
Unidad 16
Descargar estos apunte en pdf o html

Índice
Índice
Abstracción

Concepto de clase asbtracta
Modelando la abstracción en UML
Clases asbtractas en CSharp
El Patrón "Union Type" o "Sum Type"

"Union Type" en CSharp
Interfaces

Representación en los diagramas de clases UML
Interfaces en CSharp
Interfaces de utilidad predefinidos en las BCL

IEnumerable
ICloneable
IComparable
IDisposable

Ejemplo de uso de interfaces predefinidos en las BCL
El Patrón "Strategy"

1/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/u16_poo_roles_abstraccion.pdf
file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/u16_poo_roles_abstraccion.html

Abstracción

Concepto de clase asbtracta
En la mayoría de los casos, al buscar el
polimorfismo con la herencia de superclases se
nos darán generalizaciones que no tienen
sentido como objetos. A este tipo de clases se
les denominará Clases Abstractas y de las
mismas no podremos definir objetos, y sí
objetos para sus subclases.
El típico ejemplo, que muestra el diagrama, es el
de figuras geométrica, no tiene sentido crear un
objeto de la clase Figura . En cambio, sí que
tiene sentido crear objetos de las subclases como
 Cuadrado , Rombo o Circulo .

Figura
Geométrica

???

Cuadrado Rombo Círculo

Definiciones desde el punto de vista de la POO tradicional:

Cómo hemos comentado, no podremos instanciar objetos de una clase abstracta, pues no tiene
sentido la existencia de dicha abstracción sin una especificación.
Deberían, pero no es necesario, tener al menos un campo o propiedad común a todas las
subclases.
Deberían, tener al menos un método abstracto o virtual puro.

Un método abstracto o virtual puro no definirá un 'cuerpo de método' y por tanto
dejaremos su implementación en manos de las subclases o especificaciones.
Este método abstracto deberá ser redefinido obligatoriamente en la subclases.

A las clases abstractas con todos sus métodos abstractos se les denomina 'clases abstractas
puras'.

2/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

Modelando la abstracción en UML
Un posible modelo de clases para representar la jerarquía de figuras representada en el diagrama
del ejemplo anterior, podría ser el siguiente:

«enumeration»
ColorFigura

Rojo,
Azul,
Verde,
Naranja,
...

Figura
{abstract}

-color : Color { readonly }

-GetColor() : Color
#Figura(in color: Color)
+/GetArea() : double {abstract}
+/GetPerimetro() : double {abstract}
^+ToString() : string

Cuadrado

-lado_cm : double {readonly}

-GetLado() : double
+Cuadrado(in color : Color, in lado_cm : double)
^/+GetArea() : double
^/+GetPerimetro() : double
^+ToString() : string

Rombo

-diagonal1_cm : double {readonly}
-diagonal2_cm : double {readonly}

-GetDiagonal1() : double
-GetDiagonal2() : double
-/GetLado() : double
+Rombo(in color : Color, in d1_cm : double, in d2_cm : double)
^+/GetArea() : double
^+/GetPerimetro() : double
^+/ToString() : string

Circulo

-radio_cm : double {readonly}

-GetRadio() : double
+Circulo(in color : Color, in radio_cm : double)
^/+GetArea() : double
^/+GetPerimetro() : double
^+ToString() : string

<<use>

Fíjate que en el diagrama UML hemos indicado que la clase es abstracta, además de usando el
modificador {abstract} hemos puesto en cursiva el nombre, y en los get de las propiedades
abstractas (virtuales) además de la cursiva hemos puesto el modificador {abstract} . Lo mismo
sucedería con cualquier otro método.

Nota

Aunque, la cursiva ya no es necesaria a partir de la versión 2.5 de UML aún sigue siendo
ampliamente aceptada.



"

"

La abstracción implica definir un tipo
de objeto por las operaciones que se
pueden realizar sobre él, sin
preocuparse por los detalles."

- Alan Kay.

3/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

Clases asbtractas en CSharp
La sintaxis será muy similar a la de la herencia, pero ampliando las condiciones que hemos descrito
con anterioridad.

Vamos a ver la sintaxis a través de la implementación de nuestro ejemplo con figuras. Puedes
descargar el código de este ejemplo del siguiente enlace: abstraccion_figuras.cs.

Paso 1: Definimos el tipo enumerado ColorFigura que representará los colores de las figuras que es
usada por la clase Figura y por tanto sus subclases y por tanto hay una dependencia de dicho tipo.

public enum ColorFigura { Rojo, Azul, Verde, Naranja }

Paso 2: En primer lugar vamos a implementar la clase abstracta Figura .

public abstract class Figura

{

 private ColorFigura Color { get; }

 protected Figura(ColorFigura color)

 {

 Color = color;

 }

 abstract public double Area_cm2 { get; }

 abstract public double Perimetro_cm { get; }

 public override string ToString() => $"""

 Color: {Color}

 Area: {Area_cm2:F2} cm²

 Perímetro: {Perimetro_cm:F2} cm

 """;

}

Definimos la clase anteponiendo el modificador
 abstract y después
añadimos una propiedad privada de solo
lectura común a todas las especificaciones que
en este caso es el Color . Será privada pues es
responsabilidad de la clase y así no repetimos
código en las concreciones manteniendo la
encapsulación.

Aquellas propiedades calculadas que no
podemos implementar hasta que no sepamos
la especificación que son Area_cm2 y
 Perimetro_cm , les anteponemos el modificador
 abstract y las declaramos como public para
que sean accesibles desde las subclases.

Los constructores que definamos pueden ser protected pues solo tiene sentido usarlos desde las
subclases.
Nunca podré hacer un Figura f = new (color: ColorFigura.Rojo);

Pero, ¿Cómo puede ser que Figura use Area_cm2 o Perimetro_cm si no están implementados?.
De hecho, estoy accediendo a su valor desde el ToString() pero realmente no se implementan.

Porque, tendré siempre la seguridad de que un si tengo un objeto de tipo Figura habré realizado una
sustitución de tipo y por tanto tendré un objeto de una subclase que implementa esas propiedades

4/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/assets/ejemplos/abstraccion_figuras_ejemplo.cs

o métodos de forma obligatoria y por tanto, siempre se producirá un enlace dinámico a la
propiedad de la concreción que la implementa.

