Unidad 15

Descargar estos apunte en pdf o html

indice

= indice
¥ Herencia
¥ Tipos de Herencia
= Herencia Simple
= Herencia Multiple
¥ Implementando la herencia en CSharp
= Palabra reservada base
¥ Ocultacion e Invalidacion
= QOcultacion o reemplazo en CSharp
= Invalidacion o refinamiento en CSharp
= Combinando Invalidacion y Ocultacion
¥ Polimorfismo de datos o inclusién
= Principio de sustitucion de Liskov (Upcasting)
¥ Downcasting
= Formas de realizar el Downcasting
¥ Ligadura Dinamica
= Ejemplo de uso del Enlace Dinamico
= Utilidad del polimorfismo de datos (sustitucion) y el enlace dinamico
¥ El caso especial de la clase object en CSharp
= object.ToString()
= object.Equals() y object.GetHashCode()
= object.GetType()

1/39 Programacion 1° DAM Unidad 15 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u15_poo_roles_herencia/u15_poo_roles_herencia.pdf
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u15_poo_roles_herencia/u15_poo_roles_herencia.html

Herencia

Es una de las caracteristicas principales de la POO. Formalmente podemos definirla como....

Un tipo de relacion entre clases, en la cual una clase denominada subclase (o también clase hija),
comparte la estructura y/o comportamiento definidos en una o mas clases, llamadas superclases (0

también clase padre, clase base).
En otras palabras, una subclase afiade sus propios atributos y métodos a los de la superclase, por lo

que generalmente es mayor que esta y representara a un grupo menor de objetos.

De una forma menos formal podemos resaltar que:

1. La subclase es una concrecidn de |la superclase que representara una generalizacién.
2. Representara el tipo de relacion 'Es un/a'. Ej. 'Un coche es un vehiculo.'
3. La herencia nos servira para reutilizar cédigo y por tanto no repetir funcionalidades.

En UML representaremos el rol a través de una flecha de punta hueca de la subclase a la superclase y

se podran producir relaciones transitivas.

Interpretaciones del diagrama:

e B heredade A
e B es una concrecion A

A es una generalizacién B

A es la superclase y B la subclase
C heredade By A
B y C son subclases de A

Tipos de Herencia

Herencia Simple

Se dara cuando la subclase hereda de una sola superclase y sera la unica que nosotros utilizaremos
en C#.

Por ejemplo, supongamos que tenemos la superclase
Articulo conun id, precio y nombre . Una subclase de
Articulo denominada ArticuloRebajado que ademas,

2/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

afade al articulo un campo con el porcentaje de rebaja, ‘ @ . ‘
ICUIO

#precio : double

#nombre : string

denominado porcentajeRebaja . Claramente la relacion se
entiende como herencia pues: "Un ArticuloRebajado es

un Articulo".

La instancia de un objeto en memoria de

ArticuloRebajado ademas de tener una propiedad ‘ @ ArticuloRebajado ‘

porcentajeRebaja , tendra las propiedades precio Yy

-porcentajeRebaja : ushort ‘

nombre por ser también un Articulo y todos ellas
definiran su estado.

Herencia Multiple

Se dara cuando una subclase hereda caracteristicas de varias superclases. Tiene mas
desventajas que ventajas. Por eso C#, Kotlin Java NO la permiten. Aunque otros lenguajes como
Python o C++ si.

Entre las desventajas que hace que C# no la permita podemos destacar:

* Menor velocidad de ejecucion.

o Herencia repetida (Transitividad).
Por ejemplo en el diagram ProfesorUniversitario hereda 2 veces o0 a través de dos clases
diferentes los atributos de Persona .

‘ @ ProfesorUniversitario

o Disenos mas complejos y mas dificiles de aprender y utilizar por el programador. Ademas,
siempre podremos redisefar utilizando herencia simple o incluso composicion.

e Colisiones de Nombres
En el ejemplo la subclase Multimedia hereda campos con el mismo nombre de las clases base
Sonido Yy Graficos .
Cuando hagamos referencia al campo escala €n Multimedia .
¢ Como podemos saber si estamos haciendo referencia a la escala de sonido o la de

Graficos ?

3/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

‘ @ Sonido ‘ ‘ @ Graficos ‘

#escala : TipoEscala

#resolucion : TipoResolucion #resolucion : TipoResolucion

#escala : TipoEscala

Implementando la herencia en CSharp

Separaremos el nombre de la subclase y la superclase por el caracter ':' como en C++

class <NombreSubClase> : <NombreSuperClase>

{

Partamos del ejemplo que hemos visto en la herencia simple, expresado en el siguiente diagrama de
clases UML...

«entity»
Articulo

-id : int {id}
-precio : double
-nombre : string

+Articulo(in id : int, in nombre : string, in precio : double)
+Getld() : string

#GetNombre() : string

-SetNombre(in nombre : string) : void

#GetPrecio() : double

-SetPrecio(in precio : double) : void

+ATexto() : string

@ ArticuloRebajado

-porcentajeRebaja : ushort

+ArticuloRebajado(in id : int, in nombre : string, in precio : double, in porcentajeRebaja : ushort)
+GetPorcentajeRebaja() : ushort

-SetPorcentajeRebaja(in porcentajeRebaja : ushort) : void

-/GetDescuento() : double

+/GetPrecioBase() : double

+/GetPrecioRebajado() : double

+ATextoRebajado() : string

4/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

Fijate que en el diagrama de clases, aparece el simbolo # . Es un modificador que solo tiene sentido
aplicarlo a una superclase. Equivaldra a indicar el modificador de acceso protected Yy significara que
el campo, propiedad o el método al que modifica, no puede ser accedido desde fuera de la clase

como en el caso de private , pero si desde las subclases de la misma.

En nuestro diagrama se lo estaremos aplicando al get de la propiedades Nombre Y Precio . De
momento hemos sido restrictivo en el acceso a las subclases y si vemos que necesitamos acceder a
un campo o propiedad desde fuera, lo cambiaremos a public .

Veamos como quedara la implementacion de la superclase Articulo :

public class Articulo

{
public string Id { get; }
protected double Precio { get; private set; }
public Articulo(
string id,
string nombre,
double precio)
{
Id = id;
Nombre = nombre;
Precio = precio;
}
public string ATexto() => $"""
Id: {Id}
Nombre: {Nombre}
Precio: {Precio:F2}€
5
}

5/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

Veamos como quedara la implementacion de la subclase ArticuloRebajado :

public class ArticuloRebajado : Articulo

{
public ushort PorcentajeRebaja { get; private set; }
private double Descuento => base.Precio * PorcentajeRebaja / 100d;
public double PrecioRebajado => base.Precio - Descuento;

public double PrecioBase => base.Precio;

public ArticuloRebajado(
string id,
string nombre,
double precio,
ushort porcentajeRebaja)
// Llamada al constructor de la clase base encargado
// de ‘'construir' la parte de Articulo del objeto

: base(id, nombre, precio)

PorcentajeRebaja = porcentajeRebaja;

¥
public string ATextoRebajado() => $"""

Id: {base.Id}

Nombre: {base.Nombre}
Rebaja: {PorcentajeRebaja}’%
Antes: {base.Precio:F2}€
Ahora: {PrecioRebajado:F2}€

Podremos acceder desde la subclase a las propiedades publicas y protegidas de la clase base o
superclase como Id, Precio Yy Nombre . Fijate que hemos usado la palabra clave base para
referirnos a la parte de Articulo del objeto ArticuloRebajado Yy asi poder acceder a sus propiedades
protegidas y publicas. Aunque en este caso, no seria en este caso necesario usarla pues no hay
ambigledad, es una buena practica para evitar errores en futuras modificaciones.

