Unidad 16

Descargar estos apunte en pdf o html

indice

= indice
¥ Abstraccion
= Concepto de clase asbtracta
= Modelando la abstraccion en UML
= Clases asbtractas en CSharp
¥ El Patron "Union Type" o "Sum Type"
= "Union Type" en CSharp
V¥ Interfaces
= Representacion en los diagramas de clases UML
= |nterfaces en CSharp
¥ Interfaces de utilidad predefinidos en las BCL
= |[Enumerable
= [Cloneable
= |Comparable
= |Disposable
= Ejemplo de uso de interfaces predefinidos en las BCL
= El Patron "Strategy"

1/30 Programacion 1° DAM Unidad 16 IES Doctor Balmis

file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/u16_poo_roles_abstraccion.pdf
file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/u16_poo_roles_abstraccion.html

Abstraccion

Concepto de clase asbtracta

En la mayoria de los casos, al buscar el
polimorfismo con la herencia de superclases se
nos daran generalizaciones que no tienen

sentido como objetos. A este tipo de clases se / Figura
. . ! Geométrica \
les denominara Clases Abstractas y de las | 272 i

-

mismas no podremos definir objetos, y si
objetos para sus subclases.

El tipico ejemplo, que muestra el diagrama, es el
de figuras geométrica, no tiene sentido crear un Cuadrado
objeto de la clase Figura . En cambio, si que

tiene sentido crear objetos de las subclases como

Cuadrado , Rombo O Circulo .
Definiciones desde el punto de vista de la POO tradicional:

o Como hemos comentado, no podremos instanciar objetos de una clase abstracta, pues no tiene
sentido la existencia de dicha abstraccion sin una especificacion.
e Deberian, pero no es necesario, tener al menos un campo o propiedad comun a todas las
subclases.
e Deberian, tener al menos un método abstracto o virtual puro.
o Un método abstracto o virtual puro no definira un ‘cuerpo de método' y por tanto
dejaremos su implementacion en manos de las subclases o especificaciones.
o Este método abstracto debera ser redefinido obligatoriamente en la subclases.
» Alas clases abstractas con todos sus métodos abstractos se les denomina ‘clases abstractas

puras’.

2/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

Modelando la abstraccion en UML

Un posible modelo de clases para representar la jerarquia de figuras representada en el diagrama

del ejemplo anterior, podria ser el siguiente:

@ Figura
{abstract} «enumeration|
ColorFigura

-color : Color { readonly } -
<<use> ROJO,

-GetColor() : Color
#Figura(in color: Color)

Azul,
Verde,

+/GetArea() : double {abstract} Naranja,

+/GetPerimetro() : double {abstract}
A+ToString() : string

© Rombo
@ Cuadrado -diagonal1_cm : double {readonly} @ Circulo

-lado_cm : double {readonly} -diagonal2_cm : double {readonly} -radio_cm : double {readonly}
-GetLado() : double 'geigfag"”ag() : SOUE:E -GetRadio() : double
+Cuadrado(in color : Color, in lado_cm : double) :/GeetLI:gs(r;? dE))ulblgu e +Circulo(in color : Color, in radio_cm : double)
A, . - A .
";:g::é;eria:;)e.t:;(’;@ijeouble +Rombo(in color : Color, in d1_cm : double, in d2_cm : double) ";ig::ggi?r(\)e-t:)?;?lcfouble
A+ToString() : striné e aeaupdouble A+ToString() : strin‘g

- A+/GetPerimetro() : double =

A+/ToString() : string

Fijate que en el diagrama UML hemos indicado que la clase es abstracta, ademas de usando el
modificador {abstract} hemos puesto en cursiva el nombre, y en los get de las propiedades
abstractas (virtuales) ademas de la cursiva hemos puesto el modificador {abstract} . Lo mismo

sucederia con cualquier otro método.

Nota

Aunque, la cursiva ya no es necesaria a partir de la version 2.5 de UML aun sigue siendo

ampliamente aceptada.

La abstraccion implica definir un tipo
de objeto por las operaciones que se

pueden realizar <~ sobre él, sin
preocuparse por los detalles.”

- Alan Kay.

3/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

Clases asbtractas en CSharp

La sintaxis sera muy similar a la de la herencia, pero ampliando las condiciones que hemos descrito
con anterioridad.

Vamos a ver la sintaxis a través de la implementacion de nuestro ejemplo con figuras. Puedes
descargar el codigo de este ejemplo del siguiente enlace: abstraccion_figuras.cs.

Paso 1: Definimos el tipo enumerado ColorFigura que representara los colores de las figuras que es
usada por la clase Figura y por tanto sus subclases y por tanto hay una dependencia de dicho tipo.

public enum ColorFigura { Rojo, Azul, Verde, Naranja }
Paso 2: En primer lugar vamos a implementar la clase abstracta Figura .

public abstract class Figura Definimos la clase anteponiendo el modificador

{ abstract y despueés

private ColorFigura Color { get; } o
afadimos una propiedad privada de solo
protected Figura(ColorFigura color) lectura comun a todas las especificaciones que
{ en este caso es el color . Sera privada pues es
Color = color; . 3 .
responsabilidad de la clase y asi no repetimos

cbdigo en las concreciones manteniendo la
abstract public double Area_cm2 { get; } encapsulacién

abstract public double Perimetro_cm { get; } Aquellas propiedades calculadas que no

public override string ToString() => $""" podemos implementar hasta que no sepamos
Color: {Color} la especificacion que son Area_cm2 y
Area: {Area_cm2:F2} cm? Perimetro_cm , les anteponemos el modificador

Perimetro: {Perimetro_cm:F2} cm
abstract Y las declaramos como public para

k)

} que sean accesibles desde las subclases.

Los constructores que definamos pueden ser protected pues solo tiene sentido usarlos desde las
subclases.
Nunca podré hacer un Figura f = new (color: ColorFigura.Rojo);

Pero, ¢Coémo puede ser que Figura USe Area_cm2 O Perimetro_cm Si no estan implementados?.
De hecho, estoy accediendo a su valor desde el Tostring() pero realmente no se implementan.

