
Unidad 18
Descargar estos apunte en pdf o html

Índice
Índice
Genéricos o clases parametrizadas

Introducción
Clases parametrizadas en CSharp

Inicializar un dato genérico a su valor por defecto
Consideraciones especiales al definir clases parametrizadas
Ejemplo de clase parametrizada con un solo parámetro tipo

Métodos parametrizados en CSharp
Tipos parametrizados en la BCL
Restricciones en tipos parametrizados

Ejemplo restricción en tipos parametrizados
Extensores o métodos de extensión

1/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u18_poo_genericos_y_extensores/u18_poo_genericos_y_extensores.pdf
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u18_poo_genericos_y_extensores/u18_poo_genericos_y_extensores.html

Genéricos o clases parametrizadas

Introducción
En ocasiones se nos darán clases o métodos cuya funcionalidad y lógica es idéntica cambiando
únicamente uno o más tipos usados. En estos casos se nos generará código prácticamente
repetido, donde cambian únicamente algunos tipos usados. Está situación es poco deseable y
necesitaremos de algún mecanismo para poder generalizar el código, de forma que podamos
reutilizarlo con diferentes tipos sin necesidad de repetirlo.

Muchos lenguajes orientados a objetos, incluido C#, nos permiten definir los tipos dentro de una
clase de forma parametrizada al instanciar un objeto de la misma. Expresaremos pues, el tipo o
los tipos genéricos a través de una o más letras mayúsculas usadas a lo largo de la definición de
la clase. Aunque se suele usar la letra T , podremos usar cualquier otra que nos represente el tipo
parametrizado. A estas letras se les denomina parámetros tipo y podremos usarlas en clases,
métodos y más estructuras que veremos más adelante.

A través de este tipo de definiciones, se aparecerá un nuevo tipo
de polimorfismo en la POO, denominado polimorfismo
paramétrico y lo definiremos como aquel que nos permite definir el
tipo dentro de una clase de forma parametrizada, al instanciar un
objeto de la misma. De tal manera que, para objetos diferentes, el
tipo con el que se instancia podrá cambiar.

La forma de representar el tipo parametrizado en los diagramas de
clases UML, es a través de un recuadro en la parte superior
derecha de la definición.

A
T

-dato : T

+A(dato : T)

2/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

Clases parametrizadas en CSharp
Veamos como se define en C# para acabar de dar forma al concepto.

Definición: Definiremos los tipos genéricos justo después del identificador de la clase, entre < > .

public class A<T> // Un parámetro genérico

{

 public T Dato { get; private set; }

 public A(T dato)

 {

 Dato = dato;

 }

}

Uso: Cuando yo instáncie un objeto de la clase genérica A …

A<int> objA = new(4);

En tiempo de ejecución C# construirá una objeto
de la clase A como sustituyendo el tipo
parametrizado por el que le estamos
indicando en el momento de la instanciación. En
nuestra instancia será un int como se ve en el
código de ejemplo.

public class A

{

 public int Dato { get; private set; }

 public A(int dato)

 {

 Dato = dato;

 }

}

Si vamos a usar más de un tipo a parametrizar. Los separaremos por comas.

A
K, V

-clave : K
-valor : V

+GetValor(clave : K) : V

public class A<K, V> // Dos parámetros genéricos

{

 private K clave;

 private V valor;

 public V GetValor(K clave) { ; }

}

3/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

Inicializar un dato genérico a su valor por defecto

class A<T>

{

 public T Dato { get; private set; } = null; // Es correcto ¿?

}

En principio no sabemos si el tipo que le vamos a indicar a la clase es valor o referencia. Por lo que
deberíamos usar la expresión default(T)

class A<T>

{

 public T Dato { get; private set; } = default(T);

}

Consideraciones especiales al definir clases parametrizadas

1. No podremos usar los parámetros tipo (T , U , K , etc..) como nombre o identificadores de clases,
propiedades o campos.