6/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

Vamos a implementar un simple programa principal de prueba...

Mostrara por consola:

static class EjemploHerencia

{
static void Main()
{ Id: A001
Articulo a = new (Nombre: Polo Ralph Lauren
id: "Aee1”, Precio: 75,007
nombre: "Polo Ralph Lauren",
precio: 75d); Id: A002
Nombre: Polo Fred Perry
Console.WriteLine(new string('-"', 20)); Precio: 70,007
Console.WriteLine(a.ATexto());
Id: A002
ArticuloRebajado ar = new (Nombre: Polo Fred Perry
id: "A0e2", Rebaja: 15%
nombre: "Polo Fred Perry", Antes: 70,007
. Ahora: 59,507
precio: 7@d,
porcentajeRebaja: 15);
console. Writeline(new string(1=1,520)); Puedes descargar el cédigo de ejemplo de el
Console.WriteLine(ar.ATexto()); L .)
s siguiente enlace: herencia_articulo1.cs
Console.WriteLine(); -
Console.WriteLine(ar.ATextoRebajado());
Console.WriteLine(new string('-"', 20));
}
}

Una aproximacion a como seria el objeto instanciado de una subclase en memoria, seria la siguiente:

ar : ArticuloRebajado

base : Articulo

nombre = "Polo Fred Perry"

precio = 70.00

o7

a : Articulo
@—> nombre = "Polo Ralph Lauren"
precio = 75.00

porcentajeRebaja = 15

Recuerda que, podemos considerar la parte de la instancia de ArticuloRebajado resaltada, es una
instancia de Articulo que es donde se guardan las propiedades Id, Nombre y Precio Y la parte de
objeto que corresponde a un ArticuloRebajado guarda solo la propiedad PorcentajeRebaja mas las
otras propiedades calculadas.

7139 Programacién 1° DAM Unidad 15 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u15_poo_roles_herencia/assets/ejemplos/herencia_articulo_ejemplo.cs

Palabra reservada base

Vamos a ahondar un poco mas en la palabra reservada base que hemos utilizado en el constructor de
la subclase ArticuloRebajado Yy para acceder a las propiedades de |la superclase Articulo .

Si nos fijamos en el constructor de ArticuloRebajado solo se encarga de inicializar y crear las
propiedades especificos de la subclase, para crear los de la clase, hemos invocado a un constructor
de la clase base, utilizando la palabra reservada :base(<parametrosBase>) a continuacion de la

declaracion del constructor de la subclase.

Si hay un constructor por defecto en la superclase no haria falta poner nada, puesto que
automaticamente seria llamado al llamar al de la subclase.

Al igual que this era una referencia implicita al objeto de la propia clase, en las subclases tenemos la
palabra reservada base que también es una referencia implicita a un objeto de la superclase, para la

subclase actual como se apreciaba en el diagrama anterior.

Nota

Ya veremos mas adelante que sera imprescindible su uso en los casos en los que en la subclase
y en la superclase tengamos un método con el mismo nombre.

2

Object-oriented never made it outside
of Xerox PARC; only the term did.

24

- Alan Kay.

8/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

Ocultacion e Invalidacion

Si te has fijado, en Articulo hemos llamado a la propiedad Precio y en ArticuloRebajado hemos
llamado a la propiedad PprecioRebajado .Esto Io hemos hecho para que no se solaparan los
identificadores de las propiedades (recuerda que la subclase puede ver las propiedades de la
superclase) y podriamos tener problemas de ambiguedad.

Sin embargo, en el fondo es una redundancia, porque si a un objeto
ArticuloRebajado articuloRebajado; accedo a la propiedad articuloRebajado.Precio; ya se que
estoy obteniendo el precio rebajado o deberia estar obteniendo dicho precio.

Por tanto, si usamos nombres repetidos en ambas clases, tendriamos propiedades o métodos con
identificadores idénticos y posiblemente recibamos algun tipo de aviso del compilador. Pero ...

o ¢Se puede hacer esto?
* ¢Como resolvemos la ambigiiedad que se produce?

En la POO tradicional hay dos estrategias posibles:

1. Reemplazo: Se sustituye completamente la implementacion del método o propiedad heredada
manteniendo la signatura o tipo.
Comunmente se le conoce como Ocultaciéon (hiding)

2. Refinamiento: Se afade nueva funcionalidad al comportamiento heredado. Es la mas comun y
también se le conoce como Invalidacion (overriding)

The most fundamental problem in
software development is complexity.

There is only one basic way of dealing
with complexity: divide and conquer. ”

- Bjarne Stroustrup.

9/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

Ocultacion o reemplazo en CSharp

Sera la estrategia que aplica por defecto C#, aunque como hemos comentado, el compilador nos
avisara por si nos hemos 'despistado’ y realmente queriamos hacer otra cosa. Por ejemplo, VSCode
generara el siguiente mensaje.

A 'ArticuloRebajado.Precio' oculta el miembro heredado 'Articulo.Precio’.

Use Ta palabra clave new si su intenciéon era ocultarlo. (CS0108)

Puesto que con el reemplazo lo que buscamos es definir una nueva funcionalidad para una operacion
heredada, antepondremos la palabra reservada new a la operacion o método de la clase hija o
subclase con la misma signatura que queremos ocultar en la clase base o superclase.

Supongamos la misma relacion de herencia anterior donde ahora queremos hacer una ocultacion de
los métodos GetPrecio Y ATexto .

(©) ArticuloRebajado

-porcentajeRebaja : ushort

+ArticuloRebajado(in id : int, in nombre : string, in precio : double, in porcentajeRebaja : ushort)
+GetPorcentajeRebaja() : ushort

-SetPorcentajeRebaja(in porcentajeRebaja : ushort) : void

-/GetDescuento() : double

+/GetPrecioBase() : double

+ /GetPrecio() : double

+ ATexto() : string

La implementacion en C# quedaria como sigue...

¢) Importante
Dentro del ambito o alcance de definicion de ArticuloRebajado, base.Precio me devuelve el

precio del original del articulo (sin descuento) y this.Precio 0 simplemente Precio me
devuelve el precio rebajado (con descuento).

10/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/compiler-messages/cs0108
https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/compiler-messages/cs0108

La nueva implementacion de ArticuloRebajado quedaria como sigue:

public class ArticuloRebajado : Articulo

{
public ushort PorcentajeRebaja { get; private set; }
private double Descuento => base.Precio * PorcentajeRebaja / 100d;
public new double Precio => base.Precio - Descuento;
public double PrecioBase => base.Precio;
public ArticuloRebajado(
string id,
string nombre,
double precio,
ushort porcentajeRebaja)
: base(id, nombre, precio)
{
PorcentajeRebaja = porcentajeRebaja;
}
public new string ATexto() => $"""
Id: {base.Id}
Nombre: {base.Nombre}
Rebaja: {PorcentajeRebaja}%
Antes: {base.Precio:F2}€
Ahora: {this.Precio:F2}€
}

Cuidado

Sien lugar de ...

public new double Precio => base.Precio - Descuento;

no usaramos la palabra base por error ...

public new double Precio => Precio - Descuento;

Estariamos llamando a al get de Precio para calcular Precio Yy por tanto entrariamos en un
bucle infinito que provocaria un desbordamiento de pila (stack overflow).

11/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

Invalidacién o refinamiento en CSharp

Sera la opcion que tomaremos en el 99% de los casos, pues es mas flexible que la ocultacion y me
permitira realizar los enlaces dinamicos que veremos mas adelante.

