
Unidad 17
Descargar estos apunte en pdf o html

Índice
Índice
Gestión de errores en POO

Introducción
Excepciones en CSharp

Generación de excepciones
Captura y control de excepciones
Capturando excepciones diferentes
Liberando recursos con finally
Ejemplo práctico de gestión de errores en POO
Instrucción using
Creando nuestras propias excepciones

Ejemplo de creación de una excepción propia
Uso inadecuado de las excepciones
Excepciones estándar en .NET

Anexo I - Ampliación usando encadenamiento de excepciones
Caso de uso de encadenamiento de excepciones

1/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u17_poo_gestion_de_errores/u17_poo_gestion_de_errores.pdf
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u17_poo_gestion_de_errores/u17_poo_gestion_de_errores.html

Gestión de errores en POO

Introducción
Podemos decir que son la forma en que los lenguajes orientados a objetos realizan el control de
errores.

Frente a la programación estructurada tradicional, nos ofrece:

1. Tratamiento asegurado de errores.
2. Posibilidad de recuperarnos de un error de forma centralizada.
3. Claridad y simplicidad, ya que evitamos lógica adicional del caso de error.

En la programación estructurada, el control de errores se hacía de forma dispersa y ad-hoc en cada
módulo, lo que hacía que el código fuese más complejo y difícil de mantener.

Con el control que hemos hecho hasta ahora con aserciones, no tenemos la posibilidad de
recuperarnos de un error, ya que el programa finalizaba. Además, estas solo eran útiles en la fase de
desarrollo y pruebas pues solo se producían con la versión de depuración.

Si por el contrario, intentábamos controlar los
errores con códigos de error devueltos por los
métodos, teníamos que añadir lógica adicional en
cada módulo para comprobar si se había
producido un error y actuar en consecuencia.
Esto hacía que el código fuese más complejo y
difícil de mantener como se puede ver en el
diagrama de ejemplo donde se muestra una
situación típica de la programación estructurada,
el la cual si se producía un error en un módulo
atómico como el Metodo3313() del ejemplo. Si
queríamos recuperarnos del mismo en algún
bucle de opciones por ejemplo en el Main() . El
error debía propagarse hacia arriba a través de
todos los módulos devolviéndose en todas las
llamadas.

main

método
1

método
2

método
3

método
2.1

método
2.2

e

método
3.1

método
3.2

método
3.3

método
2.2.1

método
2.2.2

método
2.2.3

e

método
3.3.1

método
3.3.2

e

método
3.3.1.1

método
3.3.1.2

método
3.3.1.3

e

Esto hacía, que muchos interfaces tuviesen que devolver información adicional con información sobre
el error.

2/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

Excepciones en CSharp
Vale, ya podemos sustituir las aserciones por excepciones, pero... ¿Cómo funcionan las
excepciones en C#?

Podemos decir que las excepciones en C# son objetos que contienen un estado con información
sobre un error que se ha producido en tiempo de ejecución. Podemos destacar las siguientes
características comunes a muchos lenguajes orientados a objetos:

1. Todas derivan de la clase System.Exception
2. Existen ya muchas predefinidas.
3. Podemos definir excepciones propias mediante el mecanismo de herencia.

Generación de excepciones

Utilizaremos la instrucción throw → throw new <TipoExcepción>(...);

Veamos un ejemplo en el que vamos a usar la excepción ya predefinida
ArgumentOutOfRangeException que indicará como su nombre sugiere que un argumento pasado a
un método no está dentro del rango permitido.

En el tema anterior creamos una clase Empleado que tenía una propiedad Sueldo . Donde
controlábamos, a través de una aserción en el set de la propiedad, que sueldo de un empleado
estuviese entre 1200 y 3000 €.

public class Empleado : IComparable, ICloneable

{

 private double _sueldo;

 public double Sueldo

 {

 get => _sueldo;

 set

 {

 Debug.Assert(

 condition: value >= 1200D && value <= 3000D,

 message: "El sueldo debe estar entre 1200 y 3000 euros");

 _sueldo = value;

 }

 }

 ...

}

Ahora vamos a sustituir la aserción por una excepción, de forma que si se intenta asignar un sueldo
fuera de rango, se lance una excepción si lo deseamos podríamos recuperarnos del error, pero

3/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/standard/exceptions/?redirectedfrom=MSDN#common-exceptions
https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/throw
https://learn.microsoft.com/es-es/dotnet/api/system.argumentoutofrangeexception

evitando que se asigne el valor erróneo al sueldo.

public class Empleado : IComparable, ICloneable

{

 private double _sueldo;

 public double Sueldo

 {

 get => _sueldo;

 set

 {

 if (value < 1200D || value > 3000D)

 {

 throw new ArgumentOutOfRangeException(

 paramName: nameof(value),

 message: "El sueldo debe estar entre 1200 y 3000 euros");

 }

 _sueldo = value;

 }

 }}

Hemos creado un objeto en memoria del tipo ArgumentOutOfRangeException y lo hemos lanzado con la
instrucción throw hacia algún punto de control.

Otro ejemplo de uso de excepciones podría ser el control de casting donde hemos usado el operador
 o! para indicar que un objeto o anulable no es null en ese punto del código.

Por ejemplo, cuando intentábamos hacer un downcast de una abstracción a una clase concreta con el
operador as .

Articulo a = new ArticuloReacondicionado("A005-R", "iPhone 16 Pro", 950,

 new(2025, 8, 17), "Foxconn", "Cambio de batería");

// Al usar ()! se generará una excepción de nulo si a no es del tipo ArticuloRebajado

// pero no tenemos ningún control real de que estaba pasando.

ArticuloRebajado ar = (a as ArticuloRebajado)!;

// Ahora generamos una excepción más específica y además con un mensaje

// que nos aporta más información.

