenas: [{string.Join(", ", stringArray)}]");
bool[] boolArray = CreaArrayInicializado<bool>(4, false);
Console.WriteLine($"Array de booleanos: [{string.Join(", ", boolArray)}]1");
}

10/19 Programacion 1° DAM Unidad 18 IES Doctor Balmis

Tipos parametrizados en la BCL

Supongamos que tenemos la clase Hora que implementa el interfaz IComparable que vimos
anteriormente en el tema. Recordemos que esto supondria que podremos pasar cualquier objeto, pues
todos heredan de object . Por esta razdn, deberemos hacer un downcast del objeto al comparar a
Hora pero no se puede asegurar que el objeto que estamos comparando es una hora, por tanto
deberemos afadir algun tipo de cédigo de control de errores...

class Hora : IComparable

{
public int H { get; }
public int M { get; }
public Hora(int h, int m)
{
H = h;
M= m;
}
public override string ToString() => $"{H:D2}:{M:D2}";
public int CompareTo(object? objHora)
{
// Nadie nos asegura que el downcast se pueda realizar.
Hora hora = objHora as Hora
?? throw new ArgumentException("El objeto a comparar no es una hora.", "obj");
int comparacion = H - hora.H;
if (comparacion == 0)
comparacion = M - hora.M;
return comparacion;
}
}

Sin embargo, C# afiadid una definicion parametrizada para dicho interfaz IComparable<T> y si la
utilizamos, nos avisara en tiempo de compilacion de que no estamos pasando el tipo correcto y
ademas, no necesitaremos hacer el repetitivo codigo de control anterior.

2" Nota
Alo largo de los temas usaremos otras implementaciones de interfaces genéricas como

IComparer<T> , IEnumerable<T> O IEquatable<T> definidos en las BCL aunque existen muchas

mas.

11/19 Programacién 1° DAM Unidad 18 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.icomparable-1

class Hora :

{

IComparable<Hora>

// ... cédigo omitido para abreviar.

// Ahora tenemos seguridad de que nos llega una hora.

public int CompareTo(Hora? hora)

{

// Si no quisiéramos permitir null

// ArgumentNullException.ThrowIfNull(hora);

int comparacion = (hora == null) ? 1 :

if (comparacion == @ && hora != null)
comparacion = M - hora!.M;

return comparacion;

H - hora.H;

Como hemos comentado, dispondremos de métodos estaticos de utilidad que estaran parametrizados,

definiendo los tipos de entrada en el momento de su utilizacién.

Por ejemplo, si queremos ordenar una lista o un array de horas, podremos usar el método estatico

Array.Sort<T> O el método de instancia List<T>.Sort() . Ambos ordenaran los elementos de la

coleccion usando el método compareTo definido en la clase.

Si leemos la documentacion oficial de la clase List<T> veremos que el método sort() generara

una excepcion InvalidOperationException en tiempo de ejecucion siel tipo T no implementa el

interfaz 1comparable<T> puesto que no sabra como ordenar Horas.

Puesto que nuestra clase Hora implementa dicho interfaz, podremos usar ambos métodos para

ordenar una lista o un array de horas. Puedes descargar el codigo desde el siguiente enlace:

hora_comparable.cs.

static void Main()

Fijate que el método String.Join<T> es
parametrizado. Lo que sucede es que en el caso
de la listas String.Join<T> , es capaz de inferir
el tipo T a partir del tipo de la coleccién que le
pasamos como segundo parametro. Ademas, en
el caso de ordenacién de un array debemos
usar el método de clase parametrizado
Array.Sort<Hora> para que espere como entrada
un Hora[] . No hace falta que indiquemos el tipo
en el caso de la lista, pues es un método de
instancia y el tipo ya lo conoce.

{
List<Hora> horas =
[
new(9, 55), new(10, 50), new(8, 30), new(7,
1;
Hora[] aHoras = [.. horas];
horas.Sort();
Console.WriteLine(string.Join(", ", horas));
Array.Sort<Hora>(aHoras);
Console.WriteLine(string.Join<Hora>(", ", aHoras
}
12/19 Programacién 1° DAM Unidad 18 IES Doctor Balmis

https://learn.microsoft.com/es-es/dotnet/api/system.collections.generic.list-1.sort?view=net-8.0#system-collections-generic-list-1-sort
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u18_poo_genericos_y_extensores/assets/codigo/hora_comparable_ejemplo.cs

Restricciones en tipos parametrizados

Podremos definir restricciones de tipo asociadas a su definicion para los parametros tipo. Se
especifican con la palabra reservada where al final de la definicion.