En ella, normalmente haremos lo que hacia la clase padre, mas nueva funcionalidad y para ello,
'marcaremos’ como metodos 'virtuales' a los métodos ‘invalidables' en la superclase que sean
publicos o protegidos. Para ello utilizaremos |la palabra reservada virtual precediendo ala
declaraciéon del método invalidable y la palabra override precediendo la declaracién de un

método en la subclase que invalida a uno invalidable o virtual en la superclase.

I Importante: A diferencia de la ocultacion, ambos métodos deberan tener la misma
accesibilidad.

Para representar lo que queremos hacer. En 'nuestros’ diagramas de clases UML...

Pondremos el modificador {virtual} al final nombre del método invalidable. También, marcaremos en
‘cursiva’ aquellos métodos virtuales o virtuales puros (que trataremos mas adelante) ya que aunque
dejo de usarse a partir de la version 2.5 de UML, sigue siendo una notacion ampliamente usada.

Aquellos métodos que invaliden un método en su superclase los marcaremos con el caracter ~
precediendo al nombre del método, para tenerlo claro. Si no ponemos nada, supondremos por
convenio que estamos haciendo una ocultacion.

«entity»
Articulo

-id : int {id}
-precio : double
-nombre : string

+Articulo(in id : int, in nombre : string, in precio : double)
+Getld() : string

#GetNombre() : string

-SetNombre(in nombre : string) : void

+ GetPrecio() : double { virtual }

- SetPrecio(in precio : double) : void { virtual }

+ ATexto() : string { virtual }

@ ArticuloRebajado

-porcentajeRebaja : ushort

+ArticuloRebajado(in id : int, in nombre : string, in precio : double, in porcentajeRebaja : ushort)
+GetPorcentajeRebaja() : ushort

-SetPorcentajeRebaja(in porcentajeRebaja : ushort) : void

-/GetDescuento() : double

+/GetPrecioBase() : double

+ AGetPrecio() : double

+ MATexto() : string

La implementacién en C# quedaria como sigue...

12/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

Modifico los métodos como invalidables con virtual en Articulo Y los hago public el get como va
a ser en las subclases. Recordemos que deben tener la misma accesibilidad.

class Articulo

{
// ... codigo omitido para abreviar.
public virtual double Precio { get; private set; }
public virtual string ATexto() => $"""
Id: {Id}
Nombre: {Nombre}
Precio: {Precio:F2}€
5
}

Invalido el método con la misma signatura en la subclase con el modificador override

) Idea

Si escribo public override Ctrl + <espacio> el 'intellisense' me ofrecera permitira escoger
entre los métodos invalidables.

Si refactorizamos sobre el nombre de la clase con ctrL + . una de ellas sera 'Generar
invalidaciones...'

class ArticuloRebajado : Articulo

{
// ... cédigo omitido para abreviar.
// Anado el modificador override para indicar que estoy invalidando la propiedad Precio.
public override double Precio => base.Precio - Descuento;
// Anado el modificador override para indicar que estoy invalidando la el método ATexto().
public override string ATexto() => $"""
Id: {base.Id}
Nombre: {base.Nombre}
Rebaja: {PorcentajeRebaja}’%
Antes: {base.Precio:F2}€
Ahora: {this.Precio:F2}€
"y
}

Si no has sabido seguir las modificaciones propuestas, puedes descargar el cédigo del ejemplo
anterior del siguiente enlace: herencia_articulo_invalidacion.cs

13/39 Programacion 1° DAM Unidad 15 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u15_poo_roles_herencia/assets/ejemplos/herencia_articulo_invalidacion_ejemplo.cs

Combinando Invalidacién y Ocultacion

Lo normal es que en el momento que modifiquemos algun método en la jerarquia con virtual

(invalidable), los métodos con la misma signatura en las subclases se modificaran con override .

Sin embargo, podemos hacer disefios mas complejos como el del ejemplo siguiente donde volvemos a

ocultar como sucede en la clase E . Deberemos evitar disefios complejos.

14/39

 ©~ |

‘ +Metodo() : void ‘

©s

| +Metodo() : void {virtual} |

©c

A+ Metodo() : void ‘

©o

A+ Metodo() : void ‘

 ©: |

‘ +Metodo() : void ‘

Programacién 1° DAM Unidad 15

class A

{
public void Metodo() { ... }

}

class B : A

{
// Oculta el de A y lo marco como virtual o invalidable.
public new virtual void Metodo() { ... }

}

class C : B

{
public override void Metodo() // Invalido Metodo() en B
{

base.Metodo(); // Llamada a la implementacién de B

}

}

class D : C

{
public override void Metodo() // Invalido Metodo() en By C
{

base.Metodo(); // Llamada a la implementacién de C

}

}

class E : D

{
// Corto la secuencia de invalidaciones ocultando el método.
public new void Metodo()
{
}

}

IES Doctor Balmis

«” Ampliacién opcional:

¢, Serias capaz de reconoces los elementos y equivalencias de de nuestra relacion de herencia
entre Articulo y ArticuloRebajado en C# en otros lenguajes como JavaScript o Kotlin?

JavaScript:
class Articulo { class ArticuloRebajado extends Articulo {
#nombre; constructor(id, nombre, precio, porcentajeRebaja) {
#tprecio; super(id, nombre, precio);
this.porcentajeRebaja = porcentajeRebaja;
constructor(id, nombre, precio) { this.precioBase = super.precio;
this.id = id; }
this.#nombre = nombre; get #descuento() {
this.#precio = precio; return this.precioBase
} * this.porcentajeRebaja
/ 100.0;
get precio() { }
return this.#precio; get precio() {
} return this.precioBase - this.#descuento;
get nombre() { }
return this.#nombre; aTexto() {
} return °
aTexto() { Id: ${this.id}
return ° Nombre: ${this.nombre}
Id: ${this.id} Rebaja: ${this.porcentajeRebaja}%
Nombre: ${this.#nombre} Antes: ${this.precioBase.toFixed(2)}€
Precio: ${this.precio.toFixed(2)]) Ahora: ${this.precio.toFixed(2)}€
TLotrim(); SLotrim();
} }
} }

Fijate que en JavaScript usa la palabra clave extends para indicar que una clase hereda de otra
y que los métodos y propiedades de la superclase se pueden llamar con super en lugar de base
como en C#. Esto viene del lenguaje Java. Ademas no disponemos de las palabras reservadas
virtual y override por lo que las caracteristicas orientadas a objetos son mas limitadas.

15/39 Programacion 1° DAM Unidad 15 IES Doctor Balmis

Kotlin:

open class Articulo(
val id: String,
protected var nombre: String,
open var precio: Double
) 1
open fun aTexto(): String {
return """
Id: $id
Nombre: $nombre
Precio: ${"%.2f".format(preci
""" trimIndent()

class ArticuloRebajado(

id: String,

nombre: String,

precioBase: Double,

var porcentajeRebaja: UShort

: Articulo(id, nombre, precioBase) {

private val descuento: Double
get() = super.precio
* porcentajeRebaja.toInt()
/ 100.0
override var precio: Double
get() = super.precio - descuento
set(value) {
super.precio = value
}
val precioBase: Double

get() = super.precio

override fun aTexto(): String {

return """
Id: $id
Nombre: $nombre
Rebaja: $porcentajeRebaja%
Antes: ${"%.2f".format(precioBase)}£
Ahora: ${"%.2f".format(precio)}€

""" trimIndent ()

En Kolin, la forma de indicar la herencia es con la palabra clave : como en C# y para indicar que

un método es invalidable usamos la palabra clave open , sin embargo, para indicar que un
método invalidado en la subclase, usamos la palabra clave override como en C#. Ademas, para

acceder a los métodos y propiedades de la superclase usamos la palabra clave super como en

JavaScript.