ArticuloRebajado ar = a as ArticuloRebajado

 ?? throw new InvalidCastException(message: $"El artículo {a.Id} no es un artículo rebajad

Nota

A partir de este momento, en todos los casos donde usábamos aserciones para controlar
errores, deberemos sustituirlas por excepciones.



4/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

Captura y control de excepciones

En la gran mayoría de lenguajes orientados a objetos se realiza con las palabras reservadas try y
catch.

Una sintaxis básica de este tipo de estructura podría ser...

try

{

 // Código del que quiero controlar errores.

}

catch (TipoDeLaExcepciónACapturar e) when (<expresión con e>)

{

 // Tratamiento del error o excepción del tipo TipoDeLaExcepciónACapturar

}

Donde catch es un punto de control de errores, en el cual el identificador e será opcional y lo
definiremos solo si lo vamos a usar dentro del bloque catch o en una condición when (la condición
 when será opcional y específica del lenguaje C#).

Es importante tener en cuenta que no podremos, poner ningún bloque catch que no esté asociado a
uno try . Además, en C# try y catch son instrucciones (statements) y no expresiones, por lo que
no pueden formar parte de una expresión más grande o retornarse como valor de una función.

Veamos un ejemplo de sintaxis muy simple para ver cómo funcionan. Supongamos el siguiente
código...

public static void Main()

{

 Console.Write("Introduce un número real: ");

 string textoNumero = Console.ReadLine()!;

 double n = double.Parse(textoNumero);

 Console.Write($"Tu número es {n:G}");

}

Si lo ejecutamos e introducimos 25 obtendremos...

Introduce un número real: 25

Tu número es 25

Pero si introducimos el texto veinticinco obtendremos...

5/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/try-catch

Introduce un número real: veinticinco

Unhandled exception. System.FormatException: Input string was not in a correct format.

 at System.Number.ThrowOverflowOrFormatException(ParsingStatus status, TypeCode type)

 at System.Double.Parse(String s)

 at EjemploExcepciones.EjemploExcepciones.Main() in C:\ejemplo\Program.cs:line 15

Si nos fijamos double.Parse(textoNumero); ha generado una excepción de tipo FormatException
porque no ha podido pasar la cadena de entrada "veinticinco" a double .

En el ejemplo, la excepción ha sido capturada por el Runtime de C# (CLR), nos la ha mostrado y ha
finalizado la ejecución. A efectos prácticos, es cómo si hubiera un bloque try - catch que
englobara todo nuestro código y que 'barriera' o capturase cualquier error/excepción que se
pudiera producir aunque nosotros no lo hagamos.

Veamos cómo sería el código siguiendo la sintaxis del try - catch para capturar la excepción
 FormatException

Tip

Para saber que errores/excepciones puede generar una llamada a un método, colocaremos el
ratón sobre el método y mostrará una ventana emergente con la documentación del mismo
donde se indicarán las excepciones que puede generar.

También podemos hacer Ctrl + <click izquierdo del ratón> sobre el método y esto nos abrirá
su definición y el la documentación del método podremos verlo.



6/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

static void Main()

{

 // Tendremos que definir la variable textoNumero fuera del bloque try

 // e inicializarla si queremos que sea accesible desde el bloque catch.

 string textoNumero = "sin valor";

 try

 {

 Console.Write("Introduce un número real: ");

 textoNumero = Console.ReadLine()!;

 double n = double.Parse(textoNumero);

 Console.Write($"Tu número es {n}");

 }

 catch (FormatException)

 {

 // Como no usamos e no lo declaramos.

 Console.WriteLine($"Lo siento, el valor '{textoNumero}' no es Real.");

 }

}

Si lo ejecutamos e introducimos 'veinticinco' ahora obtendremos...

Introduce un número real: veinticinco

Lo siento, el valor 'veinticinco' no es Real.

También tendremos la opción de mostrar el mensaje de error que devuelven las BCL a través del
objeto e que contiene la información de la excepción y que se creó al generarse la misma en el
 throw .

public static void Main()

{

 try

 {

 Console.Write("Introduce un número real: ");

 double n = double.Parse(Console.ReadLine()!);

 Console.Write($"Tu número es {n}");

 }

 catch (FormatException e)

 {

 Console.WriteLine(e.Message); // Mostrando el mensaje.

 }

}

7/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

Si lo ejecutamos e introducimos 'veinticinco' ahora obtendremos...

Introduce un número real: veinticinco

Input string was not in a correct format.

Al especificar que capturamos solo la excepción FormatException , solo se entrará en este bloque
catch si se produce la misma. Por tanto, cualquier otro error/excepción será capturado por el CLR.

Capturando excepciones diferentes

Si catch (FormatException e) solo captura las excepciones de formato de entrada incorrecto.

¿Cómo haremos para controlar diferentes tipos errores/excepciones?

Supongamos el siguiente ejemplo donde hemos creado un método Divide que genera una excepción
 DivideByZeroException al intentar dividir por cero. Pero si nos fijamos en el Main solo gestionamos
 FormatException .
El programa principal nos pedirá 2 números e intentará dividirlos y si no puede finaliza.

public static double Divide(double numerador, double divisor)

{

 if (divisor < 1e-5)

 throw new DivideByZeroException(); // Lanzamos la excepción

 return numerador / divisor;

}

public static void Main()

{

 try

 {

 Console.Write("Introduce el numerador: ");

 double numerador = double.Parse(Console.ReadLine()!);

 Console.Write("Introduce el divisor: ");

 double divisor = double.Parse(Console.ReadLine()!);

 Console.WriteLine($"La división es {Divide(numerador, divisor)}");

 }

 catch (FormatException)

 {

 Console.WriteLine($"Has introducido un valor que no es un número real.");

 }

}

8/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

Al ejecutar el código e intentar dividir por cero obtendremos...