Paso 3: Implementación de las concreciones (subclases)

public class Circulo : Figura

{

 public double Radio_cm { get; }

 public Circulo(

 ColorFigura color,

 double radio_cm) : base(color)

 {

 Radio_cm = radio_cm;

 }

 public override double Area_cm2 =>

 Math.PI * Math.Pow(Radio_cm, 2);

 public override double Perimetro_cm =>

 Math.PI * Radio_cm * 2;

 public override string ToString() => $"""

 ____Círculo____

 Radio: {Radio_cm} cm

 {base.ToString()}

 """;

}

Desde el constructor de la subclase Circulo
llamamos al constructor de la superclase Figura
para inicializar el color y es posible porque lo
hemos definido como protected .

Nos obligará a implementar las propiedades
 Area_cm2 y Perimetro_cm . Fíjate que las hemos
implementado como propiedades de calculadas.

Además, hemos implementado el método
 ToString() que nos permite mostrar la
información propia de la figura como el Color que
no es accesible desde las subclases. En
ocasiones, esto no es posible y deberíamos
marcar Color como protected para que las
subclases puedan acceder a él.

El resto de implementaciones como Cuadrado y Rombo serán análogas a Circulo ...

public class Cuadrado : Figura

{

 private double Lado_cm { get; }

 public Cuadrado(ColorFigura color, double lado_cm) : base(color)

 {

 Lado_cm = lado_cm;

 }

 public override double Area_cm2 => Lado_cm * Lado_cm;

 public override double Perimetro_cm => Lado_cm * 4d;

 public override string ToString() => $"""

 ____Cuadrado____

 Lado: {Lado_cm} cm

 {base.ToString()}

 """;

}

5/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

public class Rombo : Figura

{

 private double Diagonal1_cm { get; }

 private double Diagonal2_cm { get; }

 public Rombo(ColorFigura color, double d1_cm, double d2_cm) : base(color)

 {

 Diagonal1_cm = d1_cm;

 Diagonal2_cm = d2_cm;

 }

 private double Lado_cm => Math.Sqrt(Math.Pow(Diagonal1_cm / 2d, 2d) + Math.Pow(Diagonal2_cm / 2d, 2d));

 public override double Area_cm2 => Diagonal1_cm * Diagonal2_cm / 2d;

 public override double Perimetro_cm => Lado_cm * 4d;

 public override string ToString() => $"""

 ____Rombo____

 Diagonal1: {Diagonal1_cm} cm

 Diagonal2: {Diagonal2_cm} cm

 Lado: {Lado_cm:F2} cm

 {base.ToString()}

 """;

}

El polimorfismo de datos lo vamos a poder realizar igual que en el caso de Articulo pero no vamos a
poder crear ningún artículo directamente.

public static void Main()

{

 List<Figura> figuras =

 [

 new Cuadrado(

 color: ColorFigura.Rojo,

 lado_cm: 2),

 new Rombo(

 color: ColorFigura.Azul,

 d1_cm: 2,

 d2_cm: 2),

 new Circulo(

 color: ColorFigura.Verde,

 radio_cm: 2)

];

 foreach (Figura f in figuras)

 Console.WriteLine(f);

}

Mostrará por consola:

____Cuadrado____

Lado: 2 cm

Color: Rojo

Area: 4,00 cm²

Perímetro: 8,00 cm

____Rombo____

Diagonal1: 2 cm

Diagonal2: 2 cm

Lado: 1,41 cm

Color: Azul

Area: 2,00 cm²

Perímetro: 5,66 cm

____Círculo____

Radio: 2 cm

Color: Verde

Area: 12,57 cm²

Perímetro: 12,57 cm

6/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

🎓 Caso de estudio

Supongamos el siguiente modelo simplificado, en el cual, un Sicólogo crea un gabinete o
consulta psicológica, donde cada día atiende a los pacientes que le llegan.
Los pacientes irán entrando a la consulta y en un momento dado el sicólogo les pasará
consulta por orden de llegada.
Los pacientes tendrán un nombre y de momento, nuestro sicólogo solo sabe atender a dos tipos
de pacientes:

1. Pacientes alegres
2. Pacientes tristes

En el momento en que el sicólogo atiende a un paciente, se producirá un diálogo con el mismo
que empezará igual para todos los pacientes:

- Sicólogo: Buenos días!. ¿Cómo se llama?

- Paciente: Soy <Nombre>

- Sicólogo: Dígame <Nombre>!.. ¿Qué siente?

Pero dependiendo del tipo de paciente obtendremos un tipo de respuesta diferente dependiendo
de si es un paciente alegre o triste respectivamente...

- Paciente: Pues... ahora estoy alegre.

- Paciente: Pues... ahora estoy triste.

El sicólogo realizará un diagnóstico diferente dependiendo de si es un paciente alegre o triste
respectivamente...

- Sicólogo: le veo estupendamente. Enhorabuena!! no necesita más terapia.

- Sicólogo: tome fluoxetina 20mg y vuelva en un mes.

Tras realizar el diagnostico el sicólogo dira ...

- Sicólogo: Que pase el siguiente !!!

Atendiendo a otro paciente si hay aún pendientes en consulta.

7/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

Piensa en un posible modelado o diseño de clases para representar las especificaciones
anteriores.
Si no se te ocurre ningúno, aquí tienes una propuesta de implementación.

Paciente
{abstract}

-nombre : string {readOnly}

+GetNombre() : string
#Paciente(in nombre : string)
+/GetRespuesta() : string {abstract}

PacienteFeliz

+PacienteFeliz(in nombre : string)
^+/GetRespuesta() : string

PacienteTriste

+PacienteTriste(in nombre : string)
^+/GetRespuesta() : string

Consulta

+Consulta() : void
-GetPacientes() : List<Paciente>
+Entra(in p : Paciente) : Consulta
+Siguiente() : Paciente?

