
Unidad 15
Descargar estos apunte en pdf o html

Índice
Índice
Herencia

Tipos de Herencia
Herencia Simple
Herencia Múltiple

Implementando la herencia en CSharp
Palabra reservada base

Ocultación e Invalidación
Ocultación o reemplazo en CSharp
Invalidación o refinamiento en CSharp
Combinando Invalidación y Ocultación

Polimorfismo de datos o inclusión
Principio de sustitución de Liskov (Upcasting)
Downcasting

Formas de realizar el Downcasting
Ligadura Dinámica

Ejemplo de uso del Enlace Dinámico
Utilidad del polimorfismo de datos (sustitución) y el enlace dinámico
El caso especial de la clase object en CSharp

object.ToString()
object.Equals() y object.GetHashCode()
object.GetType()

1/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u15_poo_roles_herencia/u15_poo_roles_herencia.pdf
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u15_poo_roles_herencia/u15_poo_roles_herencia.html

Herencia
Es una de las características principales de la POO. Formalmente podemos definirla como....

Un tipo de relación entre clases, en la cual una clase denominada subclase (o también clase hija),
comparte la estructura y/o comportamiento definidos en una o más clases, llamadas superclases (o
también clase padre, clase base).
En otras palabras, una subclase añade sus propios atributos y métodos a los de la superclase, por lo
que generalmente es mayor que esta y representará a un grupo menor de objetos.

De una forma menos formal podemos resaltar que:

1. La subclase es una concreción de la superclase que representará una generalización.
2. Representará el tipo de relación 'Es un/a'. Ej. 'Un coche es un vehículo.'
3. La herencia nos servirá para reutilizar código y por tanto no repetir funcionalidades.

En UML representaremos el rol a través de una flecha de punta hueca de la subclase a la superclase y
se podrán producir relaciones transitivas.

A

B

C

Interpretaciones del diagrama:

B hereda de A
B es una concreción A
A es una generalización B
A es la superclase y B la subclase
C hereda de B y A
B y C son subclases de A

Tipos de Herencia

Herencia Simple

Se dará cuando la subclase hereda de una sola superclase y será la única que nosotros utilizaremos
en C#.

Por ejemplo, supongamos que tenemos la superclase
 Articulo con un id , precio y nombre . Una subclase de
 Articulo denominada ArticuloRebajado que además,

2/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

añade al articulo un campo con el porcentaje de rebaja,
denominado porcentajeRebaja . Claramente la relación se
entiende como herencia pues: "Un ArticuloRebajado es
un Articulo ".

La instancia de un objeto en memoria de
 ArticuloRebajado además de tener una propiedad
 porcentajeRebaja , tendrá las propiedades precio y
 nombre por ser también un Articulo y todos ellas
definirán su estado.

Articulo

#precio : double
#nombre : string

ArticuloRebajado

-porcentajeRebaja : ushort

Herencia Múltiple

Se dará cuando una subclase hereda características de varias superclases. Tiene más
desventajas que ventajas. Por eso C#, Kotlin Java NO la permiten. Aunque otros lenguajes como
Python o C++ sí.

Entre las desventajas que hace que C# no la permita podemos destacar:

Menor velocidad de ejecución.
Herencia repetida (Transitividad).
Por ejemplo en el diagram ProfesorUniversitario hereda 2 veces o a través de dos clases
diferentes los atributos de Persona .

Persona

Profesor Investigador

ProfesorUniversitario

Diseños más complejos y más difíciles de aprender y utilizar por el programador. Además,
siempre podremos rediseñar utilizando herencia simple o incluso composición.
Colisiones de Nombres
En el ejemplo la subclase Multimedia hereda campos con el mismo nombre de las clases base
 Sonido y Gráficos .
Cuando hagamos referencia al campo escala en Multimedia .
¿Cómo podemos saber si estamos haciendo referencia a la escala de Sonido o la de
 Gráficos ?

3/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Sonido

#escala : TipoEscala
#resolución : TipoResolución

Gráficos

#escala : TipoEscala
#resolución : TipoResolución

Multimedia

Implementando la herencia en CSharp
Separaremos el nombre de la subclase y la superclase por el carácter ':' como en C++

class <NombreSubClase> : <NombreSuperClase>

{

 // Definiremos solo las concreciones de la subclase respecto la superclase

}

Partamos del ejemplo que hemos visto en la herencia simple, expresado en el siguiente diagrama de
clases UML...