Porque, tendré siempre la seguridad de que un si tengo un objeto de tipo Figura habré realizado una
sustitucion de tipo y por tanto tendré un objeto de una subclase que implementa esas propiedades

4/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/assets/ejemplos/abstraccion_figuras_ejemplo.cs

o métodos de forma obligatoria y por tanto, siempre se producira un enlace dinamico a la

propiedad de la concrecion que la implementa.

Paso 3: Implementacion de las concreciones (subclases)

public class Circulo : Figura

{

El resto de implementaciones como

public double Radio_cm { get; }
public Circulo(
ColorFigura color,
double radio_cm) : base(color)
Radio_cm = radio_cm;
public override double Area_cm2 =>

Math.PI * Math.Pow(Radio_cm, 2);

public override double Perimetro_cm =>

Math.PI * Radio_cm * 2;

public override string ToString() => $"""

Circulo
Radio: {Radio_cm} cm
{base.ToString()}

3

public class Cuadrado : Figura

{

5/30

private double Lado_cm { get; }

Desde el constructor de la subclase circulo
llamamos al constructor de la superclase Figura
para inicializar el color y es posible porque lo
hemos definido como protected .

Nos obligara a implementar las propiedades
Area_cm2 Yy Perimetro_cm . Fijate que las hemos
implementado como propiedades de calculadas.

Ademas, hemos implementado el método
ToString() que nos permite mostrar la
informacion propia de la figura como el Color que
no es accesible desde las subclases. En
ocasiones, esto no es posible y deberiamos
marcar Color COmMO protected para que las
subclases puedan acceder a él.

Cuadrado Yy Rombo seran analogas a Circulo ...

public Cuadrado(ColorFigura color, double lado_cm) : base(color)

{

Lado_cm = lado_cm;

}

public override double Area_cm2 => Lado_cm * Lado_cm;
public override double Perimetro_cm => Lado_cm * 4d;
public override string ToString() => $"""
___Cuadrado_____
Lado: {Lado_cm} cm

{base.ToString()}

P

Programacién 1° DAM Unidad 16 IES Doctor Balmis

public class Rombo : Figura

{
private double Diagonall_cm { get; }
private double Diagonal2_cm { get; }
public Rombo(ColorFigura color, double di_cm, double d2_cm) : base(color)
{
Diagonall_cm = dl1_cm;
Diagonal2_cm = d2_cm;
}
private double Lado_cm => Math.Sqrt(Math.Pow(Diagonall cm / 2d, 2d) + Math.Pow(Diagonal2_cm / 2d, 2d));
public override double Area_cm2 => Diagonall_cm * Diagonal2_cm / 2d;
public override double Perimetro_cm => Lado_cm * 4d;
public override string ToString() => $"""
___Rombo____
Diagonall: {Diagonall_cm} cm
Diagonal2: {Diagonal2_cm} cm
Lado: {Lado_cm:F2} cm
{base.ToString()}
s
}

El polimorfismo de datos lo vamos a poder realizar igual que en el caso de Articulo pero no vamos a
poder crear ningun articulo directamente.

public static void Main() Mostrara por consola:
{

List<Figura> figuras =

[

Cuadrado
Lado: 2 cm
Color: Rojo
Area: 4,00 cm?
Perimetro: 8,00 cm

new Cuadrado(
color: ColorFigura.Rojo,

lado_cm: 2),

new Rombo(_____Rombo___
color: ColorFigura.Azul, Diagonall: 2 cm
dil_cm: 2, Diagonal2: 2 cm
d2_cm: 2), Lado: 1,41 cm
new Circulo(color: Azul

color: ColorFigura.Verde, Area: 2,00 cm?
radio_cm: 2) Perimetro: 5,66 cm
1; Circulo____
Radio: 2 cm
color: verde
Area: 12,57 cm?
Perimetro: 12,57 cm

foreach (Figura f in figuras)

Console.WriteLine(f);

6/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

® Caso de estudio

Supongamos el siguiente modelo simplificado, en el cual, un Sicélogo crea un gabinete o
consulta psicologica, donde cada dia atiende a los pacientes que le llegan.

Los pacientes iran entrando a la consulta y en un momento dado el sicologo les pasara
consulta por orden de llegada.

Los pacientes tendran un nombre y de momento, nuestro sicologo solo sabe atender a dos tipos

de pacientes:

1. Pacientes alegres
2. Pacientes tristes

En el momento en que el sicologo atiende a un paciente, se producira un dialogo con el mismo

que empezara igual para todos los pacientes:

- Sicologo: Buenos dias!. ;Como se 1lama?
- Paciente: Soy <Nombre>

- Sicélogo: Digame <Nombre>!.. ;Qué siente?

Pero dependiendo del tipo de paciente obtendremos un tipo de respuesta diferente dependiendo
de si es un paciente alegre o triste respectivamente...

- Paciente: Pues... ahora estoy alegre.

- Paciente: Pues... ahora estoy triste.

El sicélogo realizara un diagnéstico diferente dependiendo de si es un paciente alegre o triste

respectivamente...

- Sicologo: Tle veo estupendamente. Enhorabuena!! no necesita mds terapia.

- Sicélogo: tome fluoxetina 20mg y vuelva en un mes.

Tras realizar el diagnostico el sicélogo dira ...

- Sicologo: Que pase el siguiente !!!

Atendiendo a otro paciente si hay aun pendientes en consulta.

7130 Programacién 1° DAM Unidad 16 IES Doctor Balmis

Piensa en un posible modelado o disefio de clases para representar las especificaciones
anteriores.
Si no se te ocurre ninguno, aqui tienes una propuesta de implementacion.

@ Sicologo @ Consulta

+Sicologo() : void

+GetConsulta() : Consulta
-Diagnostico(in_p_: Paciente) : string
-Atiende(in p : Paciente) : void
+PasaConsulta() : void

! tiene 1| +Consulta() : void
-GetPacientes() : List<Paciente>
+Entra(in p : Paciente) : Consulta
+Siguiente() : Paciente?