Sicologo

+Sicologo() : void
+GetConsulta() : Consulta
-Diagnostico(in p : Paciente) : string
-Atiende(in p : Paciente) : void
+PasaConsulta() : void

«use»

tiene1 1

es visitada

1

0..*

Antes de ver la implementación comentada de esta prupuesta, intenta realizarla tú y así
posteriormente puedes ver la propuesta de solución para lo que no has sabido resolver. Puedes
descargar el código de la propuesta de solución del siguiente enlace: abstraccion_sicologo.cs.

Propuesta de solución al caso de estudio:

Paso 1: Crearemos la clase abstracta Paciente . Será abstracta porque los pacientes del sicólogo
responden de forma diferente dependiendo de su especificación.

public abstract class Paciente

{

 public string Nombre { get; }

 public abstract string Respuesta { get; }

 protected Paciente(string nombre)

 {

 Nombre = nombre;

 }

}

Marcamos la clase como abstract y definimos
una propiedad Nombre común a todos los
pacientes y una propiedad abstracta
 Respuesta que será implementada por las
concreciones de paciente.

8/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/assets/ejemplos/abstraccion_sicologo_ejemplo.cs

Paso 2: Definiremos las concreciones de Paciente para que respondan según su estado de
ánimo.

public class PacienteAlegre : Paciente

{

 public override string Respuesta

 => "Pues... ahora estoy alegre.";

 public PacienteAlegre(string nombre)

 : base(nombre) { ; }

}

public class PacienteTriste : Paciente

{

 public override string Respuesta

 => "Pues... ahora estoy triste.";

 public PacienteTriste(string nombre)

 : base(nombre) { ; }

}

Tanto PacienteAlegre como PacienteTriste
están obligados a invalidar la propiedad
 Respuesta .

Además, en el constructor de cada concreción
llamamos al constructor protegido de la
superclase para inicializar el nombre. Sin
embargo, el cuerpo del constructor de las
concreciones está vacío pues no hay nada
más que inicializar. Un convenio, para indicar a
otros programadores que lo hemos dejado
vacío a propósito, es poner una instrucción
vacía { ; } .

Paso 3: Definiremos la clase Consulta

public class Consulta

{

 private List<Paciente> Pacientes { get; }

 public Consulta()

 {

 Pacientes = [];

 }

 public Consulta Entra(Paciente p)

 {

 Pacientes.Add(p);

 return this;

 }

 public Paciente? Siguiente

 {

 get

 {

 Paciente? p = Pacientes.FirstOrDefault

 if (p != null)

 Pacientes.RemoveAt(0);

 return p;

 }

 }

}

Representamos la agregación multiple con una
lista de pacientes que inicializamos en el
constructor.

Definimos el método Entra que añade un
paciente a la consulta y devuelve la propia
consulta para poder encadenar llamadas de
forma fluida.

El métodos Siguiente devuelve el siguiente
paciente en la lista o null si no hay pacientes.
Fíjate que el método FirstOrDefault()
devuelve el primer elemento o null si la lista
está vacía. Además, si devuelve un paciente,
lo elimina de la lista.

9/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

Paso 4: Definiremos la clase Sicologo

public class Sicologo

{

 public Consulta Consulta { get; }

 public Sicologo(Consulta consulta)

 {

 Consulta = consulta;

 }

 private static string Diagnostico(Paciente p) => p switch

 {

 PacienteAlegre _ => $"{p.Nombre} le veo estupendamente. Enhorabuena!! no necesita más terapia.",

 PacienteTriste _ => $"{p.Nombre} tome fluoxetina 20mg y vuelva en un mes.",

 _ => $"{p.Nombre} déjeme que estudie un poco más su caso y vuelva la semana que viene."

 };

 private static void Atiende(Paciente p)

 {

 StringBuilder proceso = new();

 proceso.AppendLine("- Sicólogo: Buenos días!. ¿Cómo se llama?")

 .AppendLine($"- Paciente: Soy {p.Nombre}")

 .AppendLine($"- Sicólogo: Dígame {p.Nombre}!.. ¿Qué siente?")

 .AppendLine($"- Paciente: {p.Respuesta}")

 .AppendLine($"- Sicólogo: {Diagnostico(p)}")

 .AppendLine("- Sicólogo: Que pase el siguiente !!!");

 Console.WriteLine(proceso);

 }

 public void PasaConsulta()

 {

 Paciente? p;

 while ((p = Consulta.Siguiente) != null)

 Atiende(p);

 }

}

Fíjate que Sicologo tiene una composición con Consulta y por tanto el sicólogo es responsable
de la misma. Además, su único método público es PasaConsulta() que atiende a todos los
pacientes que hay en la consulta. Siendo el resto de métodos privados y de clase (estáticos),
pues no necesitan acceder a ningún campo o propiedad de instancia y simplemente es una
modularización de la tarea de pasar consulta.

Nota

Tiene un dependencia débil de uso (<<use>>) con Paciente en el UML, ya que necesita
conocer la clase. Normalmente no se suele indicar en el UML, pero es importante que lo
tengas en cuenta.



10/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

Paso 5: Vamos a crear un sencillo programa principal de test...

public static void Main()

{

 Sicologo sicologo = new (consulta : new ());

 sicologo.Consulta

 .Entra(new PacienteAlegre("Xusa"))

 .Entra(new PacienteAlegre("Juanjo"))

 .Entra(new PacienteTriste("Carmen"));

 sicologo.PasaConsulta();

}

Cómo sucedía en otros casos podemos crear una nueva especificación de Paciente por
ejemplo...

public class PacienteSociopata : Paciente

{

 public override string Respuesta => "Vas a morir .. muuhaaahahahaha !!";

 public PacienteSociopata(string nombre) : base(nombre) { ; }

}

El consultorio seguiría funcionando. Pero, esta vez el Sicologo debería actualizarse para
saber tratar a este tipo de pacientes.

private static string Diagnostico(Paciente p) => p switch

{

 // ... código omitido por abreviar

 PacienteSociopata _ => $"Lo siento!. Debo aplicarte una decarga de 10000V justo ahora.",

};

Reto

¿Se te ocurre cómo crear diferentes tipos de sicólogos que diagnostiquen de forma
diferente o alguna forma de hacer que sepamos que tenemos que actualizar al sicólogo si
hay nuevos pacientes?