16/39 Programacion 1° DAM Unidad 15

IES Doctor Balmis

Ejemplo:

Vamos a definir otra concrecién mas de la clase Articulo . En este caso, va a representar
articulos reacondicionados, de los que vamos a anadir una fecha de reacondicionamiento, la
empresa que lo realiza y una descripcién del trabajo realizado.

e Solo vamos a invalidar el método string ATexto() .
¢ Instancia un objeto de la nueva clase.

/\

‘ @ArticuloReacondicionadoJ ‘ @ArticuloRebajado

% Alto: Antes de ver la la propuesta de implementacion, intenta pensar cémo seria la misma...

public class ArticuloReacondicionado : Articulo

{
public DateOnly FechaReacondicionamiento { get; }
public string Empresa { get; }

public string Descripcion { get; }

public ArticuloReacondicionado(
string id,
string nombre,
double precio,
DateOnly fechaReacondicionamiento,
string empresa,

string descripcion) : base(id, nombre, precio)

FechaReacondicionamiento = fechaReacondicionamiento;
Empresa = empresa;
Descripcion = descripcion;
}
public override string ATexto() => $
{base.ATexto()}
Fecha reacondicionamiento: {FechaReacondicionamiento.ToShortDateString()}

Empresa: {Empresa}
Descripcién: {Descripcion}

[IRTRTIN
3

17/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

static void Main()

{
ArticuloReacondicionado ac = new(
id: "A@@3-R",
nombre: "Fuente TFX",
precio: 5ed,
fechaReacondicionamiento: DateOnly.FromDateTime(DateTime.Now),
empresa: "Balmis S.A",
descripcion: "Se cambia condensador electrolitico");
Console.WriteLine(new string('-"', 20));
Console.WriteLine(ac.ATexto());
Console.WriteLine(new string('-', 20));
}
Mostrara por consola:

18/39

Id: AO003-R
Nombre: Fuente TFX
Precio: 50,007

Fecha reacondicionamiento: 17/08/2025

Empresa: Balmis S.A
Descripcién: Se cambia condensador electrcg

Programacién 1° DAM Unidad 15

Fijate que al invalidar a ATexto() hemos
llamado al método de la superclase
base.ATexto() para reutilizar su funcionalidad
y asi no repetir cdédigo. De esta manera
podremos ver las caracteristicas comunes de
todos los articulos y las especificas de cada
uno de ellos.

IES Doctor Balmis

Polimorfismo de datos o inclusion

Es la capacidad de un identificador de hacer referencia a instancias de distintas clases durante su
ejecucion. Se logra a través del principio de sustitucion.

Principio de sustitucion de Liskov (Upcasting)

Podemos decir que es, cuando un identificador que hemos declarado del tipo de la superclase,
referencia a un objeto de la subclase. También se le conoce como upcasting y esta conversién o

‘cast’ se hace de forma implicita.

La forma mas simple de tenerlo es crear un objeto de la subclase y lo asignamos a la superclase. Por

ejemplo...

ArticuloRebajado ar = new (Una posible representacion del objeto en

id: "Aee4", memoria seria la siguiente:
nombre: "Polo Fred Perry",
precio: 7ed,

porcentajeRebaja: 15);

i <:::::>—————>- a : Articulo
nombre = "Polo Fred Perry"

precio = 70.00

Articulo a

Articulo a = new ArticuloRebajado(
id: "Aee4",
nombre: "Polo Fred Perry",
precio: 7ed,
porcentajeRebaja: 15);

Nota

Aunque creamos un objeto ArticuloRebajado completo en memoria. Através de a solo
podremos acceder a la parte de Articulo que hay dentro del ArticuloRebajado .
Por ejemplo, si tuvieramos una propiedad publico en ArticuloRebajado denominada

ushort PorcentajeRebaja , N0 podriamos hacer a.PorcentajeRebaja -

19/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

Downcasting

Se tratara de la operacion contraria a la sustitucion o upcasting.
A, Pero ojo, solo podremos hacerla si realmente la referencia que tenemos es del tipo al que
queremos hacer el downcasting, en caso contrario obtendremos un > Error en tiempo de ejecucion.

Siguiendo con la representacion en memoria es como si recuperaramos el acceso a la parte de
ArticuloRebajado del objeto Articulo que hemos creado en el ejemplo anterior.

ArticuloRebajado

<::::>—————b- a : Articulo
nombre = "Polo Fred Perry" = downcasting =>
precio = 70.00
IH porcentajeRebaja = 15

Formas de realizar el Downcasting

1. Mediante cast explicito:

Articulo a = new ArticuloRebajado("A@04", "Polo Fred Perry", 70d, 15);

ArticuloRebajado ar = (ArticuloRebajado)a; // realmente a es un ArticuloRebajado

Sin embargo el siguiente cédigo produciria un X Error al ejecutar.

Articulo a = new ("A@O1l", "Polo Ralph Lauren", 75f);

ArticuloRebajado ar = (ArticuloRebajado)a;

2. Mediante el operador is
Nos sirve para preguntarle a un objeto si es de un determinado tipo y saber asi con seguridad si

podemos hacer el downcasting.

Articulo a = new ("A@O1l", "Polo Ralph Lauren", 75f);
if (a is ArticuloRebajado ar) // Preguntamos si admite la forma de ...

{

Console.WriteLine(ar);

Si se cumple la condicion, ar se convierte en un objeto de tipo ArticuloRebajado y podemos
acceder a sus propiedades y métodos. Si no se cumple, ar no se inicializa y no podemos usarlo.

20/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/is

3. Mediante el operador as

Realiza directamente el downcasting y si no puede asigna null. EL problema es que vamos a

tener que manejar tipos nulables.

Articulo a = new ("A@@1", "Polo Ralph Lauren", 75f);

// Generara un Warning porque se puede evaluar a null y ar no es anulable
// deberiamos declarar ArticuloRebajado como nulable
ArticuloRebajado? ar = a as ArticuloRebajado;

Console.WriteLine(ar?.ATexto() ?? "No hay datos de rebaja");

4. Apoyandonos en el operador de uso combinado null ??

5.

21/39

.1, Realmente no seria un downcasting sino una tranformacion defensiva.

Articulo a = new ArticuloReacondicionado(id: "A@@5-R",
nombre: "iPhone 16 Pro",
precio: 950,
fechaReacondicionamiento: new(2025, 8, 17),
empresa: "Foxconn",
descripcion: "Cambio de bateria");
// Nos aseguramos de que en ar siempre hay un objeto instanciado y evitamos el aviso
// al no ser un tipo anulable &
ArticuloRebajado ar = a as ArticuloRebajado
??
new (id: a.Id,
nombre: a.Nombre,
precio: a.Precio,

porcentajeRebaja: 15);

Realmente estamos creando un nuevo articulo porque realmente no es del tipo que
esperabamos. Por lo que no seria una opcion muy recomendable al tratarse de programacion

defensiva ee .

Usando un switch ya sea como instruccion o expresion seria la forma mas elegante y legible
de hacer un downcasting y ademas nos permite manejar el caso en que no se cumple la

condicion.

Articulo a = new ArticuloRebajado("A@04", "Polo Fred Perry", 70d, 15);

string salida = a switch

{
ArticuloRebajado ar when ar.PorcentajeRebaja > 30 => "Articulo rebajado con mas del 30% de rebaja"
ArticuloRebajado ar => $"Es un articulo rebajado con el {ar.PorcentajeRebaja}% de rebaja",
ArticuloReacondicionado _ => "Es reacondicionado",
_ => "No es un tipo de objeto contemplado",

s

Console.WritelLine(salida);

Programacién 1° DAM Unidad 15 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/operators/type-testing-and-cast#as-operator
https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/operators/null-coalescing-operator

Ligadura Dinamica

También se le conoce como enlace dinamico.
Una de las principales 'ventajas' de la invalidacion, es que al hacer una sustitucién como la que
hemos visto del tipo...