2. Deberemos llevar cuidado con el polimorfismo funcional. Por ejemplo supongamos la siguiente
definición...

class A<T>

{

 public void IdMetodo(int p1, string p2) { ; }

 public void IdMetodo(T p1, string p2) { ; }

}

Si instanciamos A de la siguiente forma ...

A<string> obj = new();

sería correcto y tendríamos dos signaturas. Una con p1 como int y otra con p1 como string .
Pero ... ¿Qué pasa si declaramos?

A<int> obj = new();

En este caso tendremos dos signaturas iguales y aunque no se produzca error, cuando
llamemos a IdMetodo se ejecutará la no genérica.

3. A un objeto declarado a partir de un parámetro tipo:
En principio, solo podremos aplicarle operaciones como si fuera de tipo object y no
podremos usar operadores.
No podremos realizarle un cast explícito, sin pasar previamente a object .

4/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

Ejemplo de clase parametrizada con un solo parámetro tipo

Vamos a definir una clase Matriz que haga de
envoltorio o 'Wrapper' sobre tabla dentada de
cualquier tipo. Esta clase nos permitirá definir
operaciones de utilidad para este tipo de
matrices. Por ejemplo, obtener su traspuesta
como se ve en la imagen.

Un diagrama que represente la clase descrita
tendría una propiedad privada de solo lectura que
contendrá la tabla dentada donde guardaremos
la matriz original. Fíjate que además, la clase es
genérica y por tanto, el tipo de la tabla dentada
también lo es T[][] .

Para seguir ejemplo, puedes descargar el código
desde el siguiente enlace: matriz_generica.cs.

Matriz
T

-datos : T[][]

-Copia(in datos : T[][]) : T[][]
+Matriz(in datos : T[][])
+Traspuesta() : Matriz<T>
-GetDatos() : T[][]
^+ ToString() : string

Parametrizamos la clase Matriz con un solo parámetro de tipo genérico T que será el tipo de los datos
que contendrá la matriz. Fíjate que el constructor recibe una tabla dentada para y se asegura de que
las dimensiones sean compatibles con una matriz.

public class Matriz<T>

{

 private T[][] Datos { get; }

 public Matriz(T[][] datos)

 {

 if (datos.Length <= 0)

 throw new ArgumentException("Debes proporcionar al menos una fila de datos");

 if (datos[0] == null || datos[0].Length <= 0)

 throw new ArgumentException("Debes proporcionar al menos una columna de datos");

 for (int i = 1; i < datos.Length; i++)

 {

 if (datos[i] == null)

 throw new ArgumentException("Ninguna fila puede ser null");

 if (datos[i].Length != datos[0].Length)

 throw new ArgumentException("Todas las filas deben tener las mismas columnas");

 }

 Datos = datos;

 }

}

5/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u18_poo_genericos_y_extensores/assets/codigo/matriz_generica_ejemplo.cs

Definimos la propiedad Traspuesta que nos devolverá una nueva matriz con la traspuesta de la
original. Fíjate que el tipo de la traspuesta es también Matriz<T> .

public class Matriz<T>

{

 //... código omitido por abreviar

 public Matriz<T> Traspuesta

 {

 get

 {

 int filas = Datos.Length;

 int columnas = Datos[0].Length;

 T[][] transpuesta = new T[columnas][];

 for (int i = 0; i < columnas; i++)

 {

 transpuesta[i] = new T[filas];

 for (int j = 0; j < filas; j++)

 {

 transpuesta[i][j] = Datos[j][i];

 }

 }

 return new Matriz<T>(transpuesta);

 }

 }

}

Por último, invalidamos el método ToString para que nos muestre la matriz de forma adecuada.

public class Matriz<T>

{

 //... código omitido por abreviar

 public override string ToString()

 {

 string resultado = string.Empty;

 foreach (var fila in Datos)

 {

 resultado += string.Join(", ", fila) + "\n";