11/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

El Patrón "Union Type" o "Sum Type"
En programación, un "union type" (también conocido como "sum type", tipo de unión, tipo de suma o
unión etiquetada) es un tipo de dato que puede contener un valor de varios tipos diferentes, pero
solo uno a la vez.

El nombre "Union Type" proviene de la teoría de tipos, donde el conjunto total de posibles valores del
tipo es la "suma" (o unión) de los conjuntos de valores de sus tipos constituyentes. Este concepto es
común en lenguajes de programación funcional como Haskell y F# donde permiten modelar
datos de una manera muy expresiva y segura evitando errores en tiempo de ejecución.

Con el tiempo, los beneficios de este patrón se hicieron evidentes y los lenguajes de programación
más modernos, incluidos los orientados a objetos, han ido adoptando formas de implementarlo
como el caso de como C# , Java , Kotlin , Swift o Rust .

Por resumir y poner un símil de algo que ya conocemos, podríamos decir que es un tipo
enumerado excluyente mejorado. Donde en lugar de tener un conjunto de constantes, tenemos una
enumeración de tipos diferentes unificados por una abstracción y que guardarán un estado inmutable
diferente al poder tener propiedades distintas. Por todo ello, en un momento dado, una instancia de la
abstracción, solo podrá ser de uno de ellos de forma excluyente. De hecho, en lenguajes como
 Swift o Rust se definen con la palabra reservada enum .

"Union Type" en CSharp

En C# no existe una sintaxis específica para definir un "Union Type" pero podemos implementarlo
usando clases abstractas y herencia. Vamoslo a través a ver un ejemplo sencillo.

Supongamos que queremos
retornar en una solo tipo una
validación sobre una entrada de
datos. Hasta ahora,
devolvíamos una tupla con un
booleano y un mensaje de error
 (bool valido, string? mensaje)

y si el booleano era verdadero,
el mensaje estaría a null. En el
ejemplo validamos que un
entero con la edad tuviese 18
años o más.

static public (bool valido, string? mensaje) ValidaEdad(int edad)

{

 bool valido = edad >= 18;

 string? mensaje = !valido

 ? "El usuario debe ser mayor de 18 años."

 : null;

 return (valido, mensaje);

}

public static void Main()

{

 (bool valido, string? _) = ValidaEdad(13);

 if (valido)

 Console.WriteLine("Edad válida");

}

12/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

https://en.wikipedia.org/wiki/Tagged_union

Pero, si lo pensamos bien realmente hay dos posibles tipos de resultado y uno de ellos tiene
asociado un estado de error (el mensaje) y el otro no y esa consistencia debe saberla y gestionarla
el que llama al método.

public abstract record Validacion

{

 public record Exito() : Validacion;

 public record Error(string Mensaje) : Validacion;

}

Una posible solución es definir un value
object abstracto por referencia
denominado Validacion con dos tipos
anidados a modo de enumeración de
casos que en nuestro ejemplo podrían
ser Exito y Error .

Cada tipo anidado será a su vez un record que hereda de Validacion y que podrá tener sus propias
propiedades. En este caso, Error tiene una propiedad Mensaje .

Imaginemos ahora, que tenemos una clase de utilidad llamada Validador que tiene varios métodos de
validación que devuelven una Validacion ...

public static class Validador

{

 public static Validacion ValidaEdad(int edad) => edad switch

 {

 >= 18 => new Validacion.Exito(),

 _ => new Validacion.Error(Mensaje: "El usuario debe ser mayor de 18 años.")

 };

 public static Validacion ValidaNombre(string nombre) => string.IsNullOrWhiteSpace(nombre) switch

 {

 false => new Validacion.Exito(),

 true => new Validacion.Error(Mensaje: "El nombre no puede estar vacío.")

 };

}

Fíjate que en cada método de utilidad, si la validación es correcta devolvemos una instancia de
 Validacion.Exito y si no lo es, devolvemos una instancia de Validacion.Error con el mensaje de
error correspondiente. Esto es, retornamos en un solo tipo dos posibles tipos de resultado con su
propio estado inmutable.

13/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

Un caso de uso del ejemplo que nos hemos planteado podría ser una clase Acceso que representa el
acceso de un usuario a una web y que tiene una propiedad Validacion que valida el nombre y la
edad del usuario.

public record class Acceso

{

 public DateTime FechaHora { get; }

 public string Nombre { get; }

 public int Edad { get; }

 public Validacion Validacion =>

 Validador.ValidaNombre(Nombre) is Validacion.Error errorNombre

 ? errorNombre

 : Validador.ValidaEdad(Edad);

 public Acceso(string nombre, int edad, DateTime? fechaHora = null)

 {

 FechaHora = fechaHora ?? DateTime.Now;

 Nombre = nombre;

 Edad = edad;

 }

 public override string ToString()

 => $"{Nombre} ({Edad} años) el {FechaHora:dd/MM/yyyy} a las {FechaHora:HH:mm}";

}

Fíjate que la propiedad Validacion usa el operador is para comprobar si la validación del nombre ha
devuelto un error y en ese caso, devuelve dicho error. Si no ha habido error en el nombre, entonces
valida la edad y devuelve el resultado de dicha validación que puede ser un éxito o un error.

Si ejecutamos el siguiente programa principal de test donde verificamos los casos posibles de
acceso...

14/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

public static void Main()

{

 List<Acceso> accesos =

 [

 new (nombre: "", edad: 30, fechaHora: new DateTime(2026, 3, 22, 10, 35, 0)),

 new (nombre: "Luis", edad: 17, fechaHora: new DateTime(2026, 3, 22, 10, 39, 0)),

 new (nombre: "Marta", edad: 22, fechaHora: new DateTime(2026, 3, 22, 10, 50, 0)),

];

 foreach (var acceso in accesos)

 {

 string mensaje = acceso.Validacion switch

 {

 Validacion.Error error => $"Acceso denegado a {acceso}.\nMotivo: {error.Mensaje}\n",

 _ => $"Acceso permitido a {acceso}\n",

 };

 Console.WriteLine(mensaje);

 }

}

Mostrará por consola:

Acceso denegado a (30 años) el 22/03/2026 a las 10:35.