Introduce el numerador: 4

Introduce el divisor: 0

Unhandled exception. System.DivideByZeroException: Attempted to divide by zero.

 at EjemploExcepciones.EjemploExcepciones.Divide(Double numerador, Double divisor) in C:\ej

 at EjemploExcepciones.EjemploExcepciones.Main() in C:\ejemplo\Program.cs:line 23

Si nos fijamos el programa finaliza porque la excepción es capturada por el catch del CLR.

Para capturar también este error, lo que haremos es añadir dos bloques catch consecutivos para el
mismo bloque try .

try

{

 //...

}

catch (FormatException)

{

 Console.WriteLine("Has introducido un valor que no es un número real.");

}

catch (DivideByZeroException)

{

 Console.WriteLine("No se puede dividir por cero.");

}

Al ejecutar ahora, tendremos controlados los dos errores...

Ejecución 1:

 Introduce el numerador: 4

 Introduce el divisor: 0

 No se puede dividir por cero.

Ejecución 2:

 Introduce el numerador: 4

 Introduce el divisor: cero

 Has introducido un valor que no es un número real.

Ejecución 3:

 Introduce el numerador: 4

 Introduce el divisor: 2

 La división es 2

Si el tipo del primer bloque catch es una superclase del tipo del segundo. El segundo bloque catch
nunca se ejecutará y además nos avisará con un error de compilación.

9/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

Por ejemplo el siguiente código ...

try

{

 //...

}

catch (Exception) // Está cláusula catch nos producirá un error

{

 Console.WriteLine("Hay un error.");

}

catch (FormatException)

{

 Console.WriteLine("Has introducido un valor que no es un número real.");

}

catch (DivideByZeroException)

{

 Console.WriteLine("No se puede dividir por cero.");

}

Generará el siguiente error

❌ "Una cláusula catch previa ya detecta todas las excepciones de este tipo o de tipo
superior ('Exception')"

ya que todas las excepciones heredan de Exception y por tanto FormatException y
 DivideByZeroException lo hacen. Lo cual implicaría que es un código inalcanzable, porque cualquier
error entraría primero por el primer catch . De lo anterior se deduce que siempre podremos los
 catch excepciones más concretas primero y a continuación las excepciones más generales.

Si añadimos un único bloque catch (Exception e) en el Main controlaríamos cualquier
error/excepción que se produjese y seguiríamos con nuestro bucle infinito.

Aviso

La documentación del lenguaje, no nos recomienda hacerlo fuera del Main por no ser una
práctica que puede producir problemas.



10/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/standard/design-guidelines/using-standard-exception-types#exception-and-systemexception

Por tanto, si probamos el siguiente código....

public static void Main()

{

 try

 {

 Console.Write("Introduce el numerador: ");

 double numerador = double.Parse(Console.ReadLine()!);

 Console.Write("Introduce el divisor: ");

 double divisor = double.Parse(Console.ReadLine()!);

 double resultado = Divide(numerador, divisor);

 Console.WriteLine($"La división es {resultado:F2}");

 }

 catch (Exception e)

 {

 Console.WriteLine(e.Message);

 }

}

También tendremos como resultado:

Ejecución 1:

 Introduce el numerador: 4

 Introduce el divisor: 0

 Attempted to divide by zero.

Ejecución 2:

 Introduce el numerador: 4

 Introduce el divisor: cero

 Input string was not in a correct format.

Ejecución 3:

 Introduce el numerador: 4

 Introduce el divisor: 2

 La división es 2

11/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

Liberando recursos con finally

En ocasiones se pueden dar casos en los que queramos, independientemente de si ha producido
un error o no, hacer algo siempre después de un bloque de instrucciones. Por ejemplo:

Liberar un recurso de memoria asociado a un fichero cómo una imagen o una fuente.
Cerrar una conexión remota o a una base de datos, un fichero abierto por el sistema, etc.
Parar algún proceso en paralelo iniciado.

Para eso tendremos un bloque finally el cual es opcional y debe estar asociado a un bloque try .
Esto es, no necesita de un bloque catch para existir. Por tanto, libera o cierra los recursos usados
dentro del un bloque try al que está asociado.

El bloque finally se ejecutará siempre, tanto si ha ido bien el bloque try , como si ha entrado por
alguno de los bloques catch asociados al mismo o en un ámbito superior. Además, se ejecutará en
último lugar respecto a sus bloques try-catch asociados en su ámbito.

En otras palabras, se puede tener un bloque try seguido de un finally (sin bloques catch), y
realizar la captura de la excepción en un catch de ámbito más externo o incluso por el CLR. En este
caso, el finally se ejecutará siempre y antes que el catch del ámbito superior.

Veamos en un simples ejemplos de código esquematizado.

Caso más 'normal' con try - catch -
finally

// Si correcto: BT -> BF

// Si error: BT -> BC -> BF

try

{

 // BT

}

catch(...)

{

 // BC

}

finally

{

 // BF

}

finally sin catch...

// Si correcto: BT1 -> BT2 -> BF2

// Si error: BT1 -> BT2 -> BF2 -> BC1

try

{

 // BT1

 try

 {

 // BT2

 }

 finally

 {

 // BF2

 }

}

catch(...)

{

 // BC1

}

12/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

Ejemplo práctico de gestión de errores en POO

En el siguiente ejemplo vamos a ver cómo plantear la gestión de errores/excepciones en una
aplicación sencilla aplicando los conceptos vistos. Para ello, vamos a simular una aplicación de gestión
de sesiones de usuario en un sistema remoto, donde se instancia algún tipo de recurso asociado a la
sesión en el servidor que debe ser liberado al cerrar la sesión. Por ejemplo una máquina virtual, un
contenedor, disco virtual, base de datos, etc.

Puedes descargar el código completo de este ejemplo desde el siguiente fichero:
gestion_errores_con_recursos.cs.

Vamos a definir en primer lugar la clase Sesion que tendrá los métodos Login y Logout para iniciar y
cerrar sesión respectivamente. Además, implementará la interfaz IDisposable para liberar los
recursos asociados a la sesión en el servidor. En esta clase se van a ir mostrando una serie de
mensajes por consola a modo de log para ver lo que va ocurriendo.