Articulo a = new ArticuloRebajado("Polo Fred Perry", 70d, 15);
Console.WriteLine(a.Precio);

Console.WriteLine(a.GetPrecio()); mostrara 59,5y no 70. Pero,... ; COmo puede suceder esto si a
esta referenciando a la parte de Articulo que hay en el objeto ArticuloRebajado instanciadoy
GetPrecio() de Articulo me devuelve el precio sin el descuento?

Si nos fijamos en la figura siguiente, lo que realmente sucede es que al hacer a.Precio y ver que la
propiedad virtual Precio { get; ... } esta marcado como invalidable o virtual. Buscara posibles
invalidaciones de ese método en el objeto realmente instanciado (ArticuloRebajado) y si existen lo

que hara es llamar a la invalidacion.

a : Articulo

nombre = "Polo Fred Perry"

precio = 70.00
a.Precio

virtual double Precio { get; ... } — 70

override double Precio => base.Precio - Descuento — 59.5

A este enlace entre el método o propiedad virtual y su invalidacion, lo denominaremos ligadura
dinamica y se denomina 'dinamica' puesto que se decide en tiempo de ejecucion, dependiendo del
objeto que realmente tengamos instanciado y esté referenciado por la sustitucion.

22/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

Ejemplo de uso del Enlace Dinamico

Veamos un ejemplo mas elaborado a través de otro ejemplo donde vamos a ampliar nuestra jerarquia
de articulos.

Supongamos que nos piden hacer una concrecidn mas de articulos, para aquellos que estan en
exposicion. Nos comentan que los articulos en exposicion siempre tienen algun tipo de rebaja.
Por lo tanto podemos decir que un articulo en exposicién - es un - articulo rebajado.

Ademas, se nos especifica que el porcentaje de rebaja coincidira con los dias que el articulo esté en
exposicion siendo un minimo de un 1% y un maximo de 75% de su valor. De esta manera si un articulo
lleva 20 dias en exposicion su descuento sera del 20% pero si lleva 100 dias su descuento sera del
75%.

De lo expuesto, al crear un articulo en exposicion, nos interesara saber la fecha en que se inicié la
misma.

Una posible modelacion del diagrama de clases para implementacion UML siguiendo nuestro convenio
de nomenclatura seria...

«entity»
Articulo

+Articulo(...)

#GetNombre() : string
+GetPrecio() : double {virtual}
+ATexto() : string {virtual}

(©) ArticuloRebajado

+ArticuloRebajado(...)
#GetPorcentajeRebaja() : ushort {virtual} ‘@ArticuloReacondicionado
-/GetDescuento() : double
Al+GetPrecio() : double
A+ATexto() : string

@ ArticuloEnExposicion

-inicioExposicion : DateOnly {readOnly}

+ArticuloEnExposicion(in id : string, ..., in inicioExposicion : DateTime)
Al#GetPorcentajeRebaja() : ushort

+/GetDiasEnExposicion() : int

A+ATexto() : string

23/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

Vamos a realizar una propuesta de implementacion, comentada, de la especificacion anterior.

En primer lugar marcando como virtual la propiedad PorcentajeRebaja de ArticuloRebajado para

que pueda ser invalidada en la subclase ArticuloEnExposicion .

public class ArticuloRebajado : Articulo

{

// ... cédigo omitido para abreviar.

public virtual ushort PorcentajeRebaja { get; private set; }

private double Descuento => base.Precio * PorcentajeRebaja / 100d;

public override double Precio => base.Precio - Descuento;

En ArticuloEnExposicion , vamos a invalidar la propiedad PorcentajeRebaja y el método ATexto()

para que nos muestre la informacion de la exposicion en el caso de que el objeto lo tengamos como un

tipo de alguna de las superclases.

public class ArticuloEnExposicion : ArticuloRebajado

{

24/39

public DateOnly InicioExposicion { get; }

// En un principio el descuento es @ y lo calculeramos dinamicamente.
public ArticuloEnExposicion(

string id,

string nombre,

double precio,

DateOnly inicioExposicion) : base(id, nombre, precio, 0)

InicioExposicion = inicioExposicion;

// Invalidamo la obtencidn porcentaje para calcularlo en funcidn de los dias en exposicion.

public override ushort PorcentajeRebaja => Convert.ToUIntl6(Math.Clamp(DiasEnExposicion, 1, 75));

// Los dias en esposicion se calculan en el momento actual, desde el incio de la exposiciodn.

public int DiasEnExposicion => DateOnly.FromDateTime(DateTime.Now).DayNumber - InicioExposicion.DayNumber;

// Invalidamos el método ATexto() de Articulo y ArticuloRebajado para que afiada la nueva informacion.
public override string ATexto() => $"""
{base.ATexto()}

En exposicién desde: {InicioExposicion.ToShortDateString()} total {DiasEnExposicion} d

Programacién 1° DAM Unidad 15 IES Doctor Balmis

Si ahora en el programa principal ejecutamos el siguiente cédigo...

Articulo a = new ArticuloEnExposicion(
id: "A@e6-E",
nombre: "TV Samsung OLED 50''",
precio: 999d,
inicioExposicion: DateOnly.FromDateTime(DateTime.Now.AddDays(-10)));

Console.WriteLine(new string('-', 20));

Console.WriteLine(a.ATexto());

Console.WriteLine(new string('-"', 20));

Mostrara por consola:

Id: A006-E
Nombre: TV Samsung OLED 50''
Rebaja: 10%

Antes: 999,00€
Ahora: 899,10€
En exposicién desde: <fecha actual - 10 dias> total 10 dias

Si lo meditamos, se estan realizando dos enlaces o ligaduras dinamicas '— ' ...

1. a.ATexto() — override ArticuloRebajado.Atexto() —
override ArticuloEnExposicion.Atexto()
2. Al ejecutar override ArticuloEnExposicion.Atexto() se llamara a base.ATexto() el cual llamara a
override ArticuloRebajado.Precio este al no estar invalidado llama a
ArticuloRebajado.Descuento que a su vez llama a virtual ArticuloRebajado.PorcentajeRebaja
— override ArticuloEnExposicion.PorcentajeRebaja produciéndose el segundo enlace.

Resumen
En otras palabras, el PorcentajeRebaja que usamos en la propiedad Descuento en

ArticuloRebajado , noO es el de ArticuloRebajado , Sino el de ArticuloEnExposicion , que es el

gue realmente se esta ejecutando en ese momento por la ligadura dinamica.

Si has tenido algun problema, puedes descargar el codigo del ejemplo anterior del siguiente enlace:

herencia_articuloexposicion.cs

25/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u15_poo_roles_herencia/assets/ejemplos/herencia_articuloexposicion_ejemplo.cs

Utilidad del polimorfismo de datos (sustitucién) y el enlace
dinamico

En ocasiones el software cambia y se afiaden nuevas especificaciones, como pudieran ser nuevos
tipos de articulos en la jerarquia. Con el polimorfismo de datos, podremos adaptarnos a futuros

cambios (Nuevas formas de un objeto), sin realizar cambios traumaticos y costosos en nuestros

objetos ni en nuestra implementacion.