Motivo: El nombre no puede estar vacío.

Acceso denegado a Luis (17 años) el 22/03/2026 a las 10:39.

Motivo: El usuario debe ser mayor de 18 años.

Acceso permitido a Marta (22 años) el 22/03/2026 a las 10:50

Nota

Puedes descargar el código de este ejemplo del siguiente enlace: abstraccion_uniontype.cs.



15/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/assets/ejemplos/abstraccion_uniontype_ejemplo.cs

Interfaces
Básicamente un Interfaz es la definición de un conjunto de interfaces de métodos y accesores o
mutadores (como Propiedades). Es muy parecido a definir una clase abstracta pura, pero sin
ningún tipo de campo, constructor, ni modificador de acceso (public, private, etc…). Como en las
clases abstractas, las interfaces son tipos referencia, no puede crearse objetos de ellas sino sólo de
tipos que deriven de ellas, y participan del polimorfismo.

De hecho, es el caso de abstracción más puro que existe, pues solo define el comportamiento que
debe tener una clase que la implemente el interfaz y por tanto es la forma más común y
recomendable de definir la abstracción de un comportamiento. En otras palabras, siempre que no
haya un campo o propiedad no calculada común a todas las especificaciones, la forma correcta de
definir la abstracción es mediante un interfaz.

Pueden implementarse en muchos lenguajes OO con idénticas características:

Es posible la herencia múltiple de interfaces.
No pueden definir campos pero sí propiedades calculadas.
Un interfaz puede heredar de otro interfaz.
Si una clase hereda de un interfaz. Esta, deberá invalidar todo lo que hayamos definido en el
mismo.

Representación en los diagramas de clases UML

«Interface»
ICloneable

Clone() : object

MiClase MiClase

ICloneable

«Interface»
ICloneable

Clone() : object

«Interface»
IDisposable

Dispose() : void

MiClase

Representa que la clase MiClase implementa el interfaz
 ICloneable .

Fíjate que usamos la palabra implementa en lugar de
"hereda de" ya que, como hemos comentado, más que
responder MiClase a la pregunta "es un", un interfaz
define un comportamiento abstracto que MiClase deberá
implementar.

 MiClase ahora está obligada a implementar el método
público Clone con idéntica signatura.

Además como vemos en este segundo diagrama.
Podemos hacer que una clase implemente o "herede" de
más de un interfaz.

16/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

Interfaces en CSharp

«Interface»
IMedia

Play() : void
Stop() : void
Pause() : void
/GetDuracion_sg() : int

Video Audio

Como ya habrás podido apreciar en los diagramas, según
el convenio de nomenclatura de C#, el identificador o
nombre de la clase irá siempre precedido por la letra
mayúscula I (I nterface) para distinguirlo de otro tipo
de clases.

<modificadores> interface I<identificador> : <interfacesBase>

{

 <interfaces de métodos, propiedades o indizadores>

}

Por tanto, si queremos definir el interfaz anterior y aplicarlo a una Video . Haremos que Video herede
del interfaz con la sintaxis de herencia que hemos usado hasta ahora y esta se verá obligada a
implementar todo lo que hayamos definido en el interfaz, sin necesidad de anteponer el modificador
 override .

interface IMedia

{

 void Play();

 void Stop();

 void Pause();

 int Duracion_sg { get; }

}

class Video : IMedia

{

 // ...

 public int Duracion_sg => 20;

 public void Pause() => Console.WriteLine("Pausando el vídeo.");

 public void Play() => Console.WriteLine("Reproduciendo el vídeo.");

 public void Stop() => Console.WriteLine("Parando el vídeo.");

}

Aviso

Fíjate que no hemos definido ni en el UML ni en el código ningún modificador de acceso en el
interfaz. Por defecto, todos los métodos y propiedades de un interfaz son públicos. Es un
error muy común entre los programadores noveles el poner el modificador public y esto será
considerado en el examen como un error.



17/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

Interfaces de utilidad predefinidos en las BCL
Podemos decir que me permiten definir comportamientos para mis propios tipos, que serán
reconocidos por otras clases o tipos ya implementadas en las BCL. Aunque podríamos utilizar
interfaces propios para hacer lo mismo, no lo hacemos porque perderíamos interoperabilidad con el
resto de clases de las BCL.

IEnumerable

Lo veremos más adelante, al usar o definir colecciones.

ICloneable

ICloneable Me indicará que puedo crear copias del objeto, puesto que me obliga a implementar un
"constructor copia" con el interfaz object Clone() el cual me permitirá hacer copias en profundidad
de objetos de tipo referencia.

IComparable

IComparable Me indicará que el objeto debe
implementar el método
 int CompareTo(Object otro) que me servirá para
comparar dos objetos de la misma clase y que
básicamente implementan muchos tipos como las
cadenas, números, fechas, etc... y que es usado
por las BCL para ordenar listas o arrays de
objetos.

Recordatorio de uso:

Tipo o1 = new Tipo(...);

Tipo o2 = new Tipo(...);

// Si Tipo es IComparable entonces ...

int comparacion = o1.CompareTo(o2);

// comparacion = 0 si o1 y o2 son iguales.

// comparacion > 0 si o1 > o2.

// comparacion < 0 si o1 < o2.

IDisposable

IDisposable Me indicará que el objeto debe implementar el método void Dispose() que se
encargará de liberar los recursos usados por el objeto. No debemos confundirlo con el destructor
 ~<Tipo>() .

Indicaremos a las BCL que nuestro objeto tiene el comportamiento de liberar recursos y lo utilizaremos
junto a la instrucción using que veremos más adelante.

Veamos un ejemplo "genérico" comentado el uso de este tipo de interfaces. Para ello, supongamos la
siguiente agregación con tipos definidos por el usuario, donde ambos implementan los interfaces
 ICloneable e IComparable .