Empezamos definiendo las propiedades Usuario , Clave e Iniciada en el constructor por defecto.
Fíjate que no hace falta definir un constructor explícito, basta con inicializar las propiedades en su
definición para ello.

public class Sesion : IDisposable

{

 public string Usuario { get; private set; } = string.Empty;

 private string Clave { get; set; } = string.Empty;

 public bool Iniciada { get; private set; } = false;

}

En el método Login hay dos posibles errores que podemos controlar:

1. Que el usuario o la clave estén vacíos: En este caso usamos programación por contrato y
tendremos una precondición donde lanzamos una excepción del tipo ArgumentException si alguno
de los dos parámetros está vacío o es nulo.

2. Que ya haya una sesión iniciada: En este caso, hemos usado programación defensiva y si ya
hay una sesión iniciada, mostramos un mensaje por consola indicando que se cerrará la sesión
actual liberando los recursos del servidor con Dispose() y se iniciará la nueva.
En el caso de haber optado por programación por contrato, podríamos haber lanzado una
excepción del tipo InvalidOperationException y sería quien llamase al método el que debería
controlar que la sesión no estuviese iniciada.

13/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u17_poo_gestion_de_errores/assets/ejemplos/gestion_errores_con_recursos_ejemplo.cs

public class Sesion : IDisposable

{

 // ... código anterior

 public void Login(string usuario, string clave)

 {

 if (string.IsNullOrWhiteSpace(usuario) || string.IsNullOrWhiteSpace(clave))

 throw new ArgumentException("Usuario y clave no pueden estar vacíos.");

 if (Iniciada)

 {

 Console.WriteLine($"Ya hay una sesión iniciada. Cerrando la sesión actual de {Usuario} en servidor

 Dispose();

 }

 Usuario = usuario;

 Clave = clave;

 Iniciada = true;

 Console.WriteLine($"Usuario {Usuario} autenticado exitosamente. Registrando sesión en servidor...");

 }

}

En el método Logout si la sesión aplicamos la precondición de que debe haber una sesión iniciada
para cerrarla. En caso contrario lanzamos una excepción del tipo InvalidOperationException el
llamador debe controlar esta condición. Si la sesión está iniciada, mostramos un mensaje por consola
y liberamos los recursos del servidor llamando a Dispose() .

public class Sesion : IDisposable

{

 // ... código anterior

 public void Logout()

 {

 if (!Iniciada)

 throw new InvalidOperationException("No hay una sesión iniciada para cerrar.");

 Console.WriteLine($"Usuario {Usuario} ha cerrado sesión.");

 Dispose();

 }

}

14/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

Implementamos el método Dispose() de la interfaz IDisposable para liberar los recursos asociados a
la sesión en el servidor y vaciamos el estado del objeto sesión si se ha quedado iniciada para
evitar su uso. En este caso, simplemente mostramos un mensaje por consola y reiniciamos las
propiedades de la clase. Más adelante veremos el '¿Por qué?' de implementar esta interfaz.

public class Sesion : IDisposable

{

 // ... código anterior

 public void Dispose()

 {

 if (Iniciada)

 {

 Console.WriteLine("Liberando recursos de la sesión en el servidor...");

 Usuario = string.Empty;

 Clave = string.Empty;

 Iniciada = false;

 }

 }

}

Definimos ahora una clase de utilidad RecursosProtegidos , que puedes encontrar más abajo, con dos
métodos estáticos que simulan el acceso a recursos protegidos por sesión. Ambos métodos requieren
como precondición de ejecución que la sesión esté iniciada para poder acceder así a los recursos. Si
no es así, lanzan una excepción del tipo InvalidOperationException .

Fíjate que, a través de la documentación del método, es como se indica que el método debe cumplir la
precondición de que la sesión esté iniciada. De esta forma, aunque no tengamos acceso porque
está en una librería, el usuario llamador sabe que debe cumplir esta precondición para usarse
sin errores.

Como hemos comentado antes,
al colocar el ratón sobre el
método, se muestra la
documentación del mismo y las
precondiciones que debe
cumplir el llamador.

Fíjate además, que en AccederRecurso2 simulamos que se produce un error inesperado al acceder
al recurso protegido lanzando una excepción del tipo ** InvalidOperationException aunque la sesión
esté iniciada.

15/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

public static class RecursosProtegidos

{

 /// <summary>

 /// Accede a un recurso 1 protegido que requiere sesión iniciada.

 /// </summary>

 /// <param name="sesion"></param>

 /// <exception cref="UnauthorizedAccessException"></exception>

 /// <remarks>Si no hay una sesión iniciada, lanza UnauthorizedAccessException.</remarks>

 public static void AccederRecurso1(Sesion sesion)

 {

 if (!sesion.Iniciada)

 throw new UnauthorizedAccessException("Acceso denegado a recurso protegido 1. No hay una sesión ini

 Console.WriteLine("Acceso correcto a Recurso Protegido 1...");

 }

 public static void AccederRecurso2(Sesion sesion)

 {

 if (!sesion.Iniciada)

 throw new UnauthorizedAccessException("Acceso denegado a recurso protegido 2. No hay una sesión ini

 Console.WriteLine("Acceso correcto a Recurso Protegido 2 se producirá un error inesperado ...");

 throw new InvalidOperationException("Se produjo un error inesperado al acceder al Recurso Protegido 2.

 }

}

Por último, definimos el programa principal donde tendremos que tener en cuenta la gestión de
errores/excepciones que se puedan producir en los diferentes métodos si se nos ha olvidado cumplir
alguna precondición en la llamada.