Ejemplo:

Supongamos que queremos modelar una clase TicketCompra que me permita afiadir articulos al

mismo. Ademas, vamos a afadir un método para mostrar el ticket y una propiedad calculada que
me devuelva el total de la compra. Ademas, vamos a afianir un método virtual

virtual stting ATextoLineaTicket() €n la clase Articulo que nos permita mostrar una linea del
ticket con el articulo y la invalidaremos en todas las subclases.

Un posible diseio simplificado en UML para expresar esto podria ser ...

@ TicketCompra

. «entity»
+TicketCompra() __contiene Articulo
+\GetTotal() : double 1.*) - - -
+Afiade(in a : Articulo):TicketCompra +ATextoLineaTicket() : string {virtual} ‘

+ATexto() : string

Software entities (classes, modules,
functions, etc.) should be open for

extension, but closed for
modification. ,’

- Bertrand Mayer.

26/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

Lo primero seria la implementacién de ATextoLineaTicket() en toda la jerarquia de articulos, para
que cada uno de ellos muestre su informacion de forma adecuada.

public class Articulo

{
// ... cédigo omitido para abreviar.
public virtual string ATextoLineaTicket() => $"""
{Nombre,-20} {Precio,26:F2}€
"
}

public class ArticuloRebajado : Articulo

{
// ... codigo omitido para abreviar.
public override string ATextolLineaTicket() => $"""
{Nombre, -20} {PrecioBase,8:F2}€ con {PorcentajeRebaja:D2}% {Precio,8:F2}€
"
}

public class ArticuloReacondicionado : Articulo

{
// ... codigo omitido para abreviar.
// Como articulo pero anadiendo un R
public override string ATextoLineaTicket() => $"""
{base.ATextoLineaTicket()} R ({Descripcion})
"
}

public class ArticuloEnExposicion : ArticuloRebajado

{
// ... codigo omitido para abreviar.
// Como articulo rfebajado pero anadiendo un E
public override string ATextoLineaTicket() => $"""
{base.ATextoLineaTicket()} R ({Descripcion})
"y
}

27/39 Programacion 1° DAM Unidad 15 IES Doctor Balmis

Una propuesta de implementacion de la clase TicketCompra podria ser:

public class TicketCompra

{
// Puesto que no definimos constructor y dejamos el de por defecto,
// inicializamos la lista de articulos directamente.
private List<Articulo> Articulos { get; } = [1];
public double Total
{
get
{
double total = od;
foreach (Articulo a in Articulos)
total += a.Precio;
return total;
}
}
// Definimos un interfaz fluido como los que utiliza la clase StringBuilder.
public TicketCompra Afade(Articulo a)
{
Articulos.Add(a);
return this;
}
public string ATexto()
{
StringBuilder ticket = new();
foreach (Articulo a in Articulos)
ticket.AppendLine(a.ATextoLineaTicket());
ticket.AppendLine(new string('-', 70))
.AppendLine($"Total: {Total,41:F2}€");
return ticket.ToString();
}
}

28/39 Programacion 1° DAM Unidad 15 IES Doctor Balmis

Si implementamos el siguiente programa principal de test...

public static void Main()

{
TicketCompra ticket = new();
ticket.AfRade(new Articulo(
id: "Aee1l",
nombre: "Camiseta",
precio: 19.99))
.Anade(new ArticuloRebajado(
id: "Aee2",
nombre: "Pantalén",
precio: 39.99,
porcentajeRebaja: 20))
.Afade(new ArticuloReacondicionado(
id: "Ae@3",
nombre: "Zapatillas",
precio: 59.99,
fechaReacondicionamiento: new (2023, 1, 15),
empresa: "Reacondicionados S.A.",
descripcion: "Con caja original"))
.Anade(new ArticuloEnExposicion(
id: "Aee4",
nombre: "Chaqueta",
precio: 89.99,
inicioExposicion: new (2025, 2, 1)))
Console.WritelLine(ticket.ATexto());
}

Mostrara por consola el siguiente ticket de compra:

Camiseta 19,997
Pantalodn 39,997 con 20% 31,997
Zapatillas 59,997 R (Con caja original)

Chaqueta 89,997 con 75% 22,507 E (desde 01/02/2025)

134,477

29/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

Si nos fijamos aunque el ticket solo maneje articulos genéricos, ha sabido calcular
correctamente a través del enlace dinamico como hay que mostrar la informacion de cada uno de
ellos a través del método ATextoLineaTicket() . Ademas, de csaber calcular el Total sumando la
propiedad Precio de cada uno de los articulos.

Si ahora anadiésemos otro tipo de articulo
como por ejemplo articulos defectuosos, que

funcionan bien y no han sido

reacondicionados, pero tienen algun defecto ‘©Am°”'°Reba‘ad°
menor, como una rozadura, pixel muerto, etc. y
por tanto se les aplica una rebaja, pero
también nos interesa guardar informacion del @ ArticuloDefectuoso
defecto. -defecto : string {readOnly}
+ArticuloDefectuoso(in id : string, ..., in defecto : string)

A la hora de modelizar podemos decir que un +GetDefecto() : string

i i A+ATexto() : string
articulo defectuoso - es un - articulo A+ATextoLineaTicket() : string

rebajado y modelizarlo como la propuesta del
diagrama adjunto.

Donde una posible implementacion podria ser ...

public class ArticuloDefectuoso : ArticuloRebajado

{
public string Defecto { get; }
public ArticuloDefectuoso(
string id,
string nombre,
in double precio,
in ushort porcentajeRebaja,
string defecto) : base(id, nombre, precio, porcentajeRebaja)
{
Defecto = defecto;
}
public override string ATexto() => $"""
{base.ATexto()}
Defecto: {Defecto}
public override string ATextoLineaTicket() => $"""
{base.ATextoLineaTicket()} D ({Defecto})
"
}

30/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

Importante

Si ahora anadimos un nuevo articulo de este tipo a nuestro ticket. No tendremos que
modificar nuestra clase TicketCompra Yy esto sera gracias al polimorfismo de datos.

public static void Main()

{

TicketCompra ticket = new();

.Afade(new ArticuloDefectuoso(
id: "Aees",
nombre: "Gorra",
precio: 15.99,
porcentajeRebaja: 10,
defecto: "Pequefio rasgufio"));
Console.WriteLine(ticket.ATexto());

Mostrara por consola el ticket de compra modificado:

Camiseta 19,997
Pantalon 39,997 con 20% 31,997
Zapatillas 59,997 R (Con caja original)
Chaqueta 89,997 con 75% 22,507 E (desde 01/02/2025)

15,997 con 10% 14,397 D (Pequeiio rasgufio)

148,867

Puedes descargar el cédigo del ejemplo anterior del siguiente enlace:

herencia_ticket_articulos.cs

31/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u15_poo_roles_herencia/assets/ejemplos/herencia_ticket_articulos_ejemplo.cs

El caso especial de la clase object en CSharp

La Clase object definida en System, es una clase especial de la cual heredan de forma implicita
todos los objetos, tanto valor como refrencia, creados en C#. Por tanto, podemos decir que un objeto
de la clase object puede sustituir a cualquier objeto definido por nosotros o en las BCL.

Historicamente, en los principios de C#, esta clase se utilizaba para tratar objetos de forma genérica
como en colecciones, antes de que el lenguaje implementara la genericidad a través de genéricos o
clases parametrizadas, cuyo uso es mas recomendable. Ademas, podemos encontrar esta clase en
otros lenguajes como Java.

Define una serie de métodos invalidables o virtuales que podremos redefinir en cualquiera de las
clases que nosotros creemos. Entre ellos podemos destacar:

object.ToString()

El método public virtual string ToString() , es llamado automaticamente cada vez que un objeto
se intenta formatear como cadena y equivaldria en cierta manera al método string ATexto() que
hemos definido en nuestras clases de ejemplo.

