Unidad 17

Descargar estos apunte en pdf o html

indice

» indice

¥ Gestion de errores en POO
= |ntroduccion
¥ Excepciones en CSharp

Generacion de excepciones

Captura y control de excepciones

Capturando excepciones diferentes

Liberando recursos con finally

Ejemplo practico de gestién de errores en POO

Instruccion using
¥ Creando nuestras propias excepciones
= Ejemplo de creacion de una excepcion propia
= Uso inadecuado de las excepciones
= Excepciones estandar en .NET
¥ Anexo | - Ampliacién usando encadenamiento de excepciones
= Caso de uso de encadenamiento de excepciones

1/34 Programacion 1° DAM Unidad 17 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u17_poo_gestion_de_errores/u17_poo_gestion_de_errores.pdf
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u17_poo_gestion_de_errores/u17_poo_gestion_de_errores.html

Gestion de errores en POO

Introduccion

Podemos decir que son la forma en que los lenguajes orientados a objetos realizan el control de
errores.

Frente a la programacioén estructurada tradicional, nos ofrece:

1. Tratamiento asegurado de errores.
2. Posibilidad de recuperarnos de un error de forma centralizada.
3. Claridad y simplicidad, ya que evitamos légica adicional del caso de error.

En la programacioén estructurada, el control de errores se hacia de forma dispersa y ad-hoc en cada
modulo, lo que hacia que el cédigo fuese mas complejo y dificil de mantener.

Con el control que hemos hecho hasta ahora con aserciones, no tenemos la posibilidad de
recuperarnos de un error, ya que el programa finalizaba. Ademas, estas solo eran utiles en la fase de

desarrollo y pruebas pues solo se producian con la version de depuracion.

Si por el contrario, intentabamos controlar los

errores con codigos de error devueltos por los main
métodos, teniamos que afiadir Idgica adicional en // &
cada médulo para comprobar si se habia \

. . metodo metodo método
producido un error y actuar en consecuencia. 3
Esto hacia que el cédigo fuese mas complejo y // / X V\\
dificil de mantener como se puede ver en el -

método metodo método método metodo

diagrama de ejemplo donde se muestra una 21 31 32

situacion tipica de la programacion estructurada, / \ / \
. , . Y

el la cual si se producia un error en un modulo étodo | Tmétodo 1 método etodo | [metodo
Lo . . 2.21 222 223 3.31 3.3.2
atomico como el Metodo3313() del ejemplo. Si

queriamos recuperarnos del mismo en algun // &

bucle de opciones por ejemplo en el main() . El método | | método | | método
3.3.1.1 3.3.1.2 3.3.1.3

error debia propagarse hacia arriba a través de
todos los médulos devolviéndose en todas las
llamadas.

Esto hacia, que muchos interfaces tuviesen que devolver informacion adicional con informacidn sobre
el error.

2/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

Excepciones en CSharp

Vale, ya podemos sustituir las aserciones por excepciones, pero... { Cémo funcionan las
excepciones en C#?

Podemos decir que las excepciones en C# son objetos que contienen un estado con informacion
sobre un error que se ha producido en tiempo de ejecucion. Podemos destacar las siguientes
caracteristicas comunes a muchos lenguajes orientados a objetos:

1. Todas derivan de la clase System.Exception
2. Existen ya muchas predefinidas.
3. Podemos definir excepciones propias mediante el mecanismo de herencia.

Generacion de excepciones

Utilizaremos la instruccion throw — throw new <TipoExcepcién>(...);

Veamos un ejemplo en el que vamos a usar la excepcion ya predefinida
ArgumentOutOfRangeException que indicara como su nombre sugiere que un argumento pasado a
un método no esta dentro del rango permitido.

En el tema anterior creamos una clase Empleado que tenia una propiedad Sueldo . Donde
controlabamos, a través de una asercion en el set de la propiedad, que sueldo de un empleado
estuviese entre 1200 y 3000 €.

public class Empleado : IComparable, ICloneable
{

private double _sueldo;
public double Sueldo
{

get => _sueldo;

set

{
Debug.Assert(
condition: value >= 1200D && value <= 3000D,
message: "El sueldo debe estar entre 1200 y 3000 euros");

_sueldo = value;

Ahora vamos a sustituir la asercidn por una excepcion, de forma que si se intenta asignar un sueldo
fuera de rango, se lance una excepcioén si lo deseamos podriamos recuperarnos del error, pero

3/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/standard/exceptions/?redirectedfrom=MSDN#common-exceptions
https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/throw
https://learn.microsoft.com/es-es/dotnet/api/system.argumentoutofrangeexception

evitando que se asigne el valor erroneo al sueldo.

public class Empleado : IComparable, ICloneable
{

private double _sueldo;
public double Sueldo

{
get => _sueldo;
set
{
if (value < 1200D || value > 3000D)
{
throw new ArgumentOutOfRangeException(
paramName: nameof(value),
message: "E1l sueldo debe estar entre 1200 y 3000 euros");
}
_sueldo = value;
}
1}

Hemos creado un objeto en memoria del tipo ArgumentOutOfRangeException Yy lo hemos lanzado con la

instruccion throw hacia algun punto de control.

2" Nota

A partir de este momento, en todos los casos donde usabamos aserciones para controlar

errores, deberemos sustituirlas por excepciones.

Otro ejemplo de uso de excepciones podria ser el control de casting donde hemos usado el operador
o! para indicar que un objeto o anulable no es null en ese punto del codigo.

Por ejemplo, cuando intentabamos hacer un downcast de una abstraccion a una clase concreta con el
operador as .

Articulo a = new ArticuloReacondicionado("A@®5-R", "iPhone 16 Pro", 950,

new(2025, 8, 17), "Foxconn", "Cambio de bateria");
// Al usar ()! se generard una excepcidén de nulo si a no es del tipo ArticuloRebajado
// pero no tenemos ningun control real de que estaba pasando.