<T> where T : restriccidn

Por ejemplo, si queremos que el tipo genérico T solo pueda ser un tipo valor, lo indicaremos de la

siguiente manera...

class A<T> where T : struct

Tendremos diferentes tipos de restricciones entre las que podemos destacar las siguientes ...

Tipo Restriccion Descripcion
_ El tipo debe heredar de una clase base determinada.
De herencia
<T> where T : ClaseBaseDeT
) El tipo debe implementar una interfaz determinada.
De interfaz >

<T> where T : IinterfazAImplementar

, , El tipo debe ser referencia.
De tipo referencia
<T> where T : class

. El tipo debe ser valor.
De tipo valor
<T> where T : struct

El tipo debe tener un constructor sin parametros.
De constructor
<T> where T : new

Ejemplo restriccion en tipos parametrizados

Vamos a recuperar la clase class Matriz<T> Y a usarla junto a la clase Hora : IComparable<Hora> .
Para ello, vamos a invalidar los métodos de la clase object int GetHashCode() Yy

bool Equals(object obj) que me devolvera true sitodos los elementos de la matriz contenida
son iguales a los de la que me llegan para comparar. Devolviendo false en caso contrario.

Pero... ; Como comparo los elementos de de la matriz si son de tipo T ?

Lo que haremos es afadir la restriccion de que los T con se instancie Matriz<T> implementen el

interfaz IComparable<T> de la siguiente manera:

13/19 Programacién 1° DAM Unidad 18 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/where-generic-type-constraint

public class Matriz<T> where T : IComparable<T>

{
private T[][] Datos { get; }

public override int GetHashCode() => HashCode.Combine(Datos);

public override bool Equals(object? obj)
{

bool sonIguales = true;

if (obj is not Matriz<T> otraMatriz)

{

sonIguales = false;
}
else if (Datos.Length != otraMatriz.Datos.Length || Datos[@].Length != otraMatriz.Datos[@].Length)
{

sonIguales = false;

}

else

{
int filas = Datos.Llength;

int columnas = Datos[@].Length;
for (int i = @; i < filas && sonIguales; i++)
for (int j = @; j < columnas && sonIguales; j++)

sonIguales = Datos[i][j].CompareTo(otraMatriz.Datos[i][]j]) == ©;

return sonIguales;

Ahora, ademas de poder crear matrices de int O string que implementan IComparable<...> , podré
crear matrices de objetos Hora ya que dicha clase también implementa dicho interfaz. Sin embargo, al
crearla de cualquier otro tipo que no lo implemente, obtendremos un error.

Por ultimo, vamos a crear un simple programa principal que cree dos matrices de horas iguales y
me confirme su igualdad.

Cuando ejecutemos el programa, mostrara por la consola True . Puesto que, ademas de tener las
mismas dimensiones, todos los elementos son iguales porque hemos usado el método CompareTo de
la clase Hora para compararlos.

14/19 Programacién 1° DAM Unidad 18 IES Doctor Balmis

static void Main()

{

Matriz<Hora> ml = new(

[
[new (0, ©), new (0, 30)], [new (12, ©), new (12, 30)], [new (18, ©), new (18, 30)]
D;

Matriz<Hora> m2 = new(

[
[new (0, ©), new (0, 30)], [new (12, 0), new (12, 30)], [new (18, ©), new (18, 30)]

s
Console.WriteLine(ml.Equals(m2));

Puedes descargar el cédigo desde el siguiente enlace: matriz_generica_comparable.cs.

En ocasiones estas restricciones pueden ser confusas de leer si la clase implementa a su vez varias
interfaces y el tipo genérico tiene varias restricciones de interfaz. Por ejemplo, ¢ Qué significara esta
definicién? ...

public class Matriz<T> : IComparable<Matriz<T>>, ICloneable where T : IComparable<T>, ICloneable { ... } // &

Pues que la clase Matriz<T> implementa los interfaces IComparable<Matriz<T>> € ICloneable Yy que
el tipo genérico T debe implementar los interfaces Icomparable<T> € ICloneable .