 }

 return resultado.TrimEnd('\n');

 }

}

6/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

public static void Main()

{

 Matriz<int> m1 = new(

 [

 [1, 2, 3, 4],

 [5, 6, 7, 8],

 [9, 10, 11, 12]

]);

 Console.WriteLine("Matriz enteros original:");

 Console.WriteLine(m1);

 Matriz<int> m1t = m1.Traspuesta;

 Console.WriteLine("Matriz enteros traspuesta:");

 Console.WriteLine(m1t);

 Console.WriteLine();

 Matriz<char> m2 = new(

 [

 ['a', 'b', 'c'],

 ['d', 'e', 'f'],

 ['g', 'h', 'i'],

 ['j', 'k', 'l']

]);

 Console.WriteLine("Matriz caracteres original:");

 Console.WriteLine(m2);

 Matriz<char> m2t = m2.Traspuesta;

 Console.WriteLine("Matriz caracteres traspuesta:"

 Console.WriteLine(m2t);

}

Si ejecutamos el siguiente código de ejemplo,
donde se crea una matriz de enteros y otra de
caracteres, y se obtiene su traspuesta...

Mostrará por la consola:

Matriz enteros original:

1, 2, 3, 4

5, 6, 7, 8

9, 10, 11, 12

Matriz enteros traspuesta:

1, 5, 9

2, 6, 10

3, 7, 11

4, 8, 12

Matriz caracteres original:

a, b, c

d, e, f

g, h, i

j, k, l

Matriz caracteres traspuesta:

a, d, g, j

b, e, h, k

c, f, i, l

"

"

Generics allow you to define type-safe
data structures, without committing to
actual dasta types.

- Anders Hejlsberg

7/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

Ejemplo doble parametrización:

En el siguiente ejemplo, vamos a definir un patrón 'Union-Type' similar al del tema de
abstracción, a través de una clase denominada Resultado<T, E> que nos permita representar el
resultado de una operación que puede ser exitosa o fallida. En caso de éxito, contendrá un valor
del tipo T y en caso de fallo, un error del tipo E .

Básicamente, definiremos dos clases anidadas dentro de Resultado<T, E> denominadas Exito y
 Fallo que contendrán el estado de éxito o fallo respectivamente usando los tipos genéricos T y
 E .

public abstract record class Resultado<T, E>

{

 public record Exito(T Value) : Resultado<T, E>

 {

 public override string ToString() => $"{Value}";

 }

 public record Fallo(E Error) : Resultado<T, E>

 {

 public override string ToString() => $"Fallo: {Error}";

 }

}

Definimos una clase de utilidad denominada Calculadora que demomento definirá dos tipos de
división.

1. Una para enteros donde devolverá un Resultado<int, string> el resultado será otro entero
en caso de éxito o un texto de error en caso de fallo.

2. Una para números reales donde devolverá un Resultado<double, Exception> el resultado
será otro double en caso de éxito o una excepción en caso de fallo.

public static class Calculadora

{

 public static Resultado<int, string> Divide(int dividendo, int divisor) =>

 divisor == 0

 ? new Resultado<int, string>.Fallo("No se puede dividir por cero.")

 : new Resultado<int, string>.Exito(dividendo / divisor);

 // Fíjate que en caso de fallo devolvemos una instáncia de DivideByZeroException

 public static Resultado<double, Exception> Divide(double dividendo, double divisor) =>

 divisor < 1e-5

 ? new Resultado<double, Exception>.Fallo(new DivideByZeroException())

 : new Resultado<double, Exception>.Exito(double.Round(dividendo / divisor, 2));

}

8/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

Definimos un sencillo programa principal de test que gestionará los dos tipos de resultados...

class Program

{

 static void Main()

 {

 Resultado<int, string> resultado1 = Calculadora.Divide(10, 0);

 Console.WriteLine(resultado1);

 Resultado<int, string> resultado2 = Calculadora.Divide(10, 3);

 Console.WriteLine(resultado2);

 Console.WriteLine();

 Resultado<double, Exception> resultado3 = Calculadora.Divide(10d, 0d);

 Console.WriteLine(resultado3);

 Resultado<double, Exception> resultado4 = Calculadora.Divide(10d, 3d);

 Console.WriteLine(resultado4);

 }

}

Mostrará por la consola:

Fallo: No se puede dividir por cero.