\
\

\«use» es visitada
\
0. .*
Y
Paciente
{abstract}

-nombre : string {readOnly}

+GetNombre() : string
#Paciente(in nombre : string)
+/GetRespuesta() : string {abstract}

VAR

‘ © PacienteFeliz © PacienteTriste ‘

+PacienteFeliz(in nombre : strlng)
A +/GetRespuesta() : string

+PaC|enteTr|ste(in nombre : string)
A+/GetRespuesta() : string

Antes de ver la implementacion comentada de esta prupuesta, intenta realizarla tu y asi
posteriormente puedes ver la propuesta de solucién para lo que no has sabido resolver. Puedes
descargar el codigo de la propuesta de solucion del siguiente enlace: abstraccion_sicologo.cs.

Propuesta de solucion al caso de estudio:

Paso 1: Crearemos la clase abstracta Paciente . Sera abstracta porque los pacientes del sicélogo
responden de forma diferente dependiendo de su especificacion.

public abstract class Paciente Marcamos la clase como abstract Yy definimos

{ una propiedad Nombre comun a todos los

public string Nombre { get; } . .
public abstract string Respuesta { get; } pacientes y una propiedad abstracta

Respuesta que sera implementada por las

protected Paciente(string nombre) concreciones de paciente.
{

Nombre = nombre;

8/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/assets/ejemplos/abstraccion_sicologo_ejemplo.cs

9/30 Programacién 1° DAM Unidad 16

Paso 2: Definiremos las concreciones de Paciente para que respondan segun su estado de

animo.

public class PacienteAlegre : Paciente

{
public override string Respuesta
=> "Pues... ahora estoy alegre.";
public PacienteAlegre(string nombre)
: base(nombre) { ; }

}

public class PacienteTriste : Paciente

{
public override string Respuesta
=> "Pues... ahora estoy triste.";
public PacienteTriste(string nombre)
: base(nombre) { ; }

}

Paso 3: Definiremos la clase cConsulta

public class Consulta

{
private List<Paciente> Pacientes { get; }
public Consulta()
{
Pacientes = [];
}
public Consulta Entra(Paciente p)
{
Pacientes.Add(p);
return this;
}
public Paciente? Siguiente
{
get
{
Paciente? p = Pacientes.FirstOrDefault
if (p != null)
Pacientes.RemoveAt(9);
return p;
}
}
}

Tanto PacienteAlegre CcOmMO PacienteTriste
estan obligados a invalidar la propiedad

Respuesta .

Ademas, en el constructor de cada concrecion
llamamos al constructor protegido de la
superclase para inicializar el nombre. Sin
embargo, el cuerpo del constructor de las
concreciones esta vacio pues no hay nada
mas que inicializar. Un convenio, para indicar a
otros programadores que lo hemos dejado
vacio a propésito, es poner una instruccion
vacia { ; }.

Representamos la agregacion multiple con una
lista de pacientes que inicializamos en el
constructor.

Definimos el método Entra que afiade un
paciente a la consulta y devuelve la propia
consulta para poder encadenar llamadas de
forma fluida.

El métodos siguiente devuelve el siguiente
paciente en la lista 0 null si no hay pacientes.
Fijate que el método FirstorDefault()
devuelve el primer elemento o null sila lista
esta vacia. Ademas, si devuelve un paciente,
lo elimina de la lista.

IES Doctor Balmis

Paso 4: Definiremos la clase Sicologo

2" Nota

Tiene un dependencia débil de uso (<<use>>) con Paciente en el UML, ya que necesita
conocer la clase. Normalmente no se suele indicar en el UML, pero es importante que lo
tengas en cuenta.

public class Sicologo

{
public Consulta Consulta { get; }
public Sicologo(Consulta consulta)
{
Consulta = consulta;
}
private static string Diagnostico(Paciente p) => p switch
{
PacienteAlegre _ => $"{p.Nombre} le veo estupendamente. Enhorabuena!! no necesita mas terapia."”,
PacienteTriste _ => $"{p.Nombre} tome fluoxetina 2@mg y vuelva en un mes.",
_ => $"{p.Nombre} déjeme que estudie un poco mds su caso y vuelva la semana que viene."
s
private static void Atiende(Paciente p)
{
StringBuilder proceso = new();
proceso.AppendLine("- Sicélogo: Buenos dias!. ¢Cémo se llama?")
.AppendLine($"- Paciente: Soy {p.Nombre}")
.AppendLine($"- Sicdlogo: Digame {p.Nombre}!.. ;Qué siente?")
.AppendLine($"- Paciente: {p.Respuestal}l")
.AppendLine($"- Sicdélogo: {Diagnostico(p)}")
.AppendLine("- Sicélogo: Que pase el siguiente !!!");
Console.WritelLine(proceso);
}
public void PasaConsulta()
{
Paciente? p;
while ((p = Consulta.Siguiente) != null)
Atiende(p);
}
}

Fijate que sicologo tiene una composicidn con Consulta Yy por tanto el sicologo es responsable
de la misma. Ademas, su unico método publico es PasaConsulta() que atiende a todos los
pacientes que hay en la consulta. Siendo el resto de métodos privados y de clase (estaticos),
pues no necesitan acceder a ningun campo o propiedad de instancia y simplemente es una
modularizacion de la tarea de pasar consulta.

10/30 Programacion 1° DAM Unidad 16 IES Doctor Balmis

Paso 5: Vamos a crear un sencillo programa principal de test...

public static void Main()

{
Sicologo sicologo = new (consulta : new ());
sicologo.Consulta
.Entra(new PacienteAlegre("Xusa"))
.Entra(new PacienteAlegre("Juanjo"))
.Entra(new PacienteTriste("Carmen"));

sicologo.PasaConsulta();

Como sucedia en otros casos podemos crear una nueva especificacion de Paciente por

ejemplo...

public class PacienteSociopata : Paciente

{
public override string Respuesta => "Vas a morir .. muuhaaahahahaha !!";
public PacienteSociopata(string nombre) : base(nombre) { ; }

El consultorio seguiria funcionando. Pero, esta vez el Sicologo deberia actualizarse para
saber tratar a este tipo de pacientes.

private static string Diagnostico(Paciente p) => p switch

{

// ... cédigo omitido por abreviar

PacienteSociopata _ => $"Lo siento!. Debo aplicarte una decarga de 10000V justo ahora.",
s

¥ Reto

¢, Se te ocurre como crear diferentes tipos de sicélogos que diagnostiquen de forma
diferente o alguna forma de hacer que sepamos que tenemos que actualizar al sicélogo si
hay nuevos pacientes?