Definimos en primer lugar un método estático Menu() que nos devolverá el menú de opciones a
mostrar por consola.

public class Program

{

 public static string Menu()

 {

 return """

 1. Iniciar sesión

 2. Acceder a Recurso Protegido 1

 3. Acceder a Recurso Protegido 2

 4. Cerrar sesión

 5. Salir

 """;

 }

}

Veamos un poco la gestión del Main() , para ello, lee atentamente los comentarios del código.

16/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

public class Program

{

 // ... código anterior

 public static void Main()

 {

 // Iniciamos la sesión fuera del try para que esté accesible

 Sesion sesion = new();

 try

 {

 Console.Clear();

 bool salir = false;

 do

 {

 Console.WriteLine(Menu());

 Console.Write("Seleccione una opción: ");

 string? opcion = Console.ReadLine()!;

 switch (opcion)

 {

 case "1":

 Console.Write("Usuario: ");

 string usuario = Console.ReadLine()!;

 Console.Write("Clave: ");

 string clave = Console.ReadLine()!;

 sesion.Login(usuario, clave);

 break;

 case "2":

 // Debemos ser nosotros quienes verifiquemos si la sesión está iniciada antes de llama

 // en optro caso, el método lanzaría una excepción por no cumplir la precondición de us

 // Podemos verlo en la documentación del método AccederRecurso1.

 if (sesion.Iniciada)

 RecursosProtegidos.AccederRecurso1(sesion);

 else

 Console.WriteLine("Debe iniciar sesión antes de acceder al recurso protegido 1.");

 break;

 case "3":

 // Aquí no verificamos si la sesión está iniciada, para demostrar que el método lanza u

 // si no se cumple la precondición de uso.

 RecursosProtegidos.AccederRecurso2(sesion);

 break;

 case "4":

 // Cerrar sesión si está iniciada. Como antes, si queremos recuperanos del error,

 // este es el punto donde debemos hacerlo y no en el método Logout.

 if (sesion.Iniciada)

 sesion.Logout();

 else

 Console.WriteLine("No hay una sesión iniciada para cerrar.");

 break;

 case "5":

17/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

 Console.WriteLine("Saliendo de la aplicación...");

 salir = true;

 break;

 default:

 Console.WriteLine("Opción no válida. Intente nuevamente.");

 break;

 }

 }

 while (!salir);

 }

 catch (Exception e)

 {

 // Gestion de errores centralizada.

 // no se debe usar como control de flujo, sino para capturar errores inesperados.

 Console.WriteLine($"Error inesperado: {e.Message}");

 }

 finally

 {

 // Siempre se ejecuta, haya o no error.

 // Nos aseguramos de liberar los recursos de la sesión.

 sesion.Dispose();

 }

 }

}

Ejemplo de ejecución produciendo un error inesperado una ves iniciada la sesión...

1. Iniciar sesión

2. Acceder a Recurso Protegido 1

3. Acceder a Recurso Protegido 2

4. Cerrar sesión

5. Salir

Seleccione una opción: 1

Usuario: Juan

Clave: 1234

Usuario Juan autenticado exitosamente. Registrando sesión en servidor...

1. Iniciar sesión

2. Acceder a Recurso Protegido 1

3. Acceder a Recurso Protegido 2

4. Cerrar sesión

5. Salir

Seleccione una opción: 3

Acceso correcto a Recurso Protegido 2 se producirá un error inesperado ...

Error inesperado: Se produjo un error inesperado al acceder al Recurso Protegido 2.

Liberando recursos de la sesión en el servidor...

Fíjate como se ejecuta el bloque finally liberando los recursos de la sesión en el servidor, aunque se
haya producido un error inesperado al acceder al recurso protegido 2.

18/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

Ejemplo de ejecución intentando acceder a un recurso protegido sin tener iniciar sesión...

1. Iniciar sesión

2. Acceder a Recurso Protegido 1

3. Acceder a Recurso Protegido 2

4. Cerrar sesión

5. Salir

Seleccione una opción: 1

Usuario: Maria

Clave: 1234

Usuario Maria autenticado exitosamente. Registrando sesión en servidor...

1. Iniciar sesión

2. Acceder a Recurso Protegido 1

3. Acceder a Recurso Protegido 2

4. Cerrar sesión

5. Salir

Seleccione una opción: 2

Acceso correcto a Recurso Protegido 1...

1. Iniciar sesión

2. Acceder a Recurso Protegido 1

3. Acceder a Recurso Protegido 2

4. Cerrar sesión

5. Salir

Seleccione una opción: 4

Usuario Maria ha cerrado sesión.

Liberando recursos de la sesión en el servidor...

1. Iniciar sesión

2. Acceder a Recurso Protegido 1

3. Acceder a Recurso Protegido 2

4. Cerrar sesión

5. Salir

Seleccione una opción: 2

Debe iniciar sesión antes de acceder al recurso protegido 1.

1. Iniciar sesión

2. Acceder a Recurso Protegido 1

3. Acceder a Recurso Protegido 2

4. Cerrar sesión

5. Salir

Seleccione una opción: 4

No hay una sesión iniciada para cerrar.

1. Iniciar sesión

2. Acceder a Recurso Protegido 1

3. Acceder a Recurso Protegido 2

4. Cerrar sesión

5. Salir

Seleccione una opción: 3

Error inesperado: Acceso denegado a recurso protegido 2. No hay una sesión iniciada.

Fíjate como hemos liberado bien al hacer logout y controlado por lógica (if-else) todos los posibles
errores menos el caso de acceso sin iniciar sesión al recurso protegido 2.

19/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

Instrucción using

Se utiliza para instanciar objetos que contienen recursos no gestionados, esto es, que no son
liberados por el recolector de basura. Para poder usarla, las clases que definen los objetos deben
implementar el interfaz IDisposable y por tanto el método de liberación Dispose() .

 using garantiza que se llama a Dispose() aunque se produzca una excepción.

Sintaxis clásica:

// Podemos usar varios recursos liberables en el mismo ámbito así ...

using (TipoIDisposable r1 = new ())

using (TipoIDisposable r2 = new ())

...

using (TipoIDisposable rN = new ())

{

 // Ámbito de uso de solo lectura de r1, r2, … , rN

}

// También podremos anidarlos.