«entity»
Articulo

-id : int {id}
-precio : double
-nombre : string

+Articulo(in id : int, in nombre : string, in precio : double)
+GetId() : string
#GetNombre() : string
-SetNombre(in nombre : string) : void
#GetPrecio() : double
-SetPrecio(in precio : double) : void
+ATexto() : string

ArticuloRebajado

-porcentajeRebaja : ushort

+ArticuloRebajado(in id : int, in nombre : string, in precio : double, in porcentajeRebaja : ushort)
+GetPorcentajeRebaja() : ushort
-SetPorcentajeRebaja(in porcentajeRebaja : ushort) : void
-/GetDescuento() : double
+/GetPrecioBase() : double
+/GetPrecioRebajado() : double
+ATextoRebajado() : string

4/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Fíjate que en el diagrama de clases, aparece el símbolo # . Es un modificador que solo tiene sentido
aplicarlo a una superclase. Equivaldrá a indicar el modificador de acceso protected y significará que
el campo, propiedad o el método al que modifica, no puede ser accedido desde fuera de la clase
como en el caso de private , pero sí desde las subclases de la misma.

En nuestro diagrama se lo estaremos aplicando al get de la propiedades Nombre y Precio . De
momento hemos sido restrictivo en el acceso a las subclases y si vemos que necesitamos acceder a
un campo o propiedad desde fuera, lo cambiaremos a public .

Veamos cómo quedará la implementación de la superclase Articulo :

public class Articulo

{

 // Propiedade de sólo lectura por ser un Id y público el get por +GetId(): string

 public string Id { get; }

 // Propiedades privadas de modificación y protegidas para acceso

 // y así solo se pueda acceder desde la clase y sus subclases

 protected double Precio { get; private set; }

 public Articulo(

 string id,

 string nombre,

 double precio)

 {

 Id = id;

 Nombre = nombre;

 Precio = precio;

 }

 public string ATexto() => $"""

 Id: {Id}

 Nombre: {Nombre}

 Precio: {Precio:F2}€

 """;

}

5/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Veamos cómo quedará la implementación de la subclase ArticuloRebajado :

public class ArticuloRebajado : Articulo

{

 public ushort PorcentajeRebaja { get; private set; }

 private double Descuento => base.Precio * PorcentajeRebaja / 100d;

 public double PrecioRebajado => base.Precio - Descuento;

 public double PrecioBase => base.Precio;

 public ArticuloRebajado(

 string id,

 string nombre,

 double precio,

 ushort porcentajeRebaja)

 // Llamada al constructor de la clase base encargado

 // de 'construir' la parte de Articulo del objeto

 : base(id, nombre, precio)

 {

 PorcentajeRebaja = porcentajeRebaja;

 }

 public string ATextoRebajado() => $"""

 Id: {base.Id}

 Nombre: {base.Nombre}

 Rebaja: {PorcentajeRebaja}%

 Antes: {base.Precio:F2}€

 Ahora: {PrecioRebajado:F2}€

 """;

}

Podremos acceder desde la subclase a las propiedades públicas y protegidas de la clase base o
superclase como Id , Precio y Nombre . Fíjate que hemos usado la palabra clave base para
referirnos a la parte de Articulo del objeto ArticuloRebajado y así poder acceder a sus propiedades
protegidas y públicas. Aunque en este caso, no sería en este caso necesario usarla pues no hay
ambigüedad, es una buena práctica para evitar errores en futuras modificaciones.

6/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Vamos a implementar un simple programa principal de prueba...

static class EjemploHerencia

{

 static void Main()

 {

 Articulo a = new (

 id: "A001",

 nombre: "Polo Ralph Lauren",

 precio: 75d);

 Console.WriteLine(new string('-', 20));

 Console.WriteLine(a.ATexto());

 ArticuloRebajado ar = new (

 id: "A002",

 nombre: "Polo Fred Perry",

 precio: 70d,

 porcentajeRebaja: 15);

 Console.WriteLine(new string('-', 20));

 Console.WriteLine(ar.ATexto());

 Console.WriteLine();

 Console.WriteLine(ar.ATextoRebajado());

 Console.WriteLine(new string('-', 20));

 }

}

Mostrará por consola:

Id: A001

Nombre: Polo Ralph Lauren

Precio: 75,00?

Id: A002

Nombre: Polo Fred Perry

Precio: 70,00?

Id: A002

Nombre: Polo Fred Perry

Rebaja: 15%

Antes: 70,00?

Ahora: 59,50?