3

Fallo: System.DivideByZeroException: Attempted to divide by zero.

3,33

Métodos parametrizados en CSharp
C# permite definir no sólo clases genéricas, sino que también puede hacerse genéricos métodos
individuales, tanto de instancia como estáticos, sin necesidad de que lo sea la clase o estructura en la
que el método está definido.

La sintaxis para parametrizar un método será análoga a la que hemos usado para las clases.

En la mayoría de los casos, este tipo de parametrización de métodos, tendrá más sentido con
métodos de utilidad estáticos. Ya que como operaciones sobre un objeto no será 'inmediato'
relacionarlos con los tipos de los campos que definen el estado de la clase.

9/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

// La clase puede o no estar parametrizada.

public static class A

{

 public static void Metodo<T>(T parametro)

 {

 // Podremos usar el tipo genérico T tanto en

 // los parámetros formales, como en el cuerpo

 // del método.

 }

 public static void Metodo(int parametro)

 {

 // Para C# aunque este método tenga el mismo id

 // que el anterior, tendrán signaturas diferentes

 // y por tanto sabrá distinguirlos como diferentes.

 }

}

Por ejemplo, vamos a definir un método genérico denominado CreaArrayInicializado<T> que nos
permita crear un array de cualquier tipo T e inicializarlo con un valor por defecto.

public static T[] CreaArrayInicializado<T>(int tamaño, T valorInicial)

{

 T[] array = new T[tamaño];

 for (int i = 0; i < tamaño; i++)

 {

 array[i] = valorInicial;

 }

 return array;

}

Fíjate que no hace falta indicar el tipo T al llamar al método, ya que el compilador es capaz de inferirlo
a partir del tipo del parámetro valorInicial . De todas formas, si lo deseamos, podríamos indicarlo
explícitamente como en el último ejemplo del array de booleanos.

public static void Main(string[] args)

{

 int[] integerArray = CreaArrayInicializado(5, 0);

 Console.WriteLine($"Array de enteros: [{string.Join(", ", integerArray)}]");

 string[] stringArray = CreaArrayInicializado(3, "vacio");

 Console.WriteLine($"Array de cadenas: [{string.Join(", ", stringArray)}]");

 bool[] boolArray = CreaArrayInicializado<bool>(4, false);

 Console.WriteLine($"Array de booleanos: [{string.Join(", ", boolArray)}]");

}

10/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

Tipos parametrizados en la BCL
Supongamos que tenemos la clase Hora que implementa el interfaz IComparable que vimos
anteriormente en el tema. Recordemos que esto supondría que podremos pasar cualquier objeto, pues
todos heredan de object . Por esta razón, deberemos hacer un downcast del objeto al comparar a
 Hora pero no se puede asegurar que el objeto que estamos comparando es una hora, por tanto
deberemos añadir algún tipo de código de control de errores...

class Hora : IComparable

{

 public int H { get; }

 public int M { get; }

 public Hora(int h, int m)

 {

 H = h;

 M = m;

 }

 public override string ToString() => $"{H:D2}:{M:D2}";

 public int CompareTo(object? objHora)

 {

 // Nadie nos asegura que el downcast se pueda realizar.

 Hora hora = objHora as Hora

 ?? throw new ArgumentException("El objeto a comparar no es una hora.", "obj");

 int comparacion = H - hora.H;

 if (comparacion == 0)

 comparacion = M - hora.M;

 return comparacion;

 }

}

Sin embargo, C# añadió una definición parametrizada para dicho interfaz IComparable<T> y si la
utilizamos, nos avisará en tiempo de compilación de que no estamos pasando el tipo correcto y
además, no necesitaremos hacer el repetitivo código de control anterior.