ArticuloRebajado ar = (a as ArticuloRebajado)!;

// Ahora generamos una excepcion mas especifica y ademas con un mensaje
// que nos aporta mas informacion.
ArticuloRebajado ar = a as ArticuloRebajado

?? throw new InvalidCastException(message: $"E1l articulo {a.Id} no es un articulo rebaja

4/34 Programacion 1° DAM Unidad 17 IES Doctor Balmis

Captura y control de excepciones

En la gran mayoria de lenguajes orientados a objetos se realiza con las palabras reservadas try y
catch.

Una sintaxis basica de este tipo de estructura podria ser...

try

}

catch (TipoDelLaExcepcidénACapturar e) when (<expresién con e>)

{

Donde catch es un punto de control de errores, en el cual el identificador e sera opcional y lo
definiremos solo si lo vamos a usar dentro del bloque catch 0 en una condicion when (la condicion
when sera opcional y especifica del lenguaje C#).

Es importante tener en cuenta que no podremos, poner ningun bloque catch que no esté asociado a
uno try . Ademas, en C# try y catch son instrucciones (statements) y no expresiones, por lo que
no pueden formar parte de una expresion mas grande o retornarse como valor de una funcion.

Veamos un ejemplo de sintaxis muy simple para ver como funcionan. Supongamos el siguiente
codigo...

public static void Main()

{
Console.Write("Introduce un numero real: ");
string textoNumero = Console.ReadlLine()!;
double n = double.Parse(textoNumero);
Console.Write($"Tu numero es {n:G}");

}

Si lo ejecutamos e introducimos 25 obtendremos...

Introduce un numero real: 25

Tu numero es 25

Pero si introducimos el texto veinticinco obtendremos...

5/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/try-catch

Introduce un nudmero real: veinticinco
Unhandled exception. System.FormatException: Input string was not in a correct format.
at System.Number.ThrowOoverflowOrFormatException(ParsingStatus status, TypeCode type)

at System.Double.Parse(String s)
at EjempTloExcepciones.EjemploExcepciones.Main() in C:\ejemplo\Program.cs:line 15

Si nos fijamos double.Parse(textoNumero); ha generado una excepcion de tipo FormatException
porque no ha podido pasar la cadena de entrada "veinticinco" a double .

o Tip

Para saber que errores/excepciones puede generar una llamada a un método, colocaremos el
ratén sobre el método y mostrara una ventana emergente con la documentacién del mismo
donde se indicaran las excepciones que puede generar.

double double.Parse(string s) (+ 7 sobrecargas)
Converts the string representation of a number to its double-p

Devuelve:
A double-precision floating-point number that is equivalent t

public static void Mai|Excepciones:
{ ArgumentNullException

Console.Write("Int| FormatException
string textoNumero | OverflowException
double n = double.Parse(textoNumero);
Console.Write($"Tu ndmero es {n:G}");

—

También podemos hacer ctrl + <click izquierdo del ratén> Sobre el método y esto nos abrira
su definicion y el la documentaciéon del método podremos verlo.

En el ejemplo, la excepcidn ha sido capturada por el Runtime de C# (CLR), nos la ha mostrado y ha
finalizado la ejecucion. A efectos practicos, es como si hubiera un bloque try - catch que
englobara todo nuestro cédigo y que ‘barriera’ o capturase cualquier error/excepcién que se
pudiera producir aunque nosotros no lo hagamos.

Veamos como seria el codigo siguiendo la sintaxis del try - catch para capturar la excepcion

FormatException

6/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

static void Main()

{
string textoNumero = "sin valor";
try
{
Console.Write("Introduce un nidmero real: ");
textoNumero = Console.ReadlLine()!;
double n = double.Parse(textoNumero);
Console.Write($"Tu numero es {n}");
}
catch (FormatException)
{
Console.WriteLine($"Lo siento, el valor '{textoNumero}' no es Real.");
}
}

Si lo ejecutamos e introducimos 'veinticinco' ahora obtendremos...

Introduce un numero real: veinticinco

Lo siento, el valor 'veinticinco' no es Real.

También tendremos la opcion de mostrar el mensaje de error que devuelven las BCL a través del
objeto e que contiene la informacion de la excepcidn y que se cred al generarse la misma en el

throw .

public static void Main()

{
try
{
Console.Write("Introduce un ndmero real: ");
double n = double.Parse(Console.ReadLine()!);
Console.Write($"Tu nuimero es {n}");
¥
catch (FormatException e)
{
Console.WritelLine(e.Message);
}
¥

7134 Programacién 1° DAM Unidad 17 IES Doctor Balmis

Si lo ejecutamos e introducimos 'veinticinco' ahora obtendremos...

Introduce un numero real: veinticinco

Input string was not in a correct format.

Al especificar que capturamos solo la excepcidn FormatException , Solo se entrara en este bloque
catch si se produce la misma. Por tanto, cualquier otro error/excepcion sera capturado por el CLR.

Capturando excepciones diferentes
Si catch (FormatException e) solo captura las excepciones de formato de entrada incorrecto.
¢ Como haremos para controlar diferentes tipos errores/excepciones?

Supongamos el siguiente ejemplo donde hemos creado un método Divide que genera una excepcion
DivideByZeroException al intentar dividir por cero. Pero si nos fjamos en el Main solo gestionamos
FormatException .

El programa principal nos pedira 2 numeros e intentara dividirlos y si no puede finaliza.

public static double Divide(double numerador, double divisor)

{
if (divisor < le-5)
throw new DivideByZeroException();
return numerador / divisor;
}

public static void Main()

{
try
{
Console.Write("Introduce el numerador: ");
double numerador = double.Parse(Console.ReadLine()!);
Console.Write("Introduce el divisor: ");
double divisor = double.Parse(Console.ReadLine()!);
Console.WriteLine($"La divisién es {Divide(numerador, divisor)}");
}
catch (FormatException)
{
Console.WriteLine($"Has introducido un valor que no es un numero real.");
}
}

8/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

Al ejecutar el cédigo e intentar dividir por cero obtendremos...