18/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.icloneable
https://docs.microsoft.com/es-es/dotnet/api/system.icomparable
https://docs.microsoft.com/es-es/dotnet/api/system.idisposable

Ejemplo de uso de interfaces predefinidos en las BCL
Vamos a definir una clase Empleado que tiene
una propiedad Nombre de solo lectura y una
 Sueldo que debe estar entre 1200 y 3000 euros.
Además, implementa los interfacesde las BCL
 IComparable e ICloneable . De tal manera que la
comparación entre empleados se hará por su
sueldo.

Puedes descargar el código de este ejemplo del
siguiente enlace:
interfaces_empleado_comparable_y_clonable.
cs.

«interface»
ICloneable

Clone() : object

«interface»
IComparable

CompareTo(in obj: object) : int

Empleado

-nombre : string
-sueldo : double

+Empleado(in nombre: string, in sueldo: double)
+GetNombre() : string
+GetSueldo() : double
^+ ToString() : string

Fíjate que podemos implementar más de un interfaz en la misma clase y los indicaremos separados
por comas.

public class Empleado : IComparable, ICloneable

{

 private double _sueldo;

 public double Sueldo

 {

 get => _sueldo;

 set

 {

 Debug.Assert(

 condition: value >= 1200D && value <= 3000D,

 message: "El sueldo debe estar entre 1200 y 3000 euros");

 _sueldo = value;

 }

 }

 public string Nombre { get; }

 public Empleado(string nombre, double sueldo)

 {

 Nombre = nombre;

 Sueldo = sueldo;

 }

 public override string ToString() => $"Nombre: {Nombre,-8}Sueldo: {Sueldo:F0}";

}

19/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/assets/ejemplos/interfaces_empleado_comparable_y_clonable_ejemplo.cs
file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/assets/ejemplos/interfaces_empleado_comparable_y_clonable_ejemplo.cs

Ahora estaremos obligados a implementar los métodos y propiedades definidos en los interfaces.

Puesto que vamos a comparar por Sueldo que es un tipo básico que ya implementa IComparable ,
podemos usar su método CompareTo para implementar el nuestro.

public int CompareTo(object? obj) => Sueldo.CompareTo((obj as Empleado)!.Sueldo);

Fíjate que comparamos el Sueldo del objeto que llama a CompareTo (this) con el sueldo del objeto
que se pasa como parámetro. Pero hemos hecho un downcasting con as y el operador de supresión
de nulabilidad ! para indicarle al compilador genere un error de ejecución si el objeto no es un
 Empleado .

Para implementar el método Clone simplemente llamamos al constructor de la clase con los mismos
parámetros que el objeto que llama a Clone .

public object Clone() => new Empleado(Nombre, Sueldo);

Tip

En VSCode, si situas el cursor sobre un interfaz que implementa una clase y pulsas Ctrl + . te
mostrará un menú contextual con la opción de "Implementar interfaz" que generará
automáticamente los métodos y propiedades que debes implementar.



Aviso

Si alguno de los objetos que componen la clase fuera un tipo referencia mutable, deberíamos
hacer una copia en profundidad de los mismos para evitar que el objeto clonado comparta
referencias con el original. Esto es, deberíamos llamar al método Clone de dichos objetos si
implementan ICloneable o crear nuevas instancias de los mismos copiando sus valores. En
este caso, como string es inmutable y double es un tipo valor, no tenemos que preocuparnos
por pasarlos tal cual al constructor.



20/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

Veamos ahora un sencillo programa principal de test donde probar la clase Empleado y los interfaces
que implementa.

static void Main()

{

 Empleado e1 = new (nombre: "Juanjo", sueldo: 2000);

 Empleado e2 = new (nombre: "Carmen", sueldo: 2800);

 Empleado e3 = new (nombre: "Xusa", sueldo: 2400);

 // Aunque sabemos que e1 es ICloneable, podemos siempre

 // preguntar a un objeto si implementa un interfaz

 // para poder llamar a sus métodos en esta caso Clone()

 // Como clone devuelve un object, debemos hacer un downcasting.

 Empleado e4 = e1 is ICloneable

 ? (e1.Clone() as Empleado)!

 : e1;

 // Modificamos el sueldo de e4 y no debería afectar a e1.

 e4.Sueldo = 2900;

 Empleado[] empleados = [e1, e2, e3, e4];

 // Puesto que Empleado es IComparable

 // podemos usar Array.Sort() para ordenar el array por sueldo.

 // Si no lo fuera, se produciría un error al ejecutar.

 Array.Sort(empleados);

 Console.WriteLine(string.Join<Empleado>("\n", empleados));

}

Mostrará por consola:

Nombre: Juanjo Sueldo: 2000

Nombre: Xusa Sueldo: 2400

Nombre: Carmen Sueldo: 2800

Nombre: Juanjo Sueldo: 2900

Fíjate que, además de mostrar los empleados ordenados por sueldo, al clonar e1 en e4 y
cambiar su sueldo, no hemos modificado el sueldo de e1 . Esto es porque hemos hecho una copia en
profundidad del objeto.

21/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

El Patrón "Strategy"
Los interfaces son muy usados en la industria del software para definir abstracciones de
comportamientos y patrones de diseño. Uno de los más usados es el patrón Strategy que será base
de muchos otros patrones de diseño y será básico para aplicar muchos aspectos de la POO
moderna como los principios SOLID, la inyección de dependencias, etc...

Este patrón nos permite abstraer un comportamiento que puede tener múltiples implementaciones y
que se definen en tiempo de ejecución. Es decir, el algoritmo o comportamiento concreto que se va a
usar, no se define hasta que se instancia el objeto. Determinadas clases deberán exponer en su
constructor las abstracciones colaboradoras (interfaces) que definen estos comportamientos para
que el usuario de la clase pueda decidir qué implementación concreta usar al instanciar el objeto.

Vamos a ver pues un ejemplo de uso de interfaces a través del uso de este patrón de diseño.
Tratando de aislar el concepto de otras consideraciones.