En el fondo, aunque no se especifique, Articulo hereda implicitamente de object y por tanto las
clases Articulo, ArticuloRebajado , ArticuloReacondicionado , etc. heredan el método ToString() y
ademas pueden invalidarlo.

De hecho si no lo invalidamos mostrara por consola el nombre completo de la clase, que en el
caso caso del siguiente ejemplo seria EjemploHerencia.Articulo:

. L Mostrara por consola:
namespace EjemploHerencia;

public class Articulo { ... }

EjemploHerencia.Articulo

public class Program

{

public static void Main()

{
Articulo a = new (
id: "Aee1",
nombre: "Camiseta",
precio: 19.99);
Console.WriteLine(a);

32/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

Si ahora sustituimos el nombre del método | ©obest |

ATexto() por el método ToString() toda la | +ToString() : string tvinua) |

jerarquia de articulos podra mostrar su
informacion de forma adecuada y podremos @ Ao
evitar tener que llamar a ATexto() cada vez que ~+ToString() : string |

queramos mostrar un articulo. Pues

Console.WriteLine(a) llamara automaticamente

‘@ArticuloRebajado ‘ ‘@Ar’(iculoReacondicionado ‘

a ToString() .

A+ToString() : string ‘ A+ToString() : string ‘

Ten en cuenta que al ser un método de object

no debemos declararlo como virtual en la clase ‘@ ArticquEnExposicion‘ ‘@ ArticuloDefectuoso‘

Articulo , sino aplicar el modificador override | M+ToString(): string | | ~+ToString() : string |

para invalidarlo, ya que ToString() ya esta

Ahora el Main mostrara por consola:

definido en la clase object .

public class Articulo Id: A001
{ Nombre: Camiseta
Precio: 19,99?
public override string ToString() => $"""

Id: {Id}

Nombre: {Nombre}

Precio: {Precio:F2}€

5

}

object.Equals() y object.GetHashCode()

Los métodos virtual bool Equals(object obj) Y virtual int GetHashCode() deben implementarse
siempre juntos y se usan para comparar el objeto sobre el que se aplica con cualquier otro que se le
pase como parametro en profundidad y para obtener un valor de hash unico del objeto,
respectivamente.

Ambos metodos se imvalidan de forma automatica en aquellas clases que tienen en su definicién
la palabra reservada record , esto es, se comportan como Vvalue Objects .

Veamos un ejemplo en el cual los invalidaremos en la clase Articulo .

Una opcién es comparar propiedad por propiedad no calculada. Pero en este caso, como la propiedad
Id es Unica para cada articulo, podemos comparar directamente su valor. Ademas, como Id es de
tipo string , podemos usar el Equals de string para comparar su valor puesto que ya esta
implementado en la clase string .

33/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

La funcion GetHashCode() nos devolvera un valor de hash unico para el objeto. En este caso,
usaremos la funcidn HashCode.Combine() para combinar los valores de las propiedades que
consideremos relevantes para la comparacion, como Id, Precio y Nombre . También podriamos usar
el método GetHashCode() de string para obtener un valor de hash unico para la propiedad 1Id por

ejemplo 1d.GetHashCode() .

class Articulo

{
// ... codigo omitido para abreviar.
public override bool Equals(object? obj) => obj is Articulo a && a.Id.Equals(Id);
public override int GetHashCode() => HashCode.Combine(Id, Precio, Nombre);

}

En las subclases, como ArticuloRebajado , ArticuloReacondicionado O ArticuloEnExposicion ,
podemos invalidar estos métodos para que también se comparen las propiedades especificas de cada
subclase, pero en este caso no es necesario, ya que al heredar de Articulo se ejecutaria el método
Equals() de la superclase y se compararian por 1d .

public static void Main() En el ejemplo anterior, al comparar arl y ad2,

{ ambos tienen el mismo 1d Yy por tanto el
ArticuloRebajado arl = new(resultado de la comparacion serd true aunque
id: "Aee2", . .
nombre: *Pantalén”, son de tipos diferentes.
precio: 39.99,
porcentajeRebaja: 20);
ArticuloDefectuoso ad2 = new(
id: "Aee2",
nombre: "Pantalodn",
precio: 39.99,
porcentajeRebaja: 20,
defecto: "Cremallera rota");

Console.WritelLine(arl.Equals(ad2));

object.GetType()

El métodos virtual Type GetType() es un método que nos permite obtener el tipo del objeto en
tiempo de ejecucién. Este método es muy util cuando queremos saber el tipo real de un objeto,
especialmente cuando trabajamos con herencia y polimorfismo. Por ejemplo ...

Articulo a = new ArticuloRebajado("A@02", "Pantaldén", 39.99, 20);
Console.WritelLine(a.GetType().Name); // Mostrard "ArticuloRebajado"

34/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

® Caso de estudio modelo de examen:

Vamos a aplicar un poco todos los conceptos que hemos visto hasta ahora, a través de un caso
de estudio 'simplificado'.

Vamos a suponer que el propietario de una campa de aparcamiento vehiculos a largo plazo y
que decidimos instalar un sistema automatizado de entrada y salida de vehiculos. Para ello,
decide poner un sistema de camaras y una IA que trata de identificar informacion de los vehiculos
que entran y salen.

El sistema es capaz de identificar de un vehiculo al pasar, la siguiente informacién comun que

podemos modelar a través de la clase Vehiculo con las siguientes propiedades publicas de
solo lectura:

e Matricula que sera un identificador unico con formato ' bbbb LLL ' donde D sera un digito
de 0 a9y L una letra mayuscula excluidas las vocales. La modelaremos a través de un
Value Object que la guaradara como una cadena de texto.

e Color que sera un conjunto de valores con las tonalidades basicas. Devolviendo la A la
predominante en el vehiculo. Estas podran ser uno de los siguiente valores de un tipo
enumerado:

public enum Color

{

Blanco, Morado, Cian, Azul, Rojo, Verde, Negro, Naranja, Gris

Los tipos enumerados se te proporcionaran junto al programa principal y deben declararse
fuera del ambito de esta clase para evitar un conflicto de nombres con las propiedades
correspondientes.

e Marca que sera un conjunto de valores de logos que la IA es capaz de identificar en las
imagenes como un tipo enumerado de entre los siguientes:

public enum Marca

{
DESCONOCIDA, BMW, SEAT, AUDI, RENAULT, MAN, DAF, CITROEN, TOYOTA, SUZUKI, YAMAHA, MERCEDES, PEGA:

e Ocupantes que la IA cree que hay en el interior del vehiculo.

e Tipo propiedad calculada e invalidable, que nos devolvera como texto el tipo de
vehiculo que ha identificado la IA dentro de una determinada categoria. Si la IAno ha
podido identificar la categoria del vehiculo, devolvera el valor "Sinldentificar".

35/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

Ademas, esta clase inavalidara los métodos Equals(object obj) , int GetHashCode() Yy

string ToString() de la clase object De tal manera que muesa la iformacion del vehiculo en una
sola linea de texto.

public override string ToString() => $"""
{GetType().Name} {Marca} {Tipo} {Matricula} color {Color} y {Ocupantes} ocupantes.

B

Fijate que hemos usado el método GetType().Name para mostrar el nombre de la clase real del
objeto. Ademas, Tipo tendra el valor "Sinldentificar”, si no es invalidado en las subclases.