Introduce el numerador: 4
Introduce el divisor: O
Unhandled exception. System.DivideByZeroException: Attempted to divide by zero.

at EjemploExcepciones.EjemploExcepciones.Divide(Double numerador, Double divisor) in C:\ej
at EjempTloExcepciones.EjemploExcepciones.Main() in C:\ejemplo\Program.cs:Tine 23

Si nos fijamos el programa finaliza porque la excepcion es capturada por el catch del CLR.

Para capturar también este error, lo que haremos es anadir dos bloques catch consecutivos para el
mismo bloque try .

try
{

}
catch (FormatException)
{
Console.WriteLine("Has introducido un valor que no es un numero real.");
}
catch (DivideByZeroException)

{

Console.WriteLine("No se puede dividir por cero.");

Al ejecutar ahora, tendremos controlados los dos errores...

Ejecucion 1:
Introduce el numerador: 4
Introduce el divisor: 0
No se puede dividir por cero.

Ejecucion 2:
Introduce el numerador: 4
Introduce el divisor: cero
Has 1introducido un valor que no es un numero real.

Ejecucion 3:
Introduce el numerador: 4
Introduce el divisor: 2
La division es 2

Si el tipo del primer bloque catch es una superclase del tipo del segundo. El segundo bloque catch
nunca se ejecutara y ademas nos avisara con un error de compilacién.

9/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

Por ejemplo el siguiente codigo ...

try
{
}
catch (Exception)
{
Console.WriteLine("Hay un error.");
}
catch (FormatException)
{
Console.WritelLine("Has introducido un valor que no es un nudmero real.");
}
catch (DivideByZeroException)
{
Console.WriteLine("No se puede dividir por cero.");
}

Generara el siguiente error

X "Una cldusula catch previa ya detecta todas las excepciones de este tipo o de tipo
superior ('"Exception’)”

ya que todas las excepciones heredan de Exception Yy por tanto FormatException Y
DivideByZeroException |0 hacen. Lo cual implicaria que es un cédigo inalcanzable, porque cualquier
error entraria primero por el primer catch . De lo anterior se deduce que siempre podremos los
catch excepciones mas concretas primero y a continuacion las excepciones mas generales.

Si anadimos un unico bloque catch (Exception e) en el Main controlariamos cualquier
error/excepcion que se produjese y seguiriamos con nuestro bucle infinito.

Aviso

La documentacion del lenguaje, no nos recomienda hacerlo fuera del Main por no ser una
practica que puede producir problemas.

10/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/standard/design-guidelines/using-standard-exception-types#exception-and-systemexception

Por tanto, si probamos el siguiente codigo....

public static void Main()

{
try
{
Console.Write("Introduce el numerador: ");
double numerador = double.Parse(Console.ReadLine()!);
Console.Write("Introduce el divisor: ");
double divisor = double.Parse(Console.ReadLine()!);
double resultado = Divide(numerador, divisor);
Console.WriteLine($"La divisién es {resultado:F2}");
}
catch (Exception e)
{
Console.WriteLine(e.Message);
}
}

También tendremos como resultado:

Ejecucion 1:
Introduce el numerador: 4
Introduce el divisor: 0
Attempted to divide by zero.

Ejecucion 2:
Introduce el numerador: 4
Introduce el divisor: cero
Input string was not in a correct format.

Ejecucion 3:
Introduce el numerador: 4
Introduce el divisor: 2
La divisién es 2

11/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

Liberando recursos con finally

En ocasiones se pueden dar casos en los que queramos, independientemente de si ha producido
un error o no, hacer algo siempre después de un bloque de instrucciones. Por ejemplo:

e Liberar un recurso de memoria asociado a un fichero como una imagen o una fuente.
o Cerrar una conexion remota o a una base de datos, un fichero abierto por el sistema, etc.
» Parar algun proceso en paralelo iniciado.

Para eso tendremos un bloque finally el cual es opcional y debe estar asociado a un bloque try .
Esto es, no necesita de un bloque catch para existir. Por tanto, libera o cierra los recursos usados
dentro del un bloque try al que esta asociado.

El bloque finally se ejecutara siempre, tanto si ha ido bien el bloque try , como si ha entrado por
alguno de los bloques catch asociados al mismo o en un ambito superior. Ademas, se ejecutara en
ultimo lugar respecto a sus bloques try-catch asociados en su ambito.

En otras palabras, se puede tener un bloque try seguido de un finally (sin bloques catch), y
realizar la captura de la excepcidén en un catch de ambito mas externo o incluso por el CLR. En este
caso, el finally se ejecutara siempre y antes que el catch del ambito superior.

Veamos en un simples ejemplos de codigo esquematizado.

Caso mas ‘'normal’ con try - catch - finally sin catch...
finally
try
try {
{
try
} {
catch(...)
{ }
finally
} {
finally
{ }
}
} catch(...)
{

12/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

Ejemplo practico de gestion de errores en POO

En el siguiente ejemplo vamos a ver como plantear la gestion de errores/excepciones en una
aplicacion sencilla aplicando los conceptos vistos. Para ello, vamos a simular una aplicacién de gestion
de sesiones de usuario en un sistema remoto, donde se instancia algun tipo de recurso asociado a la
sesion en el servidor que debe ser liberado al cerrar la sesion. Por ejemplo una maquina virtual, un
contenedor, disco virtual, base de datos, etc.

Puedes descargar el cédigo completo de este ejemplo desde el siguiente fichero:
gestion_errores_con_recursos.cs.

Vamos a definir en primer lugar la clase Sesion que tendra los métodos Login y Logout para iniciary
cerrar sesion respectivamente. Ademas, implementara la interfaz Ipisposable para liberar los
recursos asociados a la sesion en el servidor. En esta clase se van a ir mostrando una serie de
mensajes por consola a modo de log para ver lo que va ocurriendo.