Puedes descargar el código de ejemplo de el
siguiente enlace: herencia_articulo1.cs

Una aproximación a cómo sería el objeto instanciado de una subclase en memoria, sería la siguiente:

a

 a : Articulo

 nombre = "Polo Ralph Lauren"

 precio = 75.00

ar

ar : ArticuloRebajado

 base : Articulo

 nombre = "Polo Fred Perry"

 precio = 70.00

porcentajeRebaja = 15

base

Recuerda que, podemos considerar la parte de la instancia de ArticuloRebajado resaltada, es una
instancia de Articulo que es donde se guardan las propiedades Id , Nombre y Precio y la parte de
objeto que corresponde a un ArticuloRebajado guarda solo la propiedad PorcentajeRebaja más las
otras propiedades calculadas.

7/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u15_poo_roles_herencia/assets/ejemplos/herencia_articulo_ejemplo.cs

Palabra reservada base

Vamos a ahondar un poco más en la palabra reservada base que hemos utilizado en el constructor de
la subclase ArticuloRebajado y para acceder a las propiedades de la superclase Articulo .

Si nos fijamos en el constructor de ArticuloRebajado solo se encarga de inicializar y crear las
propiedades específicos de la subclase, para crear los de la clase, hemos invocado a un constructor
de la clase base, utilizando la palabra reservada :base(<parámetrosBase>) a continuación de la
declaración del constructor de la subclase.

Si hay un constructor por defecto en la superclase no haría falta poner nada, puesto que
automáticamente seria llamado al llamar al de la subclase.

Al igual que this era una referencia implícita al objeto de la propia clase, en las subclases tenemos la
palabra reservada base que también es una referencia implícita a un objeto de la superclase, para la
subclase actual como se apreciaba en el diagrama anterior.

Nota

Ya veremos más adelante que será imprescindible su uso en los casos en los que en la subclase
y en la superclase tengamos un método con el mismo nombre.



"

"

Object-oriented never made it outside
of Xerox PARC; only the term did.

- Alan Kay.

8/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Ocultación e Invalidación
Si te has fijado, en Articulo hemos llamado a la propiedad Precio y en ArticuloRebajado hemos
llamado a la propiedad PrecioRebajado .Esto lo hemos hecho para que no se solaparan los
identificadores de las propiedades (recuerda que la subclase puede ver las propiedades de la
superclase) y podríamos tener problemas de ambigüedad.

Sin embargo, en el fondo es una redundancia, porque si a un objeto
 ArticuloRebajado articuloRebajado; accedo a la propiedad articuloRebajado.Precio; ya se que
estoy obteniendo el precio rebajado o debería estar obteniendo dicho precio.

Por tanto, si usamos nombres repetidos en ambas clases, tendríamos propiedades o métodos con
identificadores idénticos y posiblemente recibamos algún tipo de aviso del compilador. Pero ...

¿Se puede hacer esto?
¿Cómo resolvemos la ambigüedad que se produce?

En la POO tradicional hay dos estrategias posibles:

1. Reemplazo: Se sustituye completamente la implementación del método o propiedad heredada
manteniendo la signatura o tipo.
Comúnmente se le conoce como Ocultación (hiding)

2. Refinamiento: Se añade nueva funcionalidad al comportamiento heredado. Es la más común y
también se le conoce como Invalidación (overriding)

"

"

The most fundamental problem in
software development is complexity.
There is only one basic way of dealing
with complexity: divide and conquer.

- Bjarne Stroustrup.

9/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Ocultación o reemplazo en CSharp

Será la estrategia que aplica por defecto C#, aunque como hemos comentado, el compilador nos
avisará por si nos hemos 'despistado' y realmente queríamos hacer otra cosa. Por ejemplo, VSCode
generará el siguiente mensaje.

⚠️'ArticuloRebajado.Precio' oculta el miembro heredado 'Articulo.Precio'.

Use la palabra clave new si su intención era ocultarlo. (CS0108)

Puesto que con el reemplazo lo que buscamos es definir una nueva funcionalidad para una operación
heredada, antepondremos la palabra reservada new a la operación o método de la clase hija o
subclase con la misma signatura que queremos ocultar en la clase base o superclase.

Supongamos la misma relación de herencia anterior donde ahora queremos hacer una ocultación de
los métodos GetPrecio y ATexto .