Extensores o métodos de extension

Funcionalidad interesantisima de C# para extender la funcionalidad en clases selladas o de las
que no disponemos el cédigo porque es una libreria de terceros, incluso para evitar dependencias
y acoplamientos en arquitecturas de capas. De hecho, otros lenguajes modernos como Kotlin o
Swift también los permiten.

Pero dejando a un lado consideraciones complejas y de diseno, en este tema vamos definir
simplemente el concepto y su sintaxis en C#. Siendo importante destacar que, desde la
documentacion oficial del lenguaje, se recomienda no abusar del uso de este tipos de métodos,
y por tanto usarlos en los casos anteriormente descritos.

Caracteristicas basicas de los métodos de extension:

1. Me permiten 'agregar’ operaciones sobre los tipos existentes, sin crear un nuevo tipo derivado y
sin modificar el original.

2. Se definen de forma especial a través de un método estatico, pero se les llama como si fueran
métodos de instancia en el tipo extendido.

15/19 Programacién 1° DAM Unidad 18 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u18_poo_genericos_y_extensores/assets/codigo/matriz_generica_comparable_ejemplo.cs
https://www.adictosaltrabajo.com/2019/07/02/capas-cebollas-y-colmenas-arquitecturas-en-el-backend/
https://docs.microsoft.com/es-es/dotnet/csharp/programming-guide/classes-and-structs/extension-methods#general-guidelines

3. No tendré acceso a los miembros privados del tipo extendido.

Una propuesta de plantilla basica de sintaxis de definicion de estos métodos podria definir los en un

fichero fuente independiente de la siguiente manera:

namespace <Tipo>Extensions;

public static class <Tipo>Extension

{

public static void IdMetodoExtensor(this <Tipo> o)

{

// Operaciones sobre o.

Veamoslo a través de un ejemplo
sencillo pero bastante 'esclarecedor ...

Supongamos que queremos afadir
métodos de utilidad sobre objetos
cadena string que nos proporcionan
las BCL. Sin embargo, nosotros no
podemos modificar la
implementacioén en la clase string
para afiadir nuevas operaciones.

Crearemos un fuente llamado
StringExtension.cs que contendra la
clase estatica stringExtension donde
afiadiremos todos los métodos de
extension sobre string .

En el siguiente ejemplo hemos afadido
el método capitaliza que pasa a
mayusculas la primera letra de cada
palabra y el método cuentaPalabras que
me retorna el numero de palabras en
una cadena.

namespace StringExtensions;

public static class StringExtension
{
public static string Capitaliza(this string s)
{
string sCapitalizada;
if (!string.IsNullOrEmpty(s))
{
StringBuilder sb = new (s);
sb[@] = char.ToUpper(sb[@]);
for (int 1 = 1; i < s.Length; i++)
sb[i] = char.IsWhiteSpace(sb[i - 1])
? char.ToUpper(sb[i]) : sb[i];
sCapitalizada = sb.ToString();
}
else
sCapitalizada = s;

return sCapitalizada;

public static int CuentaPalabras(this string s)
=> s.Split(
[7% %% B 1
StringSplitOptions.RemoveEmptyEntries
).Length;

Aparentemente son métodos de utilidad son estaticos y que reciben como parametro un objeto de la

clase sobre la que queremos anadir la funcionalidad. Pero fijate que, el tipo a extender string,

tiene la palabra reservada this delante. Esto es lo que indica a C# que se trata de un método de

extension.

16/19 Programacién 1° DAM Unidad 18

IES Doctor Balmis

Ahora si quisiéramos utilizar estos métodos adicionales en un programa simplemente tendriamos que
hacer un using StringExtensions; para que nos los ofrezca el 'IntelliSense' al ver las la operaciones
posibles sobre un objeto cadena.

using StringExtensions;

class Ejemplo

{
static void Main()
{
string s = "hola caracola";
// Si no hacemos el using StringExtensions; los métodos Capitaliza
// y CuentaPalabras no nos los ofrecera.
Console.WriteLine($"{s.Capitaliza()} tiene { s.CuentaPalabras()} palabras.");
}
}

Puedes descargar el cédigo desde el siguiente enlace: extensores_cadena.cs

O Tip

Dependiendo del IDE que estemos usando, el

{s.CuentaPalabras|()} palabras.”);