Nota

A lo largo de los temas usaremos otras implementaciones de interfaces genéricas como
 IComparer<T> , IEnumerable<T> o IEquatable<T> definidos en las BCL aunque existen muchas
más.



11/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.icomparable-1

class Hora : IComparable<Hora>

{

 // ... código omitido para abreviar.

 // Ahora tenemos seguridad de que nos llega una hora.

 public int CompareTo(Hora? hora)

 {

 // Si no quisiéramos permitir null

 // ArgumentNullException.ThrowIfNull(hora);

 int comparacion = (hora == null) ? 1 : H - hora.H;

 if (comparacion == 0 && hora != null)

 comparacion = M - hora!.M;

 return comparacion;

 }

}

Como hemos comentado, dispondremos de métodos estáticos de utilidad que estarán parametrizados,
definiendo los tipos de entrada en el momento de su utilización.

Por ejemplo, si queremos ordenar una lista o un array de horas, podremos usar el método estático
 Array.Sort<T> o el método de instancia List<T>.Sort() . Ambos ordenarán los elementos de la
colección usando el método CompareTo definido en la clase.

Si leemos la documentación oficial de la clase List<T> veremos que el método Sort() generará
una excepción InvalidOperationException en tiempo de ejecución si el tipo T no implementa el
interfaz IComparable<T> puesto que no sabrá como ordenar Horas.

Puesto que nuestra clase Hora implementa dicho interfaz, podremos usar ambos métodos para
ordenar una lista o un array de horas. Puedes descargar el código desde el siguiente enlace:
hora_comparable.cs.

static void Main()

{

 List<Hora> horas =

 [

 new(9, 55), new(10, 50), new(8, 30), new(7, 1

];

 Hora[] aHoras = [.. horas];

 horas.Sort();

 Console.WriteLine(string.Join(", ", horas));

 Array.Sort<Hora>(aHoras);

 Console.WriteLine(string.Join<Hora>(", ", aHoras)

}

Fíjate que el método String.Join<T> es
parametrizado. Lo que sucede es que en el caso
de la listas String.Join<T> , es capaz de inferir
el tipo T a partir del tipo de la colección que le
pasamos como segundo parámetro. Además, en
el caso de ordenación de un array debemos
usar el método de clase parametrizado
 Array.Sort<Hora> para que espere como entrada
un Hora[] . No hace falta que indiquemos el tipo
en el caso de la lista, pues es un método de
instancia y el tipo ya lo conoce.

12/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

https://learn.microsoft.com/es-es/dotnet/api/system.collections.generic.list-1.sort?view=net-8.0#system-collections-generic-list-1-sort
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u18_poo_genericos_y_extensores/assets/codigo/hora_comparable_ejemplo.cs

Restricciones en tipos parametrizados
Podremos definir restricciones de tipo asociadas a su definición para los parámetros tipo. Se
especifican con la palabra reservada where al final de la definición.

<T> where T : restricción

Por ejemplo, si queremos que el tipo genérico T sólo pueda ser un tipo valor, lo indicaremos de la
siguiente manera...

class A<T> where T : struct

Tendremos diferentes tipos de restricciones entre las que podemos destacar las siguientes ...

Tipo Restricción Descripción

De herencia
El tipo debe heredar de una clase base determinada.
 <T> where T : ClaseBaseDeT

De interfaz ⭐
El tipo debe implementar una interfaz determinada.
 <T> where T : IinterfazAImplementar

De tipo referencia
El tipo debe ser referencia.
 <T> where T : class

De tipo valor
El tipo debe ser valor.
 <T> where T : struct

De constructor
El tipo debe tener un constructor sin parámetros.
 <T> where T : new

Ejemplo restricción en tipos parametrizados

Vamos a recuperar la clase class Matriz<T> y a usarla junto a la clase Hora : IComparable<Hora> .
Para ello, vamos a invalidar los métodos de la clase object int GetHashCode() y
 bool Equals(object obj) que me devolverá true si todos los elementos de la matriz contenida
son iguales a los de la que me llegan para comparar. Devolviendo false en caso contrario.