11/30 Programacion 1° DAM Unidad 16 IES Doctor Balmis

El Patron "Union Type" o "Sum Type"

En programacion, un "union type" (también conocido como "sum type", tipo de union, tipo de suma o
union etiquetada) es un tipo de dato que puede contener un valor de varios tipos diferentes, pero

solo uno a la vez.

El nombre "Union Type" proviene de la teoria de tipos, donde el conjunto total de posibles valores del
tipo es la "suma" (o union) de los conjuntos de valores de sus tipos constituyentes. Este concepto es
comun en lenguajes de programacion funcional como Haskell y F# donde permiten modelar
datos de una manera muy expresiva y segura evitando errores en tiempo de ejecucion.

Con el tiempo, los beneficios de este patrén se hicieron evidentes y los lenguajes de programacion
mas modernos, incluidos los orientados a objetos, han ido adoptando formas de implementarlo
como el caso de como c#, Java, Kotlin, Swift O Rust .

Por resumir y poner un simil de algo que ya conocemos, podriamos decir que es un tipo
enumerado excluyente mejorado. Donde en lugar de tener un conjunto de constantes, tenemos una
enumeracion de tipos diferentes unificados por una abstraccion y que guardaran un estado inmutable
diferente al poder tener propiedades distintas. Por todo ello, en un momento dado, una instancia de la
abstraccion, solo podra ser de uno de ellos de forma excluyente. De hecho, en lenguajes como
swift 0 Rust se definen con la palabra reservada enum .

"Union Type" en CSharp

En c# no existe una sintaxis especifica para definir un "Union Type" pero podemos implementarlo
usando clases abstractas y herencia. Vamoslo a través a ver un ejemplo sencillo.

Supongamos que queremos static public (bool valido, string? mensaje) ValidaEdad(int edad)

retornar en una solo tipo una {

validacion sobre una entrada de bl valldee = srkil o= 5y
string? mensaje = !valido
datos. Hasta ahora,) 3

? "El usuario debe ser mayor de 18 anos."

devolviamos una tupla con un 5 ikl

booleano y un mensaje de error return (valido, mensaje);
}

public static void Main()
y si el booleano era verdadero, {

(bool valido, string? mensaje)

el mensaje estaria a null. En el (bool valido, string? _) = ValidaEdad(13);
if (valido)

ejemplo validamos que un
Console.WriteLine("Edad valida");

entero con la edad tuviese 18
afnos o mas.

12/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

https://en.wikipedia.org/wiki/Tagged_union

Pero, si lo pensamos bien realmente hay dos posibles tipos de resultado y uno de ellos tiene
asociado un estado de error (el mensaje) y el otro no y esa consistencia debe saberla y gestionarla
el que llama al método.

Una posible solucién es definir un value

public abstract record Validacion object abstracto por referencia

{ denominado Vvalidacion con dos tipos

public record Exito() : Validacion;

public record Error(string Mensaje) : Validacion; anidados a modo de enumeracion de

} casos que en nuestro ejemplo podrian
ser Exito y Error .

Cada tipo anidado sera a su vez un record que hereda de validacion Yy que podra tener sus propias
propiedades. En este caso, Error tiene una propiedad Mensaje .

Imaginemos ahora, que tenemos una clase de utilidad llamada validador que tiene varios métodos de
validacién que devuelven una validacion ...

public static class Validador

{

public static Validacion ValidaEdad(int edad) => edad switch

{

>= 18 => new Validacion.Exito(),
_ => new Validacion.Error(Mensaje: "El usuario debe ser mayor de 18 afos.")
}s
public static Validacion ValidaNombre(string nombre) => string.IsNullOrWhiteSpace(nombre) switch

{

false => new Validacion.Exito(),
true => new Validacion.Error(Mensaje: "E1l nombre no puede estar vacio.")

s

Fijate que en cada método de utilidad, si la validacion es correcta devolvemos una instancia de
Validacion.Exito Y Si no lo es, devolvemos una instancia de validacion.Error con el mensaje de
error correspondiente. Esto es, retornamos en un solo tipo dos posibles tipos de resultado con su
propio estado inmutable.

13/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

Un caso de uso del ejemplo que nos hemos planteado podria ser una clase Acceso que representa el
acceso de un usuario a una web y que tiene una propiedad Vvalidacion que valida el nombre vy la
edad del usuario.

public record class Acceso

{
public DateTime FechaHora { get; }

public string Nombre { get; }
public int Edad { get; }

public Validacion Validacion =>
Validador.ValidaNombre(Nombre) is Validacion.Error errorNombre

? errorNombre
: Validador.ValidaEdad(Edad);

public Acceso(string nombre, int edad, DateTime? fechaHora = null)

{
FechaHora = fechaHora ?? DateTime.Now;
Nombre = nombre;
Edad = edad;

public override string ToString()
=> $"{Nombre} ({Edad} afios) el {FechaHora:dd/MM/yyyy} a las {FechaHora:HH:mm}";

Fijate que la propiedad validacion usa el operador is para comprobar si la validacion del nombre ha
devuelto un error y en ese caso, devuelve dicho error. Si no ha habido error en el nombre, entonces
valida la edad y devuelve el resultado de dicha validacion que puede ser un éxito o un error.

Si ejecutamos el siguiente programa principal de test donde verificamos los casos posibles de

acceso...