Empezamos definiendo las propiedades Usuario, Clave e Iniciada en el constructor por defecto.
Fijate que no hace falta definir un constructor explicito, basta con inicializar las propiedades en su
definicion para ello.

public class Sesion : IDisposable

{
public string Usuario { get; private set; } = string.Empty;
private string Clave { get; set; } = string.Empty;

public bool Iniciada { get; private set; } = false;

En el método Login hay dos posibles errores que podemos controlar:

1. Que el usuario o la clave estén vacios: En este caso usamos programacion por contrato y
tendremos una precondicion donde lanzamos una excepcion del tipo ArgumentException Si alguno
de los dos parametros esta vacio o es nulo.

2. Que ya haya una sesién iniciada: En este caso, hemos usado programacién defensiva y si ya
hay una sesion iniciada, mostramos un mensaje por consola indicando que se cerrara la sesion
actual liberando los recursos del servidor con Dispose() Y se iniciara la nueva.

En el caso de haber optado por programacién por contrato, podriamos haber lanzado una
excepcion del tipo InvalidOperationException Yy seria quien llamase al método el que deberia
controlar que la sesion no estuviese iniciada.

13/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u17_poo_gestion_de_errores/assets/ejemplos/gestion_errores_con_recursos_ejemplo.cs

public class Sesion : IDisposable

{

// ... codigo anterior
public void Login(string usuario, string clave)
{

if (string.IsNullOrWhiteSpace(usuario) || string.IsNullOrWhiteSpace(clave))

throw new ArgumentException("Usuario y clave no pueden estar vacios.");

if (Iniciada)
{
Console.WriteLine($"Ya hay una sesidén iniciada. Cerrando la sesiodn actual de {Usuario} en servidor

Dispose();

Usuario = usuario;
Clave = clave;

Iniciada = true;

Console.WriteLine($"Usuario {Usuario} autenticado exitosamente. Registrando sesién en servidor...");

En el método Logout sila sesion aplicamos la precondicion de que debe haber una sesion iniciada

para cerrarla. En caso contrario lanzamos una excepcion del tipo InvalidOperationException €l

llamador debe controlar esta condicion. Si la sesion esta iniciada, mostramos un mensaje por consola

y liberamos los recursos del servidor llamando a Dispose() .

public class Sesion : IDisposable

{

14/34

7 ooc

coédigo anterior

public void Logout()

{

if (!Iniciada)
throw new InvalidOperationException("No hay una sesién iniciada para cerrar.");
Console.WriteLine($"Usuario {Usuario} ha cerrado sesién.");

Dispose();

Programacién 1° DAM Unidad 17 IES Doctor Balmis

Implementamos el método Dispose() de la interfaz IDisposable para liberar los recursos asociados a
la sesion en el servidor y vaciamos el estado del objeto sesidn si se ha quedado iniciada para
evitar su uso. En este caso, simplemente mostramos un mensaje por consola y reiniciamos las
propiedades de la clase. Mas adelante veremos el ‘¢ Por qué?' de implementar esta interfaz.

public class Sesion : IDisposable

{
// ... coédigo anterior
public void Dispose()
{
if (Iniciada)
{
Console.WriteLine("Liberando recursos de la sesién en el servidor...");
Usuario = string.Empty;
Clave = string.Empty;
Iniciada = false;
}
}
}

Definimos ahora una clase de utilidad RecursosProtegidos , que puedes encontrar mas abajo, con dos
meétodos estaticos que simulan el acceso a recursos protegidos por sesiéon. Ambos métodos requieren
como precondicién de ejecucion que la sesidn esté iniciada para poder acceder asi a los recursos. Si
no es asi, lanzan una excepcion del tipo InvalidOperationException .

Fijate que, a través de la documentacion del método, es como se indica que el método debe cumplir la
precondicion de que la sesion esté iniciada. De esta forma, aunque no tengamos acceso porque
esta en una libreria, el usuario llamador sabe que debe cumplir esta precondicion para usarse
sin errores.

Como hemos comentado anteS, /{{ <summary> void RecursosProtegidos.AccederRecursol(Sesion sesion)
J// Accede a un rec
al colocar el ratéon sobre el /17 </summary> Accede a un recurso 1 protegido que requiere sesion iniciada.

/// <param name="se |gjng hay una sesion iniciada, lanza UnauthorizedAccessException.
/// <exception cref

Jf/ <remarks»>Si no

método, se muestra la
Excepciones
UnauthorizedAccessException

2l

documentacion del mismo y las

precondiciones que debe public static void AccederRecursol(Sesion sesion)
{
cumplir el llamador. if (!sesion.Iniciada)
throw new UnauthorizedAccessException("Acceso denegado a recurso pro
Console.Writeline("Accediendo a Recurso Protegido 1...");

[}

Fijate ademas, que en AccederRecurso2 simulamos que se produce un error inesperado al acceder
al recurso protegido lanzando una excepcion del tipo ** InvalidOperationException aunque la sesion
esté iniciada.

15/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

public static class RecursosProtegidos

{

/// <summary>

/// Accede a un recurso 1 protegido que requiere sesion iniciada.

/// </summary>

/// <param name="sesion"></param>

/// <exception cref="UnauthorizedAccessException"></exception>

/// <remarks>Si no hay una sesidén iniciada, lanza UnauthorizedAccessException.</remarks>

public static void AccederRecursol(Sesion sesion)

{
if (!sesion.Iniciada)
throw new UnauthorizedAccessException("Acceso denegado a recurso protegido 1. No hay una sesidn in

Console.WriteLine("Acceso correcto a Recurso Protegido 1...");

}

public static void AccederRecurso2(Sesion sesion)

{
if (!sesion.Iniciada)

throw new UnauthorizedAccessException("Acceso denegado a recurso protegido 2. No hay una sesidén in

Console.WriteLine("Acceso correcto a Recurso Protegido 2 se producird un error inesperado ...");

throw new InvalidOperationException("Se produjo un error inesperado al acceder al Recurso Protegido 2.