Pero... ¿Cómo comparo los elementos de de la matriz si son de tipo T ?

Lo que haremos es añadir la restricción de que los T con se instáncie Matriz<T> implementen el
interfaz IComparable<T> de la siguiente manera:

13/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/where-generic-type-constraint

public class Matriz<T> where T : IComparable<T>

{

 private T[][] Datos { get; }

 // ... código omitido por abreviar.

 public override int GetHashCode() => HashCode.Combine(Datos);

 public override bool Equals(object? obj)

 {

 bool sonIguales = true;

 if (obj is not Matriz<T> otraMatriz)

 {

 sonIguales = false;

 }

 else if (Datos.Length != otraMatriz.Datos.Length || Datos[0].Length != otraMatriz.Datos[0].Length)

 {

 sonIguales = false;

 }

 else

 {

 int filas = Datos.Length;

 int columnas = Datos[0].Length;

 for (int i = 0; i < filas && sonIguales; i++)

 for (int j = 0; j < columnas && sonIguales; j++)

 sonIguales = Datos[i][j].CompareTo(otraMatriz.Datos[i][j]) == 0;

 }

 return sonIguales;

 }

}

Ahora, además de poder crear matrices de int o string que implementan IComparable<...> , podré
crear matrices de objetos Hora ya que dicha clase también implementa dicho interfaz. Sin embargo, al
crearla de cualquier otro tipo que no lo implemente, obtendremos un error.

Por último, vamos a crear un simple programa principal que cree dos matrices de horas iguales y
me confirme su igualdad.

Cuando ejecutemos el programa, mostrará por la consola True . Puesto que, además de tener las
mismas dimensiones, todos los elementos son iguales porque hemos usado el método CompareTo de
la clase Hora para compararlos.

14/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

static void Main()

{

 Matriz<Hora> m1 = new(

 [

 [new (0, 0), new (0, 30)], [new (12, 0), new (12, 30)], [new (18, 0), new (18, 30)]

]);

 Matriz<Hora> m2 = new(

 [

 [new (0, 0), new (0, 30)], [new (12, 0), new (12, 30)], [new (18, 0), new (18, 30)]

]);

 Console.WriteLine(m1.Equals(m2));

}

Puedes descargar el código desde el siguiente enlace: matriz_generica_comparable.cs.

En ocasiones estas restricciones pueden ser confusas de leer si la clase implementa a su vez varias
interfaces y el tipo genérico tiene varias restricciones de interfaz. Por ejemplo, ¿Qué significará esta
definición? ...

public class Matriz<T> : IComparable<Matriz<T>>, ICloneable where T : IComparable<T>, ICloneable { ... } // 😕

Pues que la clase Matriz<T> implementa los interfaces IComparable<Matriz<T>> e ICloneable y que
el tipo genérico T debe implementar los interfaces IComparable<T> e ICloneable .

Extensores o métodos de extensión
Funcionalidad interesantísima de C# para extender la funcionalidad en clases selladas o de las
que no disponemos el código porque es una librería de terceros, incluso para evitar dependencias
y acoplamientos en arquitecturas de capas. De hecho, otros lenguajes modernos como Kotlin o
Swift también los permiten.

Pero dejando a un lado consideraciones complejas y de diseño, en este tema vamos definir
simplemente el concepto y su sintaxis en C#. Siendo importante destacar que, desde la
documentación oficial del lenguaje, se recomienda no abusar del uso de este tipos de métodos,
y por tanto usarlos en los casos anteriormente descritos.