Sintaxis moderna:

En la documentación oficial sugiere que usemos un bloque ya definido como ámbito para el recurso
liberable. Si esta dentro de un método, se liberará al salir del método y por ejemplo en un bloque if
se liberará al salir del mismo.

if (…)

{

 using TipoIDisposable r = new ();

 // Bloque...

}

Aviso

Dentro del bloque using, el objeto es de solo lectura y no se puede modificar ni reasignar puesto
que dejaría de tener una referencia y no se liberaría.



20/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/proposals/csharp-8.0/using

Interpretación real de la instrucción using :

// Cuando instanciemos un objeto disposable de la siguiente manera en un método...

void Metodo()

{

 using TipoIDisposable r = new (); // Cuerpo del método ...

}

// Realmente será un 'syntactic sugar' del siguiente código.

void Metodo()

{

 TipoIDisposable r;

 try

 {

 r = new (); // Cuerpo del método ...

 }

 finally

 {

 if (r != null)

 ((IDisposable)r).Dispose();

 }

}

Ejemplo de uso de using con la clase Sesion del ejemplo anterior.

Podemos cambiar este código...

 public static void Main()

 {

 Sesion sesion = new();

 try

 {

 // ... código de la aplicación

 }

 catch (Exception e)

 {

 // ... manejo de excepciones

 }

 finally

 {

 sesion.Dispose();

 }

 }

Por este otro. Donde la sesion se liberará
automáticamente al salir del ámbito del try .

public static void Main()

{

 try

 {

 using Sesion sesion = new();

 // ... código de la aplicación

 }

 catch (Exception e)

 {

 // ... manejo de excepciones

 }

}

21/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

Creando nuestras propias excepciones

En ocasiones nos interesará crear nuestras propias excepciones para capturar errores de tipos de
excepciones específicos en nuestras clases, a la hora de pasar test por ejemplo.

En este caso las definiremos el tipo de la excepción nosotros y heredando de una excepción ya creada
si queremos concertarla más o de la clase base para excepciones System.Exception .

Ejemplo de creación de una excepción propia

El convenio en C# es acabar el nombre del tipo de nuestra excepción con el sufijo Exception y en
este ejemplo lo hemos hecho.

class EmpresaException : Exception

{

 public EmpresaException(string message) : base (message) {}

}

En el código de arriba hemos creado una excepción EmpresaException que usaré para saber cuando
se ha producido un error dentro de una clase Empresa .

Ahora supongamos un método para imprimir nóminas de un departamento dentro de Empresa , donde
no hemos contemplado un departamento de reciente creación como Marketing en el siguiente código.

public enum Departamento { Contable, Desarrollo, Marketing };

public class Empresa

{

 public static void ImprimeNominas(Departamento departamento)

 {

 string datosNominas = departamento switch

 {

 Departamento.Contable => "Datos nóminas contabilidad.",

 Departamento.Desarrollo => "Datos nóminas desarrollo.",

 _ => throw new EmpresaException(

 $"No se pueden imprimir nóminas de este departamento de {departamento}.")

 };

 Console.WriteLine(datosNominas);

 }

}

Otra posibilidad es crear excepciones personalizadas más concretas para una clase. Una forma de
hacerlo sería definir la excepción más concreta de forma anidada dentro de la clase.

22/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

public class Empresa

{

 // Definición de un tipo anidado

 public class GestionNominasException : Exception

 {

 public GestionNominasException(string message) : base(message) { }

 }

 public static void ImprimeNominas(Departamentos departamento)

 {

 string datosNominas = departamento switch

 {

 Departamentos.Contable => "Imprimiendo nóminas contabilidad.",

 Departamentos.Desarrollo => "Imprimiendo nóminas Desarrollo.",

 // El tipo de la excepción es más especifico

 // y su definición está dentro de empresa.

 _ => throw new Empresa.GestionNominasException(

 $"No se pueden imprimir nóminas de este departamento de {departamento}.")

 };

 Console.WriteLine(datosNominas);

 }

}

Fíjate que al estar anidada en el tipo Empresa.GestionNominasException queda claro que es una
excepción relacionada con la clase Empresa .

Ejemplo de uso de excepción general de la
clase:

foreach (var d in Enum.GetValues<Departamento>())

{

 try

 {

 Empresa.ImprimeNominas(d);

 }

 catch (EmpresaException ex)

 {

 Console.WriteLine($"Error: {ex.Message}");

 }

}

Ejemplo de uso de excepción específica
anidada:

foreach (var d in Enum.GetValues<Departamento>())

{

 try

 {

 Empresa.ImprimeNominas(d);

 }

 catch (Empresa.GestionNominasException ex)

 {

 Console.WriteLine($"Error: {ex.Message}");

 }

}

Pudes descargar el código completo de este ejemplo desde el siguiente fichero:
excepcion_personalidada.cs.

23/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u17_poo_gestion_de_errores/assets/ejemplos/excepcion_personalidada_ejemplo.cs

Uso inadecuado de las excepciones

En ocasiones usar adecuadamente las excepciones es complicado incluso para programadores
experimentados, y se han de establecer convenios y patrones en los equipos de desarrollo.

Aunque en este curso no vamos tratar más que los conceptos básicos. Si deseas profundizar, en el
siguiente enlace puedes encontrar una serie de instrucciones para la correcta generación de
excepciones descritas en la documentación oficial. Que además de ser una lectura
complementaria interesante, puede ser extrapolable a otros lenguajes.

De entre los consejos del enlace anterior, destacaremos un uso incorrecto de las excepciones que se
suele dar con frecuencia en programadores noveles y que debemos evitar.

Veamos un ejemplo similar al del inicio del tema, donde queríamos pedir dos números y mostrar su
división.