ArticuloRebajado

-porcentajeRebaja : ushort

+ArticuloRebajado(in id : int, in nombre : string, in precio : double, in porcentajeRebaja : ushort)
+GetPorcentajeRebaja() : ushort
-SetPorcentajeRebaja(in porcentajeRebaja : ushort) : void
-/GetDescuento() : double
+/GetPrecioBase() : double
+ /GetPrecio() : double
+ ATexto() : string

La implementación en C# quedaría como sigue...

Importante ✋

Dentro del ámbito o alcance de definición de ArticuloRebajado , base.Precio me devuelve el
precio del original del artículo (sin descuento) y this.Precio o simplemente Precio me
devuelve el precio rebajado (con descuento).



10/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/compiler-messages/cs0108
https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/compiler-messages/cs0108

La nueva implementación de ArticuloRebajado quedaría como sigue:

public class ArticuloRebajado : Articulo

{

 public ushort PorcentajeRebaja { get; private set; }

 private double Descuento => base.Precio * PorcentajeRebaja / 100d;

 // Añado el modificador new para confirmar que quiero hacer una ocultación.

 public new double Precio => base.Precio - Descuento;

 public double PrecioBase => base.Precio;

 public ArticuloRebajado(

 string id,

 string nombre,

 double precio,

 ushort porcentajeRebaja)

 : base(id, nombre, precio)

 {

 PorcentajeRebaja = porcentajeRebaja;

 }

 // Añado el modificador new para confirmar que quiero hacer una ocultación.

 public new string ATexto() => $"""

 Id: {base.Id}

 Nombre: {base.Nombre}

 Rebaja: {PorcentajeRebaja}%

 Antes: {base.Precio:F2}€

 Ahora: {this.Precio:F2}€

 """;

}

4

6

19

23

24

Cuidado

Si en lugar de ...

public new double Precio => base.Precio - Descuento;

no usáramos la palabra base por error ...

public new double Precio => Precio - Descuento;

Estaríamos llamando a al get de Precio para calcular Precio y por tanto entraríamos en un
bucle infinito que provocaría un desbordamiento de pila (stack overflow).



11/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Invalidación o refinamiento en CSharp

Será la opción que tomaremos en el 99% de los casos, pues es más flexible que la ocultación y me
permitirá realizar los enlaces dinámicos que veremos mas adelante.

En ella, normalmente haremos lo que hacía la clase padre, más nueva funcionalidad y para ello,
'marcaremos' como métodos 'virtuales' a los métodos 'invalidables' en la superclase que sean
públicos o protegidos. Para ello utilizaremos la palabra reservada virtual precediendo a la
declaración del método invalidable y la palabra override precediendo la declaración de un
método en la subclase que invalida a uno invalidable o virtual en la superclase.

✋ Importante: A diferencia de la ocultación, ambos métodos deberán tener la misma
accesibilidad.

Para representar lo que queremos hacer. En 'nuestros' diagramas de clases UML...

Pondremos el modificador {virtual} al final nombre del método invalidable. También, marcaremos en
'cursiva' aquellos métodos virtuales o virtuales puros (que trataremos más adelante) ya que aunque
dejó de usarse a partir de la versión 2.5 de UML, sigue siendo una notación ampliamente usada.

Aquellos métodos que invaliden un método en su superclase los marcaremos con el carácter ̂

precediendo al nombre del método, para tenerlo claro. Si no ponemos nada, supondremos por
convenio que estamos haciendo una ocultación.

«entity»
Articulo

-id : int {id}
-precio : double
-nombre : string

+Articulo(in id : int, in nombre : string, in precio : double)
+GetId() : string
#GetNombre() : string
-SetNombre(in nombre : string) : void
+ GetPrecio() : double { virtual }
- SetPrecio(in precio : double) : void { virtual }
+ ATexto() : string { virtual }

ArticuloRebajado

-porcentajeRebaja : ushort

+ArticuloRebajado(in id : int, in nombre : string, in precio : double, in porcentajeRebaja : ushort)
+GetPorcentajeRebaja() : ushort
-SetPorcentajeRebaja(in porcentajeRebaja : ushort) : void
-/GetDescuento() : double
+/GetPrecioBase() : double
+ ^/GetPrecio() : double
+ ^ATexto() : string

La implementación en C# quedaría como sigue...

12/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Modifico los métodos cómo invalidables con virtual en Articulo y los hago public el get como va
a ser en las subclases. Recordemos que deben tener la misma accesibilidad.

class Articulo

{

 // ... código omitido para abreviar.

 public virtual double Precio { get; private set; }

 public virtual string ATexto() => $"""

 Id: {Id}

 Nombre: {Nombre}

 Precio: {Precio:F2}€

 """;

}

Invalido el método con la misma signatura en la subclase con el modificador override

class ArticuloRebajado : Articulo

{

 // ... código omitido para abreviar.