Características básicas de los métodos de extensión:

1. Me permiten 'agregar' operaciones sobre los tipos existentes, sin crear un nuevo tipo derivado y
sin modificar el original.

2. Se definen de forma especial a través de un método estático, pero se les llama como si fueran
métodos de instancia en el tipo extendido.

15/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u18_poo_genericos_y_extensores/assets/codigo/matriz_generica_comparable_ejemplo.cs
https://www.adictosaltrabajo.com/2019/07/02/capas-cebollas-y-colmenas-arquitecturas-en-el-backend/
https://docs.microsoft.com/es-es/dotnet/csharp/programming-guide/classes-and-structs/extension-methods#general-guidelines

3. No tendré acceso a los miembros privados del tipo extendido.

Una propuesta de plantilla básica de sintaxis de definición de estos métodos podría definir los en un
fichero fuente independiente de la siguiente manera:

namespace <Tipo>Extensions;

public static class <Tipo>Extension

{

 public static void IdMetodoExtensor(this <Tipo> o)

 {

 // Operaciones sobre o.

 }

}

Veámoslo a través de un ejemplo
sencillo pero bastante 'esclarecedor'...

Supongamos que queremos añadir
métodos de utilidad sobre objetos
cadena string que nos proporcionan
las BCL. Sin embargo, nosotros no
podemos modificar la
implementación en la clase string
para añadir nuevas operaciones.

Crearemos un fuente llamado
 StringExtension.cs que contendrá la
clase estática StringExtension donde
añadiremos todos los métodos de
extensión sobre string .

En el siguiente ejemplo hemos añadido
el método Capitaliza que pasa a
mayúsculas la primera letra de cada
palabra y el método CuentaPalabras que
me retorna el número de palabras en
una cadena.

namespace StringExtensions;

public static class StringExtension

{

 public static string Capitaliza(this string s)

 {

 string sCapitalizada;

 if (!string.IsNullOrEmpty(s))

 {

 StringBuilder sb = new (s);

 sb[0] = char.ToUpper(sb[0]);

 for (int i = 1; i < s.Length; i++)

 sb[i] = char.IsWhiteSpace(sb[i - 1])

 ? char.ToUpper(sb[i]) : sb[i];

 sCapitalizada = sb.ToString();

 }

 else

 sCapitalizada = s;

 return sCapitalizada;

 }

 public static int CuentaPalabras(this string s)

 => s.Split(

 [' ', '.', '?'],

 StringSplitOptions.RemoveEmptyEntries

).Length;

}

Aparentemente son métodos de utilidad son estáticos y que reciben como parámetro un objeto de la
clase sobre la que queremos añadir la funcionalidad. Pero fíjate que, el tipo a extender string ,
tiene la palabra reservada this delante. Esto es lo que indica a C# que se trata de un método de
extensión.

16/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

Ahora si quisiéramos utilizar estos métodos adicionales en un programa simplemente tendríamos que
hacer un using StringExtensions; para que nos los ofrezca el 'IntelliSense' al ver las la operaciones
posibles sobre un objeto cadena.

using StringExtensions;

class Ejemplo

{

 static void Main()

 {

 string s = "hola caracola";

 // Si no hacemos el using StringExtensions; los métodos Capitaliza

 // y CuentaPalabras no nos los ofrecerá.

 Console.WriteLine($"{s.Capitaliza()} tiene { s.CuentaPalabras()} palabras.");

 }

}

Puedes descargar el código desde el siguiente enlace: extensores_cadena.cs

Tip

Dependiendo del IDE que estemos usando, el
Intellisense normalmente nos ofrece un
símbolo (ej. 🔹) al lado del método publico de
la clase y si este es un método de extensión lo
indicará con una flecha hacia abajo (ej. 🔹↓)
y/o la etiqueta (Extensión) precediendo a la
descripción del método.