Por ultimo, definimos el programa principal donde tendremos que tener en cuenta la gestion de
errores/excepciones que se puedan producir en los diferentes métodos si se nos ha olvidado cumplir
alguna precondicion en la llamada.

Definimos en primer lugar un método estatico Menu() que nos devolvera el menu de opciones a
mostrar por consola.

public class Program

{
public static string Menu()
{
return """
1. Iniciar sesidn
2. Acceder a Recurso Protegido 1
3. Acceder a Recurso Protegido 2
4. Cerrar sesidn
5. Salir
"
}
}

Veamos un poco la gestion del Main() , para ello, lee atentamente los comentarios del cédigo.

16/34 Programacion 1° DAM Unidad 17 IES Doctor Balmis

public class Program

{

17/34

//

. coédigo anterior

public static void Main()

{

// Iniciamos la sesion fuera del try para que esté accesible
Sesion sesion = new();
try
{
Console.Clear();
bool salir = false;
do
{
Console.WriteLine(Menu());
Console.Write("Seleccione una opcién: ");

string? opcion = Console.ReadlLine()!;

switch (opcion)
{
case "1":
Console.Write("Usuario: ");
string usuario = Console.ReadLine()!;
Console.Write("Clave: ");
string clave = Console.ReadLine()!;
sesion.Login(usuario, clave);
break;
case "2":
// Debemos ser nosotros quienes verifiquemos si la sesion esta iniciada antes de llama
// en optro caso, el método lanzaria una excepcidén por no cumplir la precondicidén de u
// Podemos verlo en la documentacion del método AccederRecursol.
if (sesion.Iniciada)
RecursosProtegidos.AccederRecursol(sesion);
else
Console.WriteLine("Debe iniciar sesidén antes de acceder al recurso protegido 1.");
break;
case "3":
// Aqui no verificamos si la sesiodn esta iniciada, para demostrar que el método lanza
// si no se cumple la precondicién de uso.
RecursosProtegidos.AccederRecurso2(sesion);
break;
case "4":
// Cerrar sesidn si estd iniciada. Como antes, si queremos recuperanos del error,
// este es el punto donde debemos hacerlo y no en el método Logout.
if (sesion.Iniciada)
sesion.Logout();
else
Console.WriteLine("No hay una sesidén iniciada para cerrar.");
break;

case "5"

Programacion 1° DAM Unidad 17 IES Doctor Balmis

Console.WriteLine("Saliendo de la aplicacién...");

salir = true;

break;
default:
Console.WriteLine("Opcidén no valida. Intente nuevamente.");
break;
}
}
while (!salir);
}
catch (Exception e)
{
Console.WriteLine($"Error inesperado: {e.Message}");
}
finally
{
sesion.Dispose();
}

Ejemplo de ejecucion produciendo un error inesperado una ves iniciada la sesion...

Iniciar sesién
. Acceder a Recurso Protegido 1
. Acceder a Recurso Protegido 2
Cerrar sesioén
salir
Seleccione una opcidén: 1
Usuario: Juan
Clave: 1234
Usuario Juan autenticado exitosamente. Registrando sesidon en servidor...
Iniciar sesién
. Acceder a Recurso Protegido 1
. Acceder a Recurso Protegido 2
Cerrar sesion
salir
Seleccione una opcioén: 3
Acceso correcto a Recurso Protegido 2 se producirda un error inesperado
Error inesperado: Se produjo un error inesperado al acceder al Recurso Protegido 2.
Liberando recursos de Ta sesion en el servidor...

Fijate como se ejecuta el bloque finally liberando los recursos de la sesion en el servidor, aunque se
haya producido un error inesperado al acceder al recurso protegido 2.

18/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

Ejemplo de ejecucion intentando acceder a un recurso protegido sin tener iniciar sesion...

Iniciar sesién
. Acceder a Recurso Protegido 1
Acceder a Recurso Protegido 2
Cerrar sesioén
. Salir
Seleccione una opcién: 1
Usuario: Maria
Clave: 1234
Usuario Maria autenticado exitosamente. Registrando sesiodon en servidor...
Iniciar sesién
. Acceder a Recurso Protegido 1
. Acceder a Recurso Protegido 2
Cerrar sesién
. salir
Seleccione una opcién: 2
Acceso correcto a Recurso Protegido 1...
Iniciar sesién
. Acceder a Recurso Protegido 1
. Acceder a Recurso Protegido 2
Cerrar sesioén
. Salir
Seleccione una opcién: 4
Usuario Maria ha cerrado sesion.
Liberando recursos de Ta sesion en el servidor...
Iniciar sesién
. Acceder a Recurso Protegido 1
. Acceder a Recurso Protegido 2
Cerrar sesioén
. Salir
Seleccione una opcién: 2
Debe iniciar sesidon antes de acceder al recurso protegido 1.
Iniciar sesién
. Acceder a Recurso Protegido 1
. Acceder a Recurso Protegido 2
Cerrar sesién
. Salir
Seleccione una opcioén: 4
No hay una sesién iniciada para cerrar.
Iniciar sesién
. Acceder a Recurso Protegido 1
. Acceder a Recurso Protegido 2
Cerrar sesion
. Salir
Seleccione una opcioén: 3
Error inesperado: Acceso denegado a recurso protegido 2. No hay una sesioén iniciada.

Fijate como hemos liberado bien al hacer logout y controlado por légica (if-else) todos los posibles

errores menos el caso de acceso sin iniciar sesidn al recurso protegido 2.

19/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

Instruccién using

Se utiliza para instanciar objetos que contienen recursos no gestionados, esto es, que no son
liberados por el recolector de basura. Para poder usarla, las clases que definen los objetos deben
implementar el interfaz IDisposable Yy por tanto el método de liberacion Dispose() .

using garantiza que se llama a Dispose() aunque se produzca una excepcion.