14/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

public static void Main()

{
List<Acceso> accesos =
[
new (nombre: "", edad: 30, fechaHora: new DateTime(2026, 3, 22, 10, 35, 9)),
new (nombre: "Luis", edad: 17, fechaHora: new DateTime(2026, 3, 22, 10, 39, 0)),
new (nombre: "Marta", edad: 22, fechaHora: new DateTime(2026, 3, 22, 10, 50, 0)),
1s
foreach (var acceso in accesos)
{
string mensaje = acceso.Validacion switch
{
Validacion.Error error => $"Acceso denegado a {acceso}.\nMotivo: {error.Mensaje}\n",
_ => $"Acceso permitido a {acceso}\n",
¥
Console.WriteLine(mensaje);
}
}

Mostrara por consola:

Acceso denegado a (30 afnos) el 22/03/2026 a las 10:35.
Motivo: E1 nombre no puede estar vacio.

Acceso denegado a Luis (17 afos) el 22/03/2026 a Tas 10:39.

Motivo: E1 usuario debe ser mayor de 18 afos.

Acceso permitido a Marta (22 afios) el 22/03/2026 a las 10:50

Nota

Puedes descargar el codigo de este ejemplo del siguiente enlace: abstraccion_uniontype.cs.

15/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/assets/ejemplos/abstraccion_uniontype_ejemplo.cs

Interfaces

Basicamente un Interfaz es la definicion de un conjunto de interfaces de métodos y accesores o
mutadores (como Propiedades). Es muy parecido a definir una clase abstracta pura, pero sin
ningun tipo de campo, constructor, ni modificador de acceso (public, private, etc...). Como en las
clases abstractas, las interfaces son tipos referencia, no puede crearse objetos de ellas sino sdélo de
tipos que deriven de ellas, y participan del polimorfismo.

De hecho, es el caso de abstraccion mas puro que existe, pues solo define el comportamiento que
debe tener una clase que la implemente el interfaz y por tanto es la forma mas comun y
recomendable de definir la abstracciéon de un comportamiento. En otras palabras, siempre que no
haya un campo o propiedad no calculada comun a todas las especificaciones, la forma correcta de
definir la abstraccion es mediante un interfaz.

Pueden implementarse en muchos lenguajes OO con idénticas caracteristicas:

e Es posible la herencia multiple de interfaces.

¢ No pueden definir campos pero si propiedades calculadas.

e Un interfaz puede heredar de otro interfaz.

e Siuna clase hereda de un interfaz. Esta, debera invalidar todo lo que hayamos definido en el

mismo.

Representacion en los diagramas de clases UML

Representa que la clase miclase implementa el interfaz

«Interface» ICloneable .
ICloneable
. Ahi IClongable . .
Clone() : object Fijate que usamos la palabra implementa en lugar de
"hereda de" ya que, como hemos comentado, mas que
I n " H
| responder MiClase a la pregunta "es un", un interfaz
‘@MiCIase‘ ‘@MiCIase‘ define un comportamiento abstracto que miclase debera
implementar.
«Interface» @ «Interface» i . . B
ICloneable IDisposable Miclase ahora esta obligada a implementar el método
\ Clone() : object \ \ Dispose() : void \ publico clone con idéntica signatura.
A ,/ Ademas como vemos en este segundo diagrama.

Podemos hacer que una clase implemente o "herede" de
@MiCIase i .
mas de un interfaz.

16/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

Interfaces en CSharp

Como ya habras podido apreciar en los diagramas, segun

@ «Interface» el convenio de nomenclatura de C#, el identificador o
IMedia

nombre de la clase ira siempre precedido por la letra

Play() : void , . . .
Stop() : void mayuscula I (I nterface) para distinguirlo de otro tipo
Pause() : void de clases.

/GetDuracion_sg() : int

éj t} <modificadores> interface I<identificador> : <interfacesBase>

/ \
/ \ {
}

Por tanto, si queremos definir el interfaz anterior y aplicarlo a una video . Haremos que Vvideo herede
del interfaz con la sintaxis de herencia que hemos usado hasta ahora y esta se vera obligada a
implementar todo lo que hayamos definido en el interfaz, sin necesidad de anteponer el modificador

<interfaces de métodos, propiedades o indizadores>

override .

interface IMedia class Video : IMedia

{ {
void Play();
void Stop(); public int Duracion_sg => 20;
void Pause(); public void Pause() => Console.WritelLine("Pausando el video.");

public void Play() => Console.WritelLine("Reproduciendo el video.");

int Duracion_sg { get; } public void Stop() => Console.WriteLine("Parando el video.");

} }

Aviso

Fijate que no hemos definido ni en el UML ni en el cddigo ningun modificador de acceso en el
interfaz. Por defecto, todos los métodos y propiedades de un interfaz son publicos. Es un
error muy comun entre los programadores noveles el poner el modificador public y esto sera

considerado en el examen como un error.

17/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

Interfaces de utilidad predefinidos en las BCL

Podemos decir que me permiten definir comportamientos para mis propios tipos, que seran
reconocidos por otras clases o tipos ya implementadas en las BCL. Aunque podriamos utilizar
interfaces propios para hacer lo mismo, no lo hacemos porque perderiamos interoperabilidad con el
resto de clases de las BCL.

IEnumerable

Lo veremos mas adelante, al usar o definir colecciones.

ICloneable

ICloneable Me indicara que puedo crear copias del objeto, puesto que me obliga a implementar un
"constructor copia" con el interfaz object clone() el cual me permitira hacer copias en profundidad
de objetos de tipo referencia.

IComparable

IComparable Me indicara que el objeto debe Recordatorio de uso:
implementar el método

new Tipo(...);

int CompareTo(Object otro) que me servira para Tipo ol
comparar dos objetos de la misma clase y que Tipo 02 = new Tipo(...);
basicamente implementan muchos tipos como las

cadenas, numeros, fechas, etc... y que es usado int comparacion = ol.CompareTo(02);
por las BCL para ordenar listas o arrays de

objetos.

IDisposable

IDisposable Me indicara que el objeto debe implementar el método void Dispose() que se
encargara de liberar los recursos usados por el objeto. No debemos confundirlo con el destructor

~<Tipo>() .