 // Añado el modificador override para indicar que estoy invalidando la propiedad Precio.

 public override double Precio => base.Precio - Descuento;

 // Añado el modificador override para indicar que estoy invalidando la el método ATexto().

 public override string ATexto() => $"""

 Id: {base.Id}

 Nombre: {base.Nombre}

 Rebaja: {PorcentajeRebaja}%

 Antes: {base.Precio:F2}€

 Ahora: {this.Precio:F2}€

 """;

}

Si no has sabido seguir las modificaciones propuestas, puedes descargar el código del ejemplo
anterior del siguiente enlace: herencia_articulo_invalidacion.cs

Idea

Si escribo public override Ctrl + <espacio> el 'intellisense' me ofrecerá permitirá escoger
entre los métodos invalidables.
Si refactorizamos sobre el nombre de la clase con Ctrl + . una de ellas será 'Generar
invalidaciones...'



13/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u15_poo_roles_herencia/assets/ejemplos/herencia_articulo_invalidacion_ejemplo.cs

Combinando Invalidación y Ocultación

Lo normal es que en el momento que modifiquemos algún método en la jerarquía con virtual
(invalidable), los métodos con la misma signatura en las subclases se modificarán con override .

Sin embargo, podemos hacer diseños más complejos como el del ejemplo siguiente donde volvemos a
ocultar como sucede en la clase E . Deberemos evitar diseños complejos.

A

+Metodo() : void

B

+Metodo() : void {virtual}

C

^+ Metodo() : void

D

^+ Metodo() : void

E

+Metodo() : void

class A

{

 public void Metodo() { ... }

}

class B : A

{

 // Oculta el de A y lo marco como virtual o invalidable.

 public new virtual void Metodo() { ... }

}

class C : B

{

 public override void Metodo() // Invalido Metodo() en B

 {

 ...

 base.Metodo(); // Llamada a la implementación de B

 }

}

class D : C

{

 public override void Metodo() // Invalido Metodo() en B y C

 {

 ...

 base.Metodo(); // Llamada a la implementación de C

 }

}

class E : D

{

 // Corto la secuencia de invalidaciones ocultando el método.

 public new void Metodo()

 {

 ...

 }

}

14/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

🚀 Ampliación opcional:

¿Serías capaz de reconoces los elementos y equivalencias de de nuestra relación de herencia
entre Articulo y ArticuloRebajado en C# en otros lenguajes cómo JavaScript o Kotlin?

JavaScript:

class Articulo {

 #nombre;

 #precio;

 constructor(id, nombre, precio) {

 this.id = id;

 this.#nombre = nombre;

 this.#precio = precio;

 }

 get precio() {

 return this.#precio;

 }

 get nombre() {

 return this.#nombre;

 }

 aTexto() {

 return `

 Id: ${this.id}

 Nombre: ${this.#nombre}

 Precio: ${this.precio.toFixed(2)}

 `.trim();

 }

}

class ArticuloRebajado extends Articulo {

 constructor(id, nombre, precio, porcentajeRebaja) {

 super(id, nombre, precio);

 this.porcentajeRebaja = porcentajeRebaja;

 this.precioBase = super.precio;

 }

 get #descuento() {

 return this.precioBase

 * this.porcentajeRebaja

 / 100.0;

 }

 get precio() {

 return this.precioBase - this.#descuento;

 }

 aTexto() {

 return `

 Id: ${this.id}

 Nombre: ${this.nombre}

 Rebaja: ${this.porcentajeRebaja}%

 Antes: ${this.precioBase.toFixed(2)}€

 Ahora: ${this.precio.toFixed(2)}€

 `.trim();

 }

}

Fíjate que en JavaScript usa la palabra clave extends para indicar que una clase hereda de otra
y que los métodos y propiedades de la superclase se pueden llamar con super en lugar de base
como en C#. Esto viene del lenguaje Java. Además no disponemos de las palabras reservadas
 virtual y override por lo que las características orientadas a objetos son más limitadas.