Aviso

Dentro del bloque using, el objeto es de solo lectura y no se puede modificar ni reasignar puesto
que dejaria de tener una referencia y no se liberaria.

Sintaxis clasica:

// Podemos usar varios recursos liberables en el mismo ambito asi ...
using (TipoIDisposable rl = new ())
using (TipoIDisposable r2 = new ())

using (TipoIDisposable rN = new ())

{

// Ambito de uso de solo lectura de ri, r2, .., rN

// También podremos anidarlos.

Sintaxis moderna:

En la documentacion oficial sugiere que usemos un bloque ya definido como ambito para el recurso

liberable. Si esta dentro de un método, se liberara al salir del método y por ejemplo en un bloque if
se liberara al salir del mismo.

if ()
{

using TipoIDisposable r = new ();

// Bloque...

20/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/proposals/csharp-8.0/using

Interpretacion real de la instruccion using :

// Cuando instanciemos un objeto disposable de la siguiente manera en un método...
void Metodo()

{

using TipoIDisposable r = new (); // Cuerpo del método ...

// Realmente sera un 'syntactic sugar' del siguiente cddigo.
void Metodo()

{
TipoIDisposable r;
try
{
r = new (); // Cuerpo del método ...
}
finally
{
if (r != null)
((IDisposable)r).Dispose();
}
}

Ejemplo de uso de using con la clase Sesion del ejemplo anterior.

Podemos cambiar este cédigo... Por este otro. Donde la sesion se liberara
automaticamente al salir del ambito del try .

public static void Main()

{ public static void Main()
Sesion sesion = new(); (
try try
{ {

// ... coédigo de la aplicacion using Sesion sesion = new();
¥ // ... codigo de la aplicaciodn
catch (Exception e) }

{ catch (Exception e)

// ... manejo de excepciones {
¥ // ... manejo de excepciones
finally }

! }

sesion.Dispose();

¥
}

21/34 Programacion 1° DAM Unidad 17 IES Doctor Balmis

Creando nuestras propias excepciones

En ocasiones nos interesara crear nuestras propias excepciones para capturar errores de tipos de
excepciones especificos en nuestras clases, a la hora de pasar test por ejemplo.

En este caso las definiremos el tipo de la excepcion nosotros y heredando de una excepcidn ya creada
si queremos concertarla mas o de la clase base para excepciones System.Exception .

Ejemplo de creacion de una excepcion propia

El convenio en C# es acabar el nombre del tipo de nuestra excepcion con el sufijo Exception y en
este ejemplo lo hemos hecho.

class EmpresaException : Exception

{

public EmpresaException(string message) : base (message) {}

En el codigo de arriba hemos creado una excepcidn EmpresaException que usaré para saber cuando
se ha producido un error dentro de una clase Empresa .

Ahora supongamos un método para imprimir ndminas de un departamento dentro de Empresa , donde
no hemos contemplado un departamento de reciente creacion como Marketing en el siguiente codigo.

public enum Departamento { Contable, Desarrollo, Marketing };

public class Empresa

{

public static void ImprimeNominas(Departamento departamento)

{

string datosNominas = departamento switch
{
Departamento.Contable => "Datos ndéminas contabilidad.",
Departamento.Desarrollo => "Datos ndéminas desarrollo.",
_ => throw new EmpresaException(
$"No se pueden imprimir ndéminas de este departamento de {departamento}.")
¥

Console.WritelLine(datosNominas);

Otra posibilidad es crear excepciones personalizadas mas concretas para una clase. Una forma de
hacerlo seria definir la excepcion mas concreta de forma anidada dentro de la clase.

22/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

public class Empresa

: base(message) { }

$"No se pueden imprimir ndéminas de este departamento de {departamento}.")

{
// Definicidén de un tipo anidado
public class GestionNominasException : Exception
{
public GestionNominasException(string message)
}
public static void ImprimeNominas(Departamentos departamento)
{
string datosNominas = departamento switch
{
Departamentos.Contable => "Imprimiendo néminas contabilidad.",
Departamentos.Desarrollo => "Imprimiendo néminas Desarrollo.",
// E1 tipo de la excepcidn es mdas especifico
// y su definicidn esta dentro de empresa.
_ => throw new Empresa.GestionNominasException(
¥
Console.WritelLine(datosNominas);
}
}

Fijate que al estar anidada en el tipo Empresa.GestionNominasException queda claro que es una

excepcion relacionada con la clase Empresa .

Ejemplo de uso de excepcion general de la
clase:

foreach (var d in Enum.GetValues<Departamento>())

{

try
{
Empresa.ImprimeNominas(d);
}
catch (EmpresaException ex)
{
Console.WriteLine($"Error: {ex.Message}");
}

Ejemplo de uso de excepcion especifica
anidada:

foreach (var d in Enum.GetValues<Departamento>())

{

try
{
Empresa.ImprimeNominas(d);
}
catch (Empresa.GestionNominasException ex)
{
Console.WriteLine($"Error: {ex.Message}");
}

Pudes descargar el cédigo completo de este ejemplo desde el siguiente fichero:

excepcion_personalidada.cs.

23/34 Programacién 1° DAM Unidad 17

IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u17_poo_gestion_de_errores/assets/ejemplos/excepcion_personalidada_ejemplo.cs

Uso inadecuado de las excepciones

En ocasiones usar adecuadamente las excepciones es complicado incluso para programadores
experimentados, y se han de establecer convenios y patrones en los equipos de desarrollo.

Aunque en este curso no vamos tratar mas que los conceptos basicos. Si deseas profundizar, en el
siguiente enlace puedes encontrar una serie de instrucciones para la correcta generaciéon de
excepciones descritas en la documentacién oficial. Que ademas de ser una lectura
complementaria interesante, puede ser extrapolable a otros lenguajes.

De entre los consejos del enlace anterior, destacaremos un uso incorrecto de las excepciones que se
suele dar con frecuencia en programadores noveles y que debemos evitar.