Indicaremos a las BCL que nuestro objeto tiene el comportamiento de liberar recursos y lo utilizaremos
junto a la instruccion using que veremos mas adelante.

Veamos un ejemplo "genérico" comentado el uso de este tipo de interfaces. Para ello, supongamos la
siguiente agregacion con tipos definidos por el usuario, donde ambos implementan los interfaces
ICloneable € IComparable .

18/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.icloneable
https://docs.microsoft.com/es-es/dotnet/api/system.icomparable
https://docs.microsoft.com/es-es/dotnet/api/system.idisposable

Ejemplo de uso de interfaces predefinidos en las BCL

Vamos a definir una clase Empleado que tiene
una propiedad Nombre de solo lecturay una

Sueldo que debe estar entre 1200 y 3000 euros. @/éﬁf:;/e /c;’}:;ﬁ:aegle
Ademas, implementa los interfacesde las BCL ‘ Clone() obJect‘ ‘ CompareTo(in obj: object) : |nt‘
IComparable € ICloneable . De tal manera que la b\ /4
comparacion entre empleados se hara por su

sueldo. @ Empleado

-nombre : string
-sueldo : double

Puedes descargar el cédigo de este ejemplo del _ —
+Empleado(in nombre: string, in sueldo: double)

siguiente enlace: +GetNombre() : string
i +GetSueldo() : double
interfaces_empleado_comparable_y clonable. A+ ToString() : string
cs.

Fijate que podemos implementar mas de un interfaz en la misma clase y los indicaremos separados

por comas.

public class Empleado : IComparable, ICloneable

{
private double _sueldo;
public double Sueldo
{
get => _sueldo;
set
{
Debug.Assert(
condition: value >= 1200D && value <= 3000D,
message: "E1 sueldo debe estar entre 1200 y 3000 euros");
_sueldo = value;
}
}
public string Nombre { get; }
public Empleado(string nombre, double sueldo)
{
Nombre = nombre;
Sueldo = sueldo;
}
public override string ToString() => $"Nombre: {Nombre,-8}Sueldo: {Sueldo:F@}";
}

19/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/assets/ejemplos/interfaces_empleado_comparable_y_clonable_ejemplo.cs
file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/assets/ejemplos/interfaces_empleado_comparable_y_clonable_ejemplo.cs

Ahora estaremos obligados a implementar los métodos y propiedades definidos en los interfaces.

O Tip

En VSCode, si situas el cursor sobre un interfaz que implementa una clase y pulsas ctrl + . te
mostrara un menu contextual con la opcion de "Implementar interfaz" que generara
automaticamente los métodos y propiedades que debes implementar.

Puesto que vamos a comparar por sueldo que es un tipo basico que ya implementa Icomparable ,
podemos usar su método cCompareTo para implementar el nuestro.

public int CompareTo(object? obj) => Sueldo.CompareTo((obj as Empleado)!.Sueldo);

Fijate que comparamos el sueldo del objeto que llama a compareTo (this) con el sueldo del objeto
que se pasa como parametro. Pero hemos hecho un downcasting con as y el operador de supresion
de nulabilidad ! para indicarle al compilador genere un error de ejecucion si el objeto no es un

Empleado .

Para implementar el método clone simplemente llamamos al constructor de la clase con los mismos
parametros que el objeto que llama a clone .

public object Clone() => new Empleado(Nombre, Sueldo);

Aviso

Si alguno de los objetos que componen la clase fuera un tipo referencia mutable, deberiamos
hacer una copia en profundidad de los mismos para evitar que el objeto clonado comparta
referencias con el original. Esto es, deberiamos llamar al método clone de dichos objetos si
implementan ICloneable O crear nuevas instancias de los mismos copiando sus valores. En
este caso, como string esinmutable y double €s un tipo valor, no tenemos que preocuparnos
por pasarlos tal cual al constructor.

20/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

Veamos ahora un sencillo programa principal de test donde probar la clase Empleado Y los interfaces
que implementa.

static void Main()

{
Empleado el = new (nombre: "Juanjo", sueldo: 2000);
Empleado e2 = new (nombre: "Carmen", sueldo: 2800);
Empleado e3 = new (nombre: "Xusa", sueldo: 2400);
Empleado e4 = el is ICloneable
? (el.Clone() as Empleado)!
. el;
e4.Sueldo = 2900;
Empleado[] empleados = [el, e2, e3, e4];
Array.Sort(empleados);
Console.WriteLine(string.Join<Empleado>("\n", empleados));
}

Mostrara por consola:

Nombre: Juanjo Sueldo:
Nombre: Xusa Sueldo:

Nombre: Carmen Sueldo:
Nombre: Juanjo Sueldo:

Fijate que, ademas de mostrar los empleados ordenados por sueldo, al clonar e1 en e4 y
cambiar su sueldo, no hemos modificado el sueldo de el . Esto es porque hemos hecho una copia en
profundidad del objeto.

21/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

El Patron "Strategy”

Los interfaces son muy usados en la industria del software para definir abstracciones de
comportamientos y patrones de disefio. Uno de los mas usados es el patron Strategy que sera base
de muchos otros patrones de disefio y sera basico para aplicar muchos aspectos de la POO

moderna como los principios SOLID, la inyeccion de dependencias, etc...

Este patron nos permite abstraer un comportamiento que puede tener multiples implementaciones y
que se definen en tiempo de ejecucion. Es decir, el algoritmo o comportamiento concreto que se va a
usar, no se define hasta que se instancia el objeto. Determinadas clases deberan exponer en su
constructor las abstracciones colaboradoras (interfaces) que definen estos comportamientos para
que el usuario de la clase pueda decidir qué implementacién concreta usar al instanciar el objeto.

Vamos a ver pues un ejemplo de uso de interfaces a través del uso de este patron de disefio.
Tratando de aislar el concepto de otras consideraciones.