Intellisense normalmente nos ofrece un © Clone -
. . . . @ CompareTo
simbolo (ej. ¢) al lado del método publico de © Contains
la clase y si este es un método de extension lo © Copylo I
=h |CuentaPalahlas | (extension) int string.CuentaPalabras()
indicara con una flecha hacia abajo (ej. ¢ |) @ EndsWith
. . @ Equals

y/o la etiqueta (Extensién) precediendo ala ® GetEnumerator

. .z P @ GetHashCode -
descripcion del método. 5o O

1719 Programacion 1° DAM Unidad 18 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u18_poo_genericos_y_extensores/assets/ejemplos/extensores_cadena_ejemplo.cs

Ejemplo:

Supongamos que tenemos dos clases 3Jugador y Alumno que representan respectivamente a un
jugador de futbol y a un alumno de una escuela. Ambas clases tienen propiedades similares
pero no iguales y ademas estan definidas en librerias de terceros y no podemos modificarlas.
Piensa que, incluso aunque pudiéramos modificarlas y anadir nuevos métodos, nos obligaria a
afnadir dependencias a dichas librerias y por tanto a aumentar el acoplamiento entre capas.

public record class Jugador(string Nombre, string Apellido, DateOnly Nacimiento);

public record class Alumno(string Nombre, DateTime Nacimiento);

Quiero afiadir métodos de utilidad para convertir un Jugador en un Alumno Y viceversa. Fijate
que no son del todo equivalentes, ya que el Alumno tiene una sola propiedad Nombre mientras
que el Jugador la tiene dividida en Nombre y Apellido . Ademas, la propiedad Nacimiento es de
diferente tipo en ambas clases. Por lo que cada vez que queramos hacer una conversion
deberemos escribir el mismo cédigo repetidamente.

La solucion es definir dos métodos de extension siguiendo el esquema que hemos visto
anteriormente. Estos métodos los podriamos definir en un mismo fichero fuente llamado

ConversionExtensions.cs CON un namespace ConversionExtensions .

namespace ConversionExtensions;

public static class AlumnoExtension

{
public static Jugador ToJugador(this Alumno alumno) => new(
Nombre: alumno.Nombre.Split(' ')[0],
Apellido: alumno.Nombre.Split(' "')[~1],
Nacimiento: DateOnly.FromDateTime(alumno.Nacimiento));
}
public static class JugadorExtension
{
public static Alumno ToAlumno(this Jugador jugador) => new(
Nombre: $"{jugador.Nombre} {jugador.Apellido}",
Nacimiento: jugador.Nacimiento.ToDateTime(new TimeOnly(@, ©)));
}

Ahora ya solo nos quedaria usar estos métodos donde los necesitemos. Para ello, deberemos
hacer un using ConversionExtensions; en el fichero fuente donde los vayamos a usar.

18/19 Programacién 1° DAM Unidad 18 IES Doctor Balmis

using ConversionExtensions;

class Ejemplo
{
static void Main()
{
Jugador jugadorl = new(
Nombre: "Lionel",
Apellido: "Messi",
Nacimiento: new DateOnly(1987, 6, 24));
Alumno alumnol = jugadorl.ToAlumno();
Console.WriteLine(jugadorl);

Console.WritelLine(alumnol);
Console.WriteLine();

Alumno alumno2 = new(
Nombre: "Cristiano Ronaldo",
Nacimiento: new DateTime(1985, 2, 5));
Jugador jugador2 = alumno2.ToJugador();
Console.WriteLine(alumno2);

Console.WriteLine(jugador2);

Puedes descargar el cédigo desde el siguiente enlace: extensores_conversion.cs

Mostrara por la consola:

Jugador { Nombre = Lionel, Apellido = Messi, Nacimiento = 24/06/1987 }
Alumno { Nombre Lionel Messi, Nacimiento = 24/06/1987 0:00:00 }

Alumno { Nombre Cristiano Ronaldo, Nacimiento = 05/02/1985 0:00:00 }
Jugador { Nombre = Cristiano, Apellido = Ronaldo, Nacimiento = 05/02/1985 }

Resumen

Para el usuario de estas clases, los métodos ToAlumno() y Tolugador() pareceran
métodos de instancia de las clases originales. Sin embargo, no lo son y no han modificado
el codigo original de dichas clases. Ademas, solo apareceran si hacemos el

using ConversionExtensions; .

19/19 Programacién 1° DAM Unidad 18 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u18_poo_genericos_y_extensores/assets/ejemplos/extensores_conversion_ejemplo.cs