Cuidado

No utilice excepciones para el flujo de control normal, si es posible.

Veamos un ejemplo similar al del inicio del tema, donde queriamos pedir dos numeros y mostrar su

division.
Un codigo algo mas modularizado, pero sin gestion de excepciones seria el siguiente:

public static class Consola

{
public static double Lee(string etiqueta)
{
Console.Write($"{etiqueta}: ");
return double.Parse(Console.ReadlLine()!);
}
}
public class Principal
{
public static void Main()
{
double numerador = Consola.lLee("Introduce el numerador");
double divisor = Consola.Lee("Introduce el divisor");
Console.WritelLine($"La divisién es {numerador / divisor}");
}
}

24/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/standard/design-guidelines/exception-throwing

X Caédigo a evitar

Si ahora nos piden filtrar la entrada de datos, para que no se generase error al producirse una
entrada correcta. Una tentacion seria implementar el método Lee de la siguiente forma...

public static double Lee(string etiqueta)

{
string textoEntrada = default;
double? valor = null;
do
{
try
{
Console.Write($"{etiqueta}: ");
textoEntrada = Console.ReadlLine() ?? "";
valor = double.Parse(textoEntrada);
}
catch (FormatException)
{
Console.WriteLine($"ELl valor introducido {textoEntrada}" +
"no es un valor real valido.");
¥
}
while(valor == null);
return (double)valor;
¥

En esta implementacion, utilizamos excepciones para el control del flujo de cédigo y no para
una situacion de error. Las excepciones deben reservarse para situaciones excepcionales y si
esta en nuestra mano generarlas en un determinado contexto, debemos hacerlo.

¢ Cual seria la implementacién correcta del cédigo anterior para no hacerlo?

25/34 Programacion 1° DAM Unidad 17 IES Doctor Balmis

{1 Cédigo recomendado

La documentacion oficial nos propone usar el patron try-parse en su lugar, de la siguiente
forma...

public static double Lee(string etiqueta)

{
double valor;
bool error;
do
{
Console.Write($"{etiqueta}: ");
string textoEntrada = Console.ReadLine() ?? "";
error = double.TryParse(textoEntrada, out valor);
if (error)
Console.WriteLine($"ELl valor introducido {textoEntrada}" +
"no es un valor real valido.");
}
while(error);
return valor;
}

It's hard enough to find an error in
your code when you're looking for it;

it's even harder when you've assumed
your code is error-free.

- Steve McConnell.

26/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/standard/design-guidelines/exceptions-and-performance#try-parse-pattern

En el caso del programa principal, si nos piden controlar la division por cero, una mala practica seria
hacerlo a través de excepciones.

X Cadigo a evitar

public static void Main()

{
double? division = default;
do
{
try
{
double numerador = Consola.Lee("Introduce el numerador");
double divisor = Consola.lLee("Introduce el divisor");
if (divisor == 0)
throw new DivideByZeroException();
division = numerador / divisor;
Console.WritelLine($"La division es {division}");
}
catch(DivideByZeroException)
{
Console.WriteLine("No se puede dividir por cero.\n" +
"Introduzca de nuevo los valores.");
}
}
while (division == null);
}

) Idea

En este caso es facil de ver, porque en el ambito del bucle do-while, estamos lanzando
una excepcion throw new DivideByZeroException(); Yy capturandose en el mismo ambito
con catch(bivideByzeroException) . Cunando suceda esto, debe saltarnos una alarma .1, .

¢Cual seria la implementacion correcta del cédigo anterior para no hacerlo?

27/34 Programacion 1° DAM Unidad 17 IES Doctor Balmis

{1 Cédigo recomendado

Siempre es mas correcto usar logica de control (if-else) para estos casos. Por ejemplo,
podriamos hacerlo de la siguiente forma...

public static void Main()

{
bool errorDivisionPorCero;
do
{
double numerador = Consola.lLee("Introduce el numerador");
double divisor = Consola.Lee("Introduce el divisor");
errorDivisionPorCero = divisor == 0;
string textoError = errorDivisionPorCero
? $"No se puede dividir por cero.\nIntroduzca de nuevo los valores."
: $"La divisién es {numerador / divisor}";
Console.WriteLine(textoError);
}
while (errorDivisionPorCero);
}

Vale, pero... ¢Y si la division se hace en una funcién aparte que no es nuestra y ya no se ve tan

claramente que el throw y catch de la misma excepcién estan en el mismo ambito?

If you're good at the debugger it means
you spent a lot of time debugging. |

don't want you to be good at the

debugger.
- Robert C. Martin. ”

28/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

{1 Cédigo recomendado

Es codigo seria exactamente igual, pero ahora es la funcion pivide quien tiene una precondicion
de que el divisor no sea cero y en caso contrario lanza una excepcion. Pero nosotros, como
llamadores del método, debemos cumplir esa precondicion y no llamar al método si el divisor es
cero. La funcién deberia estar documentada indicando esa precondicion.

/// <summary>

/// Divide dos numeros, lanzando una excepcidn si el divisor es cero.

/// </summary>

/// <returns>El cociente resultado de la division.</returns>

/// <exception cref="DivideByZeroException"></exception>

/// <remarks>El divisor se considera cero si es menor que le-5.</remarks>

public static double Divide(double numerador, double divisor)

{
if (divisor < 1e-5)
throw new DivideByZeroException();
return numerador / divisor;
}
public static void Main()
{
bool errorDivisionPorCero;
do
{
double numerador = Consola.lLee("Introduce el numerador");
double divisor = Consola.Lee("Introduce el divisor");
errorDivisionPorCero = divisor < le-5;
string textoError = errorDivisionPorCero
? $"No se puede dividir por cero.\nIntroduzca de nuevo los valores."
: $"La division es {Divide(numerador, divisor)}";
Console.WritelLine(textoError);
}
while (errorDivisionPorCero);
}

Fijate que es similar al esquema que hemos seguido cuando hemos gestionado las excepciones
en el ejemplo de las sesiones de usuario. Donde hemos cumplido las precondiciones de los
métodos que lanzaban excepciones y no hemos usado excepciones para el control del flujo
del programa.