Para mostrar su uso, nada mejor que a través de juego de estrategia en tiempo real. En él, tendremos
una unidad de ataque con una serie de propiedades como son Fuerza, Velocidad e Inteligencia .
Sin embargo, hasta que no instanciemos el objeto unidad, no sabremos como se inicializaran estos
valores y que 'estrategia’ va a seguir, es decir como se calcularan los puntos de ataque que va a tener
la unidad de acuerdo a los valores anteriores.

Para cumplir esta especificacion, implementaremos el siguiente patrén Strategy, conforme se expresa

en al diagrama de clases siguiente.

(©) unidad

-fuerza : int «readonly»
-velocidad : int «readonly»
-inteligencia : int «readonly»

+Unidad(pointsGenerator : IGeneradorDePuntos, attackStrategy : |IEstrategiaDeAtaque)
+GetFuerza() : int

+GetVelocidad() : int

+Getlinteligencia() : int

+Ataca() : int

+AToString() : string

«Tiene una» «Tiene una»

‘ @ / GeneradorDePuntos‘

‘ @ |EstrategiaDeAtaque ‘ :
/GetFuerza() : int

| Ataca(u:Unidad) : int | /GetVelocidad() : int
~/ 4 /Getinteligencia() : int
_ -
-~ | ~ ~
- ~
- | | S
[@ EstrategiaAtaqueDemoIedor} [@ EstrategiaAtaqueRapido} [@ GeneradorDePuntosFijo} [@ GeneradorDePuntosAleatorio

22/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

https://es.wikipedia.org/wiki/Strategy_(patr%C3%B3n_de_dise%C3%B1o)

Si nos fijamos, definimos 2 objetos agregados en mi uUnidad que se corresponderan con 2
generalizaciones de objetos que sabemos que implementan un determinado comportamiento
(interfaz). Uno tiene la funcionalidad de inicializar los puntos de las propiedades y otro la de calcular
los puntos de ataque (estos sén los algoritmos que hemos dicho antes que se definen al instanciar el
objeto, en esta caso unidad).

Abastracciéon y concrecciones de la estrategia de obtencion de puntuaciones:

public interface IGeneradorDePuntos

{
int Fuerza { get; }
int Velocidad { get; }
int Inteligencia { get; }
}

public class GeneradorDePuntosFijo : IGeneradorDePuntos

{
public int Fuerza => 6;
public int Velocidad => 6;
public int Inteligencia => 6;
}

public class GeneradorDePuntosAleatorio : IGeneradorDePuntos

{
private static int PuntosAlestorios => new Random().Next(@, 8);
public int Fuerza => PuntosAlestorios;
public int Velocidad => PuntosAlestorios;
public int Inteligencia => PuntosAlestorios;
}

Abastraccion y concrecciones de la estrategia de ataque:

public interface IEstrategiaDeAtaque

{

int Ataca(Unidad u);

public class EstrategiaAtaqueDemoledor : IEstrategiaDeAtaque

{
public int Ataca(Unidad u) => u.Fuerza * (u.Velocidad / 2);

public class EstrategiaAtaqueRapido : IEstrategiaDeAtaque
{

public int Ataca(Unidad u) => u.Velocidad + u.Inteligencia;

23/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

public class Unidad

{
public int Fuerza { get; }

public int Velocidad { get; }
public int Inteligencia { get; }
private IGeneradorDePuntos GeneradorDePuntos { get; }

private IEstrategiaDeAtaque EstrategiaDeAtaque { get; }

public Unidad(
IGeneradorDePuntos generadorDePuntos,

IEstrategiaDeAtaque estrategiaDeAtaque)

GeneradorDePuntos = generadorDePuntos;
EstrategiaDeAtaque = estrategiaDeAtaque;
Fuerza = GeneradorDePuntos.Fuerza;

Velocidad = GeneradorDePuntos.Velocidad;
Inteligencia = GeneradorDePuntos.Inteligencia;
public int Ataca() => EstrategiaDeAtaque.Ataca(this);

public override string ToString()

=> $"Unidad con {GeneradorDePuntos.GetType().Name} y {EstrategiaDeAtaque.GetType().Name} " +
$"F={Fuerza} V={Velocidad} I={Inteligencia} A={Ataca()}";

Fijate que ahora instanciamos nuestra unidades de ataque con las concreciones que implementan los
interfaces esperados por la clase Unidad .

public static void Main()

{
Unidad uAleatoriaDeAtaqueRapido = new (
generadorDePuntos: new GeneradorDePuntosAleatorio(),
estrategiaDeAtaque: new EstrategiaAtaqueRapido());
Unidad uFijaDeAtaqueDemoledor = new (
generadorDePuntos: new GeneradorDePuntosFijo(),
estrategiaDeAtaque: new EstrategiaAtaqueDemoledor());
Console.WritelLine(uAleatoriaDeAtaqueRapido);
Console.WritelLine(uFijaDeAtaqueDemoledor);
}

Mostrara por consola:

Unidad con GeneradorbePuntosAleatorio y EstrategiaAtaqueRapido F=2 v=4 I=4 A=8

Unidad con GeneradorbDePuntosFijo y EstrategiaAtaqueDemoledor F=6 V=6 I=6 A=18

24/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

¢) Idea principal |
Lo mas importante de este patron es que podemos definir nuevas estrategias de generacion

de puntos o de ataque sin necesidad de modificar la clase unidad y por tanto, sin necesidad
de recompilarla. Simplemente, creamos nuevas concreciones que implementen los interfaces

definidos.

Puedes descargar el cédigo de este ejemplo del siguiente enlace: interfaces_satrategy_unidades.cs.

25/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/assets/ejemplos/interfaces_satrategy_unidades_ejemplo.cs.cs

® Caso de estudio:

Vamos a aplicar alguno de los conceptos vistos en esta unidad para modelar una clase coche
que tendra un Motor y unos Neumaticos . El motor podra ser de gasolina o eléctrico y los
neumaticos normales o deportivos. Ademas, el coche podra acelerar y la forma de hacerlo

dependera del tipo de motor que tenga.