Un código algo más modularizado, pero sin gestión de excepciones sería el siguiente:

public static class Consola

{

 public static double Lee(string etiqueta)

 {

 Console.Write($"{etiqueta}: ");

 return double.Parse(Console.ReadLine()!);

 }

}

public class Principal

{

 public static void Main()

 {

 double numerador = Consola.Lee("Introduce el numerador");

 double divisor = Consola.Lee("Introduce el divisor");

 Console.WriteLine($"La división es {numerador / divisor}");

 }

}

Cuidado

No utilice excepciones para el flujo de control normal, si es posible.



24/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/standard/design-guidelines/exception-throwing

❌ Código a evitar

Si ahora nos piden filtrar la entrada de datos, para que no se generase error al producirse una
entrada correcta. Una tentación sería implementar el método Lee de la siguiente forma...

public static double Lee(string etiqueta)

{

 string textoEntrada = default;

 double? valor = null;

 do

 {

 try

 {

 Console.Write($"{etiqueta}: ");

 textoEntrada = Console.ReadLine() ?? "";

 valor = double.Parse(textoEntrada);

 }

 catch (FormatException)

 {

 Console.WriteLine($"El valor introducido {textoEntrada}" +

 "no es un valor real válido.");

 }

 }

 while(valor == null);

 return (double)valor;

}

En esta implementación, utilizamos excepciones para el control del flujo de código y no para
una situación de error. Las excepciones deben reservarse para situaciones excepcionales y si
está en nuestra mano generarlas en un determinado contexto, debemos hacerlo.

¿Cual sería la implementación correcta del código anterior para no hacerlo?

25/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

✅ Código recomendado

La documentación oficial nos propone usar el patrón try-parse en su lugar, de la siguiente
forma...

public static double Lee(string etiqueta)

{

 double valor;

 bool error;

 do

 {

 Console.Write($"{etiqueta}: ");

 string textoEntrada = Console.ReadLine() ?? "";

 error = double.TryParse(textoEntrada, out valor);

 if (error)

 Console.WriteLine($"El valor introducido {textoEntrada}" +

 "no es un valor real válido.");

 }

 while(error);

 return valor;

}

"

"

It's hard enough to find an error in
your code when you're looking for it;
it's even harder when you've assumed
your code is error-free.

- Steve McConnell.

26/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/standard/design-guidelines/exceptions-and-performance#try-parse-pattern

En el caso del programa principal, si nos piden controlar la división por cero, una mala práctica sería
hacerlo a través de excepciones.

❌ Código a evitar

public static void Main()

{

 double? division = default;

 do

 {

 try

 {

 double numerador = Consola.Lee("Introduce el numerador");

 double divisor = Consola.Lee("Introduce el divisor");

 if (divisor == 0)

 throw new DivideByZeroException();

 division = numerador / divisor;

 Console.WriteLine($"La división es {division}");

 }

 catch(DivideByZeroException)

 {

 Console.WriteLine("No se puede dividir por cero.\n" +

 "Introduzca de nuevo los valores.");

 }

 }

 while (division == null);

}

¿Cual sería la implementación correcta del código anterior para no hacerlo?

Idea

En este caso es fácil de ver, porque en el ámbito del bucle do-while, estamos lanzando
una excepción throw new DivideByZeroException(); y capturándose en el mismo ámbito
con catch(DivideByZeroException) . Cunando suceda esto, debe saltarnos una alarma ⚠️.



27/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

✅ Código recomendado

Siempre es más correcto usar lógica de control (if-else) para estos casos. Por ejemplo,
podríamos hacerlo de la siguiente forma...

public static void Main()

{

 bool errorDivisionPorCero;

 do

 {

 double numerador = Consola.Lee("Introduce el numerador");

 double divisor = Consola.Lee("Introduce el divisor");

 errorDivisionPorCero = divisor == 0;

 string textoError = errorDivisionPorCero

 ? $"No se puede dividir por cero.\nIntroduzca de nuevo los valores."

 : $"La división es {numerador / divisor}";

 Console.WriteLine(textoError);

 }

 while (errorDivisionPorCero);

}

Vale, pero... ¿Y si la división se hace en una función aparte que no es nuestra y ya no se ve tan
claramente que el throw y catch de la misma excepción están en el mismo ámbito?

"

"

If you're good at the debugger it means
you spent a lot of time debugging. I
don't want you to be good at the
debugger.

- Robert C. Martin.

28/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

✅ Código recomendado

Es código sería exactamente igual, pero ahora es la función Divide quien tiene una precondición
de que el divisor no sea cero y en caso contrario lanza una excepción. Pero nosotros, como
llamadores del método, debemos cumplir esa precondición y no llamar al método si el divisor es
cero. La función debería estar documentada indicando esa precondición.

/// <summary>

/// Divide dos números, lanzando una excepción si el divisor es cero.

/// </summary>

/// <returns>El cociente resultado de la división.</returns>

/// <exception cref="DivideByZeroException"></exception>

/// <remarks>El divisor se considera cero si es menor que 1e-5.</remarks>

public static double Divide(double numerador, double divisor)

{

 if (divisor < 1e-5)

 throw new DivideByZeroException();

 return numerador / divisor;

}

public static void Main()

{

 bool errorDivisionPorCero;

 do

 {

 double numerador = Consola.Lee("Introduce el numerador");

 double divisor = Consola.Lee("Introduce el divisor");

 errorDivisionPorCero = divisor < 1e-5;

 string textoError = errorDivisionPorCero

 ? $"No se puede dividir por cero.\nIntroduzca de nuevo los valores."

 : $"La división es {Divide(numerador, divisor)}";

 Console.WriteLine(textoError);

 }

 while (errorDivisionPorCero);

}

Fíjate que es similar al esquema que hemos seguido cuando hemos gestionado las excepciones
en el ejemplo de las sesiones de usuario. Donde hemos cumplido las precondiciones de los
métodos que lanzaban excepciones y no hemos usado excepciones para el control del flujo
del programa.