Puedes descargar el cédigo completo de este ejemplo desde el siguiente fichero:
gestion_errores_correcta.cs.

29/34 Programacion 1° DAM Unidad 17 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u17_poo_gestion_de_errores/assets/ejemplos/gestion_errores_correcta_ejemplo.cs

Excepciones estandar en .NET

La documentacion oficial, nos proporciona unas recomendaciones de uso de excepciones estandar

ya definidas por las propias BCL.
Fijate que algunas no son recomendables capturarlas, lanzarlas o derivarlas.

Aunque cuando necesitemos lanzar algun tipo de excepcion estandar se te indicara en el enunciado.
En el siguiente diagrama tienes un resumen simplificado de las principales excepciones en .NET y las

recomendaciones de uso del cuadro anterior.

30/34

el

ArgumentException
Generable
Usar ParamName
Usar value

f

Exception

Evitar capturarla
Regenerar si capturada

AN

No generar
Evitar capturarla
Regenerar si capturada

No generar
No heredar

\

]

IndexOutO!

No generar

No generar

outo

Generable
Usar ParamName
Usar value

Generable
Usar ParamName
Usar value

DivideByZeroException

I/

Programacién 1° DAM Unidad 17

IES Doctor Balmis

EndOf

https://docs.microsoft.com/es-es/dotnet/standard/design-guidelines/using-standard-exception-types

Anexo | - Ampliaciéon usando encadenamiento de
excepciones

En ocasiones, puedo tener la necesidad de crear un bloque catch para capturar una excepcién en un
ambito, afnadir un mensaje especifico para ese ambito y posteriormente relanzarla para ser
capturada en otro ambito superior. Ademas, este proceso se puede repetir de forma sucesiva.

La mayoria de constructores de excepciones de las BCL, admiten una sobrecarga con el parametro
Exception innerException. (a NULL por defecto).

try
{

}

catch (ExcepcionTipoA e)

{

throw new ExcepcionTipoA("mensaje especifico en ambito del try", e);

Fijate que en al hacer throw new ExcepcionTipoA("mensaje especifico en ambito del try", e);
estamos creando otro objeto ExcepcionTipoA al que le pasamos una referencia al objeto
ExcepcionTipoA e , donde nos llegaba la informacién del error. Esto me permitira recorrer todos los
objetos excepcion encadenados en el orden que se han ido relanzando y asi acceder a mensajes
especificos en cada ambito.

24

Truth can only be found in one place:
the code.

- Robert C. Martin. ”

31/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.exception.innerexception?view=net-5.0

Caso de uso de encadenamiento de excepciones

Veamos un caso de uso de encadenamiento de excepciones a través del siguiente esquema, donde
desde el Main se iria llamando a métodos de diferentes objetos para realizar una tarea. Tenemos un

Método_D que es usado en dos ramas diferentes de la pila de llamadas y que puede generar la

excepcion/error E

Main
Punto de
recuperacion
catch E

/
\

Método_A
Punto de
control
catch E — thorw E

/E(b+d) \ E(c+d)

\

1 \
/ \
/ \
/ \
/ \
A

E(a+b+d)
i o

E(a+c+d)

L
Método_B Método_C
Punto de Punto de
control control
catch E — thorw E catch E — thorw E
7] \ >
\ E(d) E(d)
\\ / /l
e | Método D [~
throw E

Si solo tuviera un punto de recuperacion de errores (catch) en el Main al producirse el la excepcion
E(d) en Método_D , no sabria por donde se ha producido. Sin embargo, si vamos afadiendo ' catch

de control’ donde relanzamos la misma excepcion, afiadiendo una capa de informacion de que
proceso estamos haciendo en ese momento. El ' catch de contol' en el Método_A , si nos fijamos,
puede relanzar la excepcion afadiendo informacion de cada uno de los ' ecatech de contol’ por donde ha
pasado E(a+b+d) o E(a+c+d) Yy saber de forma mas especifica en un 'catch de mensaje o

recuperacion’' del main , por donde se ha producido el error.

32/34 Programacién 1° DAM Unidad 17 IES Doctor Balmis

Una posible implementacién esquematica del la situacidon descrita seria:

public class E : Exception

{
public E(string message) : base(message) { }
public E(string message, Exception innerException) : base(message, innerException) { }
}
public class JerarquiaDelLlamadas
{
static void Metodo D()
{
// En algin punto de pude lanzar la excepcidn
throw new E("D");
}
public static void Metodo C()
{
try
{
// En algun punto de este cddigo en su jerarquia de llamadas,
// se llamara a Metodo D()
}
catch (E e) // Catch de control en C
{
throw new E("C", e);
}
}
public static void Metodo_B()
{
try
{
// En algun punto de este codigo en su jerarquia de llamadas,
// se llamard a Metodo_D()
}
catch (E e) // Catch de control en B
{
throw new E("B", e);
}
}
public static void Metodo A()
{
try
{
// En algun punto de este cddigo en su jerarquia de llamadas,
// o bien se llemara a Metodo B() o a Metodo C()
}
catch (E e) // Catch de control en A
{
throw new E("A", e);
}
}

33/34 Programacion 1° DAM Unidad 17 IES Doctor Balmis

public static void Main() {

try {
// En algun punto de este codigo en su jerarquia de llamadas,

// se llamara a Metodo_A()

}
catch (E? e) // Catch de mensaje o recuperacidén en Main
{
StringBuilder mensaje = new StringBuilder();
while (e != null)
{
mensaje.Append(e.Message);
e = e.InnerException as E;
if (e != null)
mensaje.Append("+");
¥
Console.WriteLine(mensaje);
}

34/34 Programacion 1° DAM Unidad 17 IES Doctor Balmis