17/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u18_poo_genericos_y_extensores/assets/ejemplos/extensores_cadena_ejemplo.cs

Ejemplo:

Supongamos que tenemos dos clases Jugador y Alumno que representan respectivamente a un
jugador de fútbol y a un alumno de una escuela. Ambas clases tienen propiedades similares
pero no iguales y además están definidas en librerías de terceros y no podemos modificarlas.
Piensa que, incluso aunque pudiéramos modificarlas y añadir nuevos métodos, nos obligaría a
añadir dependencias a dichas librerías y por tanto a aumentar el acoplamiento entre capas.

public record class Jugador(string Nombre, string Apellido, DateOnly Nacimiento);

public record class Alumno(string Nombre, DateTime Nacimiento);

Quiero añadir métodos de utilidad para convertir un Jugador en un Alumno y viceversa. Fíjate
que no son del todo equivalentes, ya que el Alumno tiene una sola propiedad Nombre mientras
que el Jugador la tiene dividida en Nombre y Apellido . Además, la propiedad Nacimiento es de
diferente tipo en ambas clases. Por lo que cada vez que queramos hacer una conversión
deberemos escribir el mismo código repetidamente.

La solución es definir dos métodos de extensión siguiendo el esquema que hemos visto
anteriormente. Estos métodos los podríamos definir en un mismo fichero fuente llamado
 ConversionExtensions.cs con un namespace ConversionExtensions .

namespace ConversionExtensions;

public static class AlumnoExtension

{

 public static Jugador ToJugador(this Alumno alumno) => new(

 Nombre: alumno.Nombre.Split(' ')[0],

 Apellido: alumno.Nombre.Split(' ')[^1],

 Nacimiento: DateOnly.FromDateTime(alumno.Nacimiento));

}

public static class JugadorExtension

{

 public static Alumno ToAlumno(this Jugador jugador) => new(

 Nombre: $"{jugador.Nombre} {jugador.Apellido}",

 Nacimiento: jugador.Nacimiento.ToDateTime(new TimeOnly(0, 0)));

}

Ahora ya solo nos quedaría usar estos métodos donde los necesitemos. Para ello, deberemos
hacer un using ConversionExtensions; en el fichero fuente donde los vayamos a usar.

18/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

Puedes descargar el código desde el siguiente enlace: extensores_conversion.cs

Mostrará por la consola:

Jugador { Nombre = Lionel, Apellido = Messi, Nacimiento = 24/06/1987 }

Alumno { Nombre = Lionel Messi, Nacimiento = 24/06/1987 0:00:00 }

Alumno { Nombre = Cristiano Ronaldo, Nacimiento = 05/02/1985 0:00:00 }

Jugador { Nombre = Cristiano, Apellido = Ronaldo, Nacimiento = 05/02/1985 }

using ConversionExtensions;

class Ejemplo

{

 static void Main()

 {

 Jugador jugador1 = new(

 Nombre: "Lionel",

 Apellido: "Messi",

 Nacimiento: new DateOnly(1987, 6, 24));

 Alumno alumno1 = jugador1.ToAlumno();

 Console.WriteLine(jugador1);

 Console.WriteLine(alumno1);

 Console.WriteLine();

 Alumno alumno2 = new(

 Nombre: "Cristiano Ronaldo",

 Nacimiento: new DateTime(1985, 2, 5));

 Jugador jugador2 = alumno2.ToJugador();

 Console.WriteLine(alumno2);

 Console.WriteLine(jugador2);

 }

}

11

20

Resumen

Para el usuario de estas clases, los métodos ToAlumno() y ToJugador() parecerán
métodos de instancia de las clases originales. Sin embargo, no lo son y no han modificado
el código original de dichas clases. Además, solo aparecerán si hacemos el
 using ConversionExtensions; .



19/19 Programación 1º DAM Unidad 18 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u18_poo_genericos_y_extensores/assets/ejemplos/extensores_conversion_ejemplo.cs