Para mostrar su uso, nada mejor que a través de juego de estrategia en tiempo real. En él, tendremos
una unidad de ataque con una serie de propiedades como son Fuerza , Velocidad e Inteligencia .
Sin embargo, hasta que no instanciemos el objeto unidad, no sabremos cómo se inicializarán estos
valores y que 'estrategia' va a seguir, es decir cómo se calcularán los puntos de ataque que va a tener
la unidad de acuerdo a los valores anteriores.

Para cumplir esta especificación, implementaremos el siguiente patrón Strategy, conforme se expresa
en al diagrama de clases siguiente.

IEstrategiaDeAtaque

Ataca(u:Unidad) : int

IGeneradorDePuntos

/GetFuerza() : int
/GetVelocidad() : int
/GetInteligencia() : int

GeneradorDePuntosFijo GeneradorDePuntosAleatorioEstrategiaAtaqueDemoledor EstrategiaAtaqueRapido

Unidad

-fuerza : int «readonly»
-velocidad : int «readonly»
-inteligencia : int «readonly»

+Unidad(pointsGenerator : IGeneradorDePuntos, attackStrategy : IEstrategiaDeAtaque)
+GetFuerza() : int
+GetVelocidad() : int
+GetInteligencia() : int
+Ataca() : int
+^ToString() : string

«Tiene una»«Tiene una»

22/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

https://es.wikipedia.org/wiki/Strategy_(patr%C3%B3n_de_dise%C3%B1o)

Si nos fijamos, definimos 2 objetos agregados en mi Unidad que se corresponderán con 2
generalizaciones de objetos que sabemos que implementan un determinado comportamiento
(interfaz). Uno tiene la funcionalidad de inicializar los puntos de las propiedades y otro la de calcular
los puntos de ataque (estos són los algoritmos que hemos dicho antes que se definen al instanciar el
objeto, en esta caso unidad).

Abastracción y concrecciones de la estrategia de obtención de puntuaciones:

public interface IGeneradorDePuntos

{

 int Fuerza { get; }

 int Velocidad { get; }

 int Inteligencia { get; }

}

public class GeneradorDePuntosFijo : IGeneradorDePuntos

{

 public int Fuerza => 6;

 public int Velocidad => 6;

 public int Inteligencia => 6;

}

public class GeneradorDePuntosAleatorio : IGeneradorDePuntos

{

 private static int PuntosAlestorios => new Random().Next(0, 8);

 public int Fuerza => PuntosAlestorios;

 public int Velocidad => PuntosAlestorios;

 public int Inteligencia => PuntosAlestorios;

}

Abastracción y concrecciones de la estrategia de ataque:

public interface IEstrategiaDeAtaque

{

 int Ataca(Unidad u);

}

public class EstrategiaAtaqueDemoledor : IEstrategiaDeAtaque

{

 public int Ataca(Unidad u) => u.Fuerza * (u.Velocidad / 2);

}

public class EstrategiaAtaqueRapido : IEstrategiaDeAtaque

{

 public int Ataca(Unidad u) => u.Velocidad + u.Inteligencia;

}

23/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

public class Unidad

{

 public int Fuerza { get; }

 public int Velocidad { get; }

 public int Inteligencia { get; }

 private IGeneradorDePuntos GeneradorDePuntos { get; }

 private IEstrategiaDeAtaque EstrategiaDeAtaque { get; }

 // La clase siempre expondrá sus dependecias de abtracciones

 // colaboradoras a través del constructor.

 public Unidad(

 IGeneradorDePuntos generadorDePuntos,

 IEstrategiaDeAtaque estrategiaDeAtaque)

 {

 GeneradorDePuntos = generadorDePuntos;

 EstrategiaDeAtaque = estrategiaDeAtaque;

 Fuerza = GeneradorDePuntos.Fuerza;

 Velocidad = GeneradorDePuntos.Velocidad;

 Inteligencia = GeneradorDePuntos.Inteligencia;

 }

 public int Ataca() => EstrategiaDeAtaque.Ataca(this);

 public override string ToString()

 => $"Unidad con {GeneradorDePuntos.GetType().Name} y {EstrategiaDeAtaque.GetType().Name} " +

 $"F={Fuerza} V={Velocidad} I={Inteligencia} A={Ataca()}";

}

Fíjate que ahora instanciamos nuestra unidades de ataque con las concreciones que implementan los
interfaces esperados por la clase Unidad .

public static void Main()

{

 Unidad uAleatoriaDeAtaqueRapido = new (

 generadorDePuntos: new GeneradorDePuntosAleatorio(),

 estrategiaDeAtaque: new EstrategiaAtaqueRapido());

 Unidad uFijaDeAtaqueDemoledor = new (

 generadorDePuntos: new GeneradorDePuntosFijo(),

 estrategiaDeAtaque: new EstrategiaAtaqueDemoledor());

 Console.WriteLine(uAleatoriaDeAtaqueRapido);

 Console.WriteLine(uFijaDeAtaqueDemoledor);

}

Mostrará por consola:

Unidad con GeneradorDePuntosAleatorio y EstrategiaAtaqueRapido F=2 V=4 I=4 A=8

Unidad con GeneradorDePuntosFijo y EstrategiaAtaqueDemoledor F=6 V=6 I=6 A=18

24/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

Puedes descargar el código de este ejemplo del siguiente enlace: interfaces_satrategy_unidades.cs.

Idea principal 💡

Lo más importante de este patrón es que podemos definir nuevas estrategias de generación
de puntos o de ataque sin necesidad de modificar la clase Unidad y por tanto, sin necesidad
de recompilarla. Simplemente, creamos nuevas concreciones que implementen los interfaces
definidos.



25/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/assets/ejemplos/interfaces_satrategy_unidades_ejemplo.cs.cs

🎓 Caso de estudio:

Vamos a aplicar alguno de los conceptos vistos en esta unidad para modelar una clase Coche
que tendrá un Motor y unos Neumáticos . El motor podrá ser de gasolina o eléctrico y los
neumáticos normales o deportivos. Además, el coche podrá acelerar y la forma de hacerlo
dependerá del tipo de motor que tenga.