Puedes descargar el código completo de este ejemplo desde el siguiente fichero:
gestion_errores_correcta.cs.

29/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u17_poo_gestion_de_errores/assets/ejemplos/gestion_errores_correcta_ejemplo.cs

Excepciones estándar en .NET

La documentación oficial, nos proporciona unas recomendaciones de uso de excepciones estándar
ya definidas por las propias BCL.
Fíjate que algunas no son recomendables capturarlas, lanzarlas o derivarlas.

Aunque cuando necesitemos lanzar algún tipo de excepción estándar se te indicará en el enunciado.
En el siguiente diagrama tienes un resumen simplificado de las principales excepciones en .NET y las
recomendaciones de uso del cuadro anterior.

Exception
No generar

Evitar capturarla
Regenerar si capturada

SystemException
No generar

Evitar capturarla
Regenerar si capturada

ApplicationException
No generar
No heredar

ArgumentException
Generable

Usar ParamName
Usar value

ArithmeticException IndexOutOfRangeException
No generar

NullReferenceException
No generar IOException

ArgumentNullException
Generable

Usar ParamName
Usar value

ArgumentOutOfRangeException
Generable

Usar ParamName
Usar value

DivideByZeroException EndOfStremException FileNotFoundException FileNotFoundException

30/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/standard/design-guidelines/using-standard-exception-types

Anexo I - Ampliación usando encadenamiento de
excepciones
En ocasiones, puedo tener la necesidad de crear un bloque catch para capturar una excepción en un
ámbito, añadir un mensaje específico para ese ámbito y posteriormente relanzarla para ser
capturada en otro ámbito superior. Además, este proceso se puede repetir de forma sucesiva.

La mayoría de constructores de excepciones de las BCL, admiten una sobrecarga con el parámetro
Exception innerException. (a NULL por defecto).

try

{

 // Ámbito del try

}

catch (ExcepcionTipoA e)

{

 // En este punto de control de excepciones capturamos la excepción

 // del tipo ExcepcionTipoA y añadimos un mensaje específico de lo

 // que estamos haciendo en el ámbito del try y la relanzamos a un

 // catch en un ámbito superior donde puede haber otro punto

 // de control o de recuperación de excepciones.

 throw new ExcepcionTipoA("mensaje específico en ámbito del try", e);

}

Fíjate que en al hacer throw new ExcepcionTipoA("mensaje específico en ámbito del try", e);
estamos creando otro objeto ExcepcionTipoA al que le pasamos una referencia al objeto
 ExcepcionTipoA e , donde nos llegaba la información del error. Esto me permitirá recorrer todos los
objetos excepción encadenados en el orden que se han ido relanzando y así acceder a mensajes
específicos en cada ámbito.

"

"

Truth can only be found in one place:
the code.

- Robert C. Martin.

31/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.exception.innerexception?view=net-5.0

Caso de uso de encadenamiento de excepciones
Veamos un caso de uso de encadenamiento de excepciones a través del siguiente esquema, donde
desde el Main se iría llamando a métodos de diferentes objetos para realizar una tarea. Tenemos un
 Método_D que es usado en dos ramas diferentes de la pila de llamadas y que puede generar la
excepción/error E

Main
Punto de

recuperación
catch E

Método_A
Punto de
control

catch E → thorw E

E(a+b+d)
o

E(a+c+d)

Método_B
Punto de
control

catch E → thorw E

Método_C
Punto de
control

catch E → thorw E

E(b+d) E(c+d)

Método_D
throw E

E(d) E(d)

Si sólo tuviera un punto de recuperación de errores (catch) en el Main al producirse el la excepción
 E(d) en Método_D , no sabría por donde se ha producido. Sin embargo, si vamos añadiendo ' catch
de control' donde relanzamos la misma excepción, añadiendo una capa de información de que
proceso estamos haciendo en ese momento. El ' catch de contol' en el Método_A , si nos fijamos,
puede relanzar la excepción añadiendo información de cada uno de los ' catch de contol' por donde ha
pasado E(a+b+d) o E(a+c+d) y saber de forma más específica en un ' catch de mensaje o
recuperación' del Main , por donde se ha producido el error.

32/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

Una posible implementación esquemática del la situación descrita sería:

public class E : Exception

{

 public E(string message) : base(message) { }

 public E(string message, Exception innerException) : base(message, innerException) { }

}

public class JerarquiaDeLlamadas

{

 static void Metodo_D()

 {

 // En algún punto de pude lanzar la excepción

 throw new E("D");

 }

 public static void Metodo_C()

 {

 try

 {

 // En algún punto de este código en su jerarquía de llamadas,

 // se llamará a Metodo_D()

 }

 catch (E e) // Catch de control en C

 {

 throw new E("C", e);

 }

 }

 public static void Metodo_B()

 {

 try

 {

 // En algún punto de este código en su jerarquía de llamadas,

 // se llamará a Metodo_D()

 }

 catch (E e) // Catch de control en B

 {

 throw new E("B", e);

 }

 }

 public static void Metodo_A()

 {

 try

 {

 // En algún punto de este código en su jerarquía de llamadas,

 // o bien se llemará a Metodo_B() o a Metodo_C()

 }

 catch (E e) // Catch de control en A

 {

 throw new E("A", e);

 }

 }

33/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

 public static void Main() {

 try {

 // En algún punto de este código en su jerarquía de llamadas,

 // se llamará a Metodo_A()

 }

 catch (E? e) // Catch de mensaje o recuperación en Main

 {

 StringBuilder mensaje = new StringBuilder();

 while (e != null)

 {

 mensaje.Append(e.Message);

 e = e.InnerException as E;

 if (e != null)

 mensaje.Append("+");

 }

 Console.WriteLine(mensaje);

 }

 }

}

34/34 Programación 1º DAM Unidad 17 IES Doctor Balmis