Para ello, vamoa a abdtraer el comportamiento de acelerar en un interfaz y haremos que el Motor
y el coche lo implemente. Ademas, haremos que el Coche implemente un patron Strategy para
definir el tipo de motor y neumaticos que tendra en tiempo de ejecucion a través de abstracciones

que expondremos en el constructor.

Una posible modelizacion UML del caso de estudio podria ser la siguiente:

«interface»
IAcelerable

Acelera() : void

«entity»
Coche

-id : string {\id }
+Coche(in id : int, in m: Motor, in n: INeumaticos)

«Tiene un» «Tiene uno juego de»

1

Motor
{abstract}

«interface»
INeumaticos

-revoluciones : Int { readonly }

+GetRevoluciones() : Int
#SetRevoluciones(r: Int) : void
#Figura(in color: Color)
+Acelera() : void {abstract}

/GetlndiceVelocidad() : string
/GetIndiceCarga() : int
/GetRadio() : int

/GetPerfil() : int

/GetAncho() : int
/GetDescripcion() : string

‘@ MotorGasoIina‘ ‘@ MotorEIectrico‘

26/30 Programacién 1° DAM Unidad 16

A X

A
N

. «valueObject»
NeumaticosNormal

N
‘ «valueObject»
NeumaticosSport

¢ Sabrias implementarlo en C#?. Si no es asi, puedes seguir la explicacion a continuacion y
descargar el cédigo de este caso de estudio del siguiente enlace: interfaces_strategy _coche.cs.

IES Doctor Balmis

file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/assets/ejemplos/interfaces_strategy_coche_ejemplo.cs

Definimos el interfaz IAcelerable que define el comportamiento de acelerar:

public interface IAcelerable

{

void Acelera();

Definimos la abstraccién del motor como una clase abstracta que implementa el interfaz
IAcelerable . La hemos hecho ambstracta pues tiene un campos comun que define un estado
comun a todas las especificaciones (las revoluciones).

public abstract class Motor : IAcelerable

{
// Inicializando la propiedad evito definir un constructor.
public int Revoluciones { get; protected set; } = 0;
// Hasta que no concretemos un tipo de motor
// no sabremos como se acelera.
abstract public void Acelera();
}

public class MotorGasolina : Motor

{
// Comportamiento inventado de acelerar en un motorg gasolina.
// Cambia las revoluciones en +2
public override void Acelera()
{
Console.Write("inyectando gasolina para explosién");
Revoluciones += 2;
}
}
public class MotorElectrico : Motor
{
// Comportamiento inventado de acelerar en un motorg gasolina.
// Cambia las revoluciones en +2
public override void Acelera()
{
Console.Write("aumentando potencia eléctrica");
Revoluciones += 6;
}
}

27/30 Programacion 1° DAM Unidad 16 IES Doctor Balmis

Definimos las propiedades que deberia tener un neumatico a través del interfaz INeumaticos y
dos concreciones que lo implementan coma value objects por referencia.

¢) Importante

Fijate que hemos definido una propiedad calculada llamada Descripcion que nos
devuelve una cadena con la descripcién completa del neumatico. Es decir, es un método
con cuerpo.

En muchos lenguajes de programacion orientada a objetos, como es el caso de ci# , las
interfaces pueden definir métodos con cuerpo. Esto es una caracteristica que no esta
en todos los lenguajes OO y que puede ser muy util para evitar repetir codigo en las
concreciones del interfaz. Vendria a ser una implementacion por defecto, que podria
ser sobreescrita en las concreciones si fuera necesario.

Al tener una cuerpo de defecto, no es obligatorio que las concreciones lo
implementen. De esta manera, como hemos comentado, evitamos repetir codigo en las
concreciones.

public interface INeumaticos
{

string IndiceVelocidad { get; }

int IndiceCarga { get; }

int Radio { get; }

int Perfil { get; }

int Ancho { get; }

string Descripcion => $"{Ancho}/{Perfil} R{Radio} {IndiceCarga}{IndiceVelocidad}";
}
public record class NeumaticosNormal : INeumaticos
{

public string IndiceVelocidad => "H";

public int IndiceCarga => 88;

public int Radio => 16;

public int Perfil => 55;

public int Ancho => 205;
}
public record class NeumaticosSport : INeumaticos
{

public string IndiceVelocidad => "Y";

public int IndiceCarga => 92;

public int Radio => 18;

public int Perfil => 40;

public int Ancho => 225;

28/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

La implementacién de la clase coche siguiendo el patron Strategy y el diagrama UML anterior
podria ser ...

public class Coche : IAcelerable

{
public string Id { get; }
public Motor Motor { get; }
public INeumaticos Neumaticos { get; }
public Coche(string id, Motor motor, INeumaticos neumaticos)
{
Id = id;
Motor = motor;
Neumaticos = neumaticos;
}
public void Acelera()
{
Console.Write($"Coche {Id} ");
Motor.Acelera();
Console.WriteLine($" a {Motor.Revoluciones} r.p.m.");
}
public override string ToString() =>
$"Coche {Id} {Motor.GetType().Name} y neumaticos {Neumaticos.Descripcion}";
}

Podemos definir un sencillo programa principal de test ...

public class Principal
{
public static void Main()
{
Coche ¢1 = new (id: "C1",
motor: new MotorGasolina(),
neumaticos: new NeumaticosNormal());
Console.WritelLine(cl);
cl.Acelera();
cl.Acelera();

Console.WriteLine();

Coche c2 = new (id: "C2",
motor: new MotorElectrico(),
neumaticos: new NeumaticosSport());
Console.WritelLine(c2);
c2.Acelera();
c2.Acelera();

29/30 Programacion 1° DAM Unidad 16 IES Doctor Balmis

Mostrara por consola:

MotorGasolina y neumaticos 205/55 R16 88H
inyectando gasolina para explosién a 2 r.p.m.
inyectando gasolina para explosién a 4 r.p.m.

MotorElectrico y neumaticos 225/40 R18 92Y
aumentando potencia eléctrica a 6 r.p.m.
aumentando potencia eléctrica a 12 r.p.m.

30/30 Programacién 1° DAM Unidad 16 IES Doctor Balmis