Para ello, vamoa a abdtraer el comportamiento de acelerar en un interfaz y haremos que el Motor
y el Coche lo implemente. Además, haremos que el Coche implemente un patrón Strategy para
definir el tipo de motor y neumáticos que tendrá en tiempo de ejecución a través de abstracciones
que expondremos en el constructor.

Una posible modelización UML del caso de estudio podría ser la siguiente:

«interface»
IAcelerable

Acelera() : void

Motor
{abstract}

-revoluciones : Int { readonly }

+GetRevoluciones() : Int
#SetRevoluciones(r: Int) : void
#Figura(in color: Color)
+Acelera() : void {abstract}

MotorGasolina MotorElectrico

«interface»
INeumaticos

/GetIndiceVelocidad() : string
/GetIndiceCarga() : int
/GetRadio() : int
/GetPerfil() : int
/GetAncho() : int
/GetDescripcion() : string

«valueObject»
NeumaticosNormal

«valueObject»
NeumaticosSport

«entity»
Coche

-id : string { id }

+Coche(in id : int, in m: Motor, in n: INeumaticos)

«Tiene un»

1

«Tiene uno juego de»

1

¿Sabrías implementarlo en C#?. Si no es así, puedes seguir la explicación a continuación y
descargar el código de este caso de estudio del siguiente enlace: interfaces_strategy_coche.cs.

26/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

file:///C:/unidadB/git/programaciondam/u16_poo_roles_abstraccion/assets/ejemplos/interfaces_strategy_coche_ejemplo.cs

Definimos el interfaz IAcelerable que define el comportamiento de acelerar:

public interface IAcelerable

{

 void Acelera();

}

Definimos la abstracción del Motor como una clase abstracta que implementa el interfaz
 IAcelerable . La hemos hecho ambstracta pues tiene un campos común que define un estado
común a todas las especificaciones (las revoluciones).

public abstract class Motor : IAcelerable

{

 // Inicializando la propiedad evito definir un constructor.

 public int Revoluciones { get; protected set; } = 0;

 // Hasta que no concretemos un tipo de motor

 // no sabremos cómo se acelera.

 abstract public void Acelera();

}

public class MotorGasolina : Motor

{

 // Comportamiento inventado de acelerar en un motorg gasolina.

 // Cambia las revoluciones en +2

 public override void Acelera()

 {

 Console.Write("inyectando gasolina para explosión");

 Revoluciones += 2;

 }

}

public class MotorElectrico : Motor

{

 // Comportamiento inventado de acelerar en un motorg gasolina.

 // Cambia las revoluciones en +2

 public override void Acelera()

 {

 Console.Write("aumentando potencia eléctrica");

 Revoluciones += 6;

 }

}

27/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

Definimos las propiedades que debería tener un neumático a través del interfaz INeumaticos y
dos concreciones que lo implementan coma value objects por referencia.

public interface INeumaticos

{

 string IndiceVelocidad { get; }

 int IndiceCarga { get; }

 int Radio { get; }

 int Perfil { get; }

 int Ancho { get; }

 string Descripcion => $"{Ancho}/{Perfil} R{Radio} {IndiceCarga}{IndiceVelocidad}";

}

public record class NeumaticosNormal : INeumaticos

{

 public string IndiceVelocidad => "H";

 public int IndiceCarga => 88;

 public int Radio => 16;

 public int Perfil => 55;

 public int Ancho => 205;

}

public record class NeumaticosSport : INeumaticos

{

 public string IndiceVelocidad => "Y";

 public int IndiceCarga => 92;

 public int Radio => 18;

 public int Perfil => 40;

 public int Ancho => 225;

}

Importante

Fíjate que hemos definido una propiedad calculada llamada Descripcion que nos
devuelve una cadena con la descripción completa del neumático. Es decir, es un método
con cuerpo.

En muchos lenguajes de programación orientada a objetos, como es el caso de C# , las
interfaces pueden definir métodos con cuerpo. Esto es una característica que no está
en todos los lenguajes OO y que puede ser muy útil para evitar repetir código en las
concreciones del interfaz. Vendría a ser una implementación por defecto, que podría
ser sobreescrita en las concreciones si fuera necesario.

Al tener una cuerpo de defecto, no es obligatorio que las concreciones lo
implementen. De esta manera, como hemos comentado, evitamos repetir código en las
concreciones.



28/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

La implementación de la clase Coche siguiendo el patrón Strategy y el diagrama UML anterior
podría ser ...

public class Coche : IAcelerable

{

 public string Id { get; }

 public Motor Motor { get; }

 public INeumaticos Neumaticos { get; }

 public Coche(string id, Motor motor, INeumaticos neumaticos)

 {

 Id = id;

 Motor = motor;

 Neumaticos = neumaticos;

 }

 public void Acelera()

 {

 Console.Write($"Coche {Id} ");

 Motor.Acelera();

 Console.WriteLine($" a {Motor.Revoluciones} r.p.m.");

 }

 public override string ToString() =>

 $"Coche {Id} {Motor.GetType().Name} y neumaticos {Neumaticos.Descripcion}";

}

Podemos definir un sencillo programa principal de test ...

public class Principal

{

 public static void Main()

 {

 Coche c1 = new (id: "C1",

 motor: new MotorGasolina(),

 neumaticos: new NeumaticosNormal());

 Console.WriteLine(c1);

 c1.Acelera();

 c1.Acelera();

 Console.WriteLine();

 Coche c2 = new (id: "C2",

 motor: new MotorElectrico(),

 neumaticos: new NeumaticosSport());

 Console.WriteLine(c2);

 c2.Acelera();

 c2.Acelera();

 }

}

29/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

Mostrará por consola:

Coche C1 MotorGasolina y neumaticos 205/55 R16 88H

Coche C1 inyectando gasolina para explosión a 2 r.p.m.

Coche C1 inyectando gasolina para explosión a 4 r.p.m.

Coche C2 MotorElectrico y neumaticos 225/40 R18 92Y

Coche C2 aumentando potencia eléctrica a 6 r.p.m.

Coche C2 aumentando potencia eléctrica a 12 r.p.m.

30/30 Programación 1º DAM Unidad 16 IES Doctor Balmis