La IA, de momento, sabe clasificar muchos vehiculos en estas tres categorias: Coche , Moto
y Camién . Las cuales vamos a modelizar a través de herencia. Cada categoria, como hemos
comentado, tendra a su vez diferentes tipos a través de un conjunto de valores enumerados.

o Coche: Podra tomar uno de los valores del siguiente conjunto de valores enumrados:

public enum TipoCoche

{

SinIdentificar, Berlina, Coupe, Sedan, Cabrio, TodoTerreno, MonoVolumen, Crossover

¢ Moto: Podra tomar uno de los valores del siguiente conjunto de valores enumerados:

public enum TipoMoto

{

SinIdentificar, Scooter, Motocross, Naked, Trail, Supermotard

o Camion: Podra tomar uno de los valores del siguiente conjunto de valores enumerados:

public enum TipoCamion

{

SinIdentificar, Articulado, Frigorifico, Cisterna, Trailer

Todas las subclases de vehiculo invalidaran la propiedad Tipo para devolver el tipo de vehiculo
correspondiente como texto. De tal manera que guardaran el valor enumerado de tipo como
campo privado. Ademas, los camiones, guaradran dos propiedades adicionales identificables
por la IA que son el niumero de ejes y carga maxima (MMA) en kilos. Por tanto, la subclase
camion invalidara el método Tostring() para mostrar esta informacion adicional intercalaandola

entre el nombre de la categoria y la marca del camion.

Plaza n: Camion 2 ejes con MMA de 6000 Kg DAF Frigorifico 8798 JWR color Blanco y 1 ocupa

36/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

¢ Se te ocurre como hacerlo reutilizando el ToString() de vehiculo y no repitiendo el

cédigo?

Por ultimo, nuestra |IA, pasara la generalizacion de Vvehiculo , con la informacion que ha podido
recolectar, a un objeto campavehiculos que tendra una capacidad de plazas determinada (para
nuestro caso de estudio 5 vehiculos independientemente de su tamafio para simplificar). Estas

plazas se numerarande la1 ala 5.
La clase campavehiculos tendra pues los siguientes miembros:
Privados:

e List<Vehiculo?> Plazas : Propiedad de solo lectura que contiene la lista de vehiculos que se
encuentran aparcados en la campa. Si en una plaza no hay vehiculo, se guardara un null .

e int? Plazavacia : Propiedad calculada que me retornara el primer indice vacio en un array
de vehiculos o null si no lo encuentra ninguno.

e int PlazasOcupadas : Propiedad calculada que me retornara el niumero de plazas ocupadas

en la campa.
e int? Busca(Vehiculo v) : Método que me retornara el indice en la lista de vehiculos que

ocupa el vehiculo v o null si no lo encuentra.

6 Idea

Recuerda que el tipo int? puede valer null, por lo que si tenemos int? dato,
podemos usar las propiedades HasValue y Value para comprobar sitiene un valory
obtenerlo, respectivamente. Por ejemplo...

int valor = (dato.HasValue) ? dato.Value : 9;

Publicos:

o Constructor que recibe un entero con la capacidad de la campa (numero de plazas) y que
inicializara la propiedad Plazas a dicha dimension con null en todas sus plazas pues aun
no hay vehiculos aparcados.

e (bool puedeEntrar, int plaza, string? problema) PuedeEntrar(Vehiculo v) : Método que me
retornara un tupla con un booleano que indica si el vehiculo puede entrar en la campa, el
numero de plaza donde se podria aparcar y un mensaje de aviso en caso de que no pueda
entrar. Retornos posibles...

o Sila campa esta llena, retornara false , 0 y el mensaje ' Aparcamiento Lleno .
o Sila matricula del vehiculo ya se encuentra registrada, retornara false , 0 y el mensaje

'Ya se encuentra en el aparcamiento el vehiculo DDDD LL '

37/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

o Sila campa no esta llena y la matricula no se encuentra registrada, retornara true , el
numero de plaza donde se podria aparcar (1 a Numero Plazas) y null como mensaje.

e void Entra(Vehiculo v) : Método que recibe un vehiculo y lo aparca en la plaza indicada por
el método PuedeEntrar(Vehiculo v) . Si no se puede aparcar, lanzara una asercion con el
problema indicado por dicho método.

e (bool puedeSalir, int plaza, string? problema) PuedeSalir(Vehiculo v) : Método que me
retornara un tupla con un booleano que indica si el vehiculo puede salir de la campa, el
numero de plaza donde se encuentra aparcado y un mensaje de aviso en caso de que no
pueda salir. Retornos posibles:

o Sila campa esta vacia, retornara false, 0y el mensaje ' Aparcamiento vacio .

o Sila matricula del vehiculo no se encuentra registrada, retornara false , 0 y el mensaje
"No se registrdé La entrada del vehiculo DDDD LL '

o Sila matricula del vehiculo se encuentra registrada, retornara true , el nUmero de plaza
donde se encuentra aparcado (1 a Numero Plazas) y null como mensaje.

e void Sale(Vehiculo v) : Método que recibe un vehiculo y lo saca de la plaza indicada por el
método PuedeSalir(Vehiculo v) . Si no se puede sacar, lanzara una asercién con el
problema indicado por dicho método.

e string ToString() imvalidado para que nuestre las plazas y los datos que se recibieron de la
IA de cada vehiculo en el siguiente formato:

Plaza n: <datos del vehiculo devueltos por ToString()>

Plaza n: Vvacia

Purdes decargar, el cédigo con el programa principal que simulara la ejecucion de la IA crando
instancias de vehiculo para probar tus clases y métodos: campa_vehiculos.cs

La ejecucion del programa principal, con la siguiente entrada de vehiculos, deberia producir la
siguiente salida por consola:

38/39 Programacién 1° DAM Unidad 15 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u15_poo_roles_herencia/assets/ejemplos/campa_vehiculos_test_ejemplo.cs

Entrando Coche Coupe 1020 DRG

Entrando Camion Frigorifico 8798 JwR
Entrando Coche TodoTerreno 7643 LRF

Entrando Coche Coupe 1020 DRG

Entrando Vehiculo SinIdentificar 0000 DGP ->
Entrando Moto Naked 1111 GRF ->
Entrando Coche Coupe 1020 DRG ->
Saliendo Camion Frigorifico 8798 JWR ->
Saliendo Camion Frigorifico 8798 JwR ->
Saliendo Moto Naked 1111 GRF

Entrando Moto Naked 1111 GRF

Entrando Camion SinIdentificar 8798 JwR
Veiculos en el aparcamiento...

Plaza
Plaza
Plaza
Plaza
Plaza

Aparcado
Aparcado
Aparcado
Aparcado
Aparcado

en
en
en
en
en

la plaza
Ta plaza
Ta plaza
la plaza
Ta plaza

Aparcamiento 1lleno
Aparcamiento 1leno
No se registrd la entrada del vehiculo 8798
No se registro Ta entrada del vehiculo 8798
No se registrdé la entrada del vehiculo 1111
Aparcamiento 1leno
Aparcamiento 1leno

Coche SEAT Coupe 1020 DRG color Azul y 3 ocupantes.
Camion 2 ejes con MMA de 6000 Kg DAF Frigorifico 8798 JWR color Blanco y 1 ocups
Coche BMW TodoTerreno 7643 LRF color Rojo y 4 ocupantes.
Coche SEAT Coupe 1020 DRG color Azul y 3 ocupantes.
: Vehiculo DESCONOCIDA SinIdentificar 0000 DGP color Negro y 2 ocupantes.

Nota

Intenta realizar primero por tu cuenta la implementacién de la especificacion anterior.

Posteriormente comparala con la propueta de solucién que encontraras en el siguiente

enlace: campa_vehiculos_solucion.cs

39/39

Programacién 1° DAM Unidad 15 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u15_poo_roles_herencia/assets/ejemplos/campa_vehiculos_ejemplo.cs