15/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Kotlin:

open class Articulo(

 val id: String,

 protected var nombre: String,

 open var precio: Double

) {

 open fun aTexto(): String {

 return """

 Id: $id

 Nombre: $nombre

 Precio: ${"%.2f".format(preci

 """.trimIndent()

 }

}

class ArticuloRebajado(

 id: String,

 nombre: String,

 precioBase: Double,

 var porcentajeRebaja: UShort

) : Articulo(id, nombre, precioBase) {

 private val descuento: Double

 get() = super.precio

 * porcentajeRebaja.toInt()

 / 100.0

 override var precio: Double

 get() = super.precio - descuento

 set(value) {

 super.precio = value

 }

 val precioBase: Double

 get() = super.precio

 override fun aTexto(): String {

 return """

 Id: $id

 Nombre: $nombre

 Rebaja: $porcentajeRebaja%

 Antes: ${"%.2f".format(precioBase)}€

 Ahora: ${"%.2f".format(precio)}€

 """.trimIndent()

 }

}

En Kolin, la forma de indicar la herencia es con la palabra clave : como en C# y para indicar que
un método es invalidable usamos la palabra clave open , sin embargo, para indicar que un
método invalidado en la subclase, usamos la palabra clave override como en C#. Además, para
acceder a los métodos y propiedades de la superclase usamos la palabra clave super como en
JavaScript.

16/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Ejemplo:

Vamos a definir otra concreción más de la clase Articulo . En este caso, va a representar
artículos reacondicionados, de los que vamos a añadir una fecha de reacondicionamiento, la
empresa que lo realiza y una descripción del trabajo realizado.

Solo vamos a invalidar el método string ATexto() .
Instancia un objeto de la nueva clase.

ArticuloReacondicionado

Articulo

ArticuloRebajado

✋ Alto: Antes de ver la la propuesta de implementación, intenta pensar cómo sería la misma...

public class ArticuloReacondicionado : Articulo

{

 public DateOnly FechaReacondicionamiento { get; }

 public string Empresa { get; }

 public string Descripcion { get; }

 public ArticuloReacondicionado(

 string id,

 string nombre,

 double precio,

 DateOnly fechaReacondicionamiento,

 string empresa,

 string descripcion) : base(id, nombre, precio)

 {

 FechaReacondicionamiento = fechaReacondicionamiento;

 Empresa = empresa;

 Descripcion = descripcion;

 }

 public override string ATexto() => $"""

 {base.ATexto()}

 Fecha reacondicionamiento: {FechaReacondicionamiento.ToShortDateString()}

 Empresa: {Empresa}

 Descripción: {Descripcion}

 """;

}

17/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

static void Main()

{

 ArticuloReacondicionado ac = new(

 id: "A003-R",

 nombre: "Fuente TFX",

 precio: 50d,

 fechaReacondicionamiento: DateOnly.FromDateTime(DateTime.Now),

 empresa: "Balmis S.A",

 descripcion: "Se cambia condensador electrolítico");

 Console.WriteLine(new string('-', 20));

 Console.WriteLine(ac.ATexto());

 Console.WriteLine(new string('-', 20));

}

Mostrará por consola:

Id: A003-R

Nombre: Fuente TFX

Precio: 50,00?

Fecha reacondicionamiento: 17/08/2025

Empresa: Balmis S.A

Descripción: Se cambia condensador electro

Fíjate que al invalidar a ATexto() hemos
llamado al método de la superclase
 base.ATexto() para reutilizar su funcionalidad
y así no repetir código. De esta manera
podremos ver las características comunes de
todos los artículos y las específicas de cada
uno de ellos.

18/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Polimorfismo de datos o inclusión
Es la capacidad de un identificador de hacer referencia a instancias de distintas clases durante su
ejecución. Se logra a través del principio de sustitución.

Principio de sustitución de Liskov (Upcasting)

Podemos decir que es, cuando un identificador que hemos declarado del tipo de la superclase,
referencia a un objeto de la subclase. También se le conoce como upcasting y esta conversión o
'cast' se hace de forma implícita.

La forma más simple de tenerlo es crear un objeto de la subclase y lo asignamos a la superclase. Por
ejemplo...

ArticuloRebajado ar = new (

 id: "A004",

 nombre: "Polo Fred Perry",

 precio: 70d,

 porcentajeRebaja: 15);

Articulo a = ar;

// También podemos hacerlo directamente pero

// indicando el tipo en el new.

Articulo a = new ArticuloRebajado(

 id: "A004",

 nombre: "Polo Fred Perry",

 precio: 70d,

 porcentajeRebaja: 15);

Una posible representación del objeto en
memoria sería la siguiente:

a

ArticuloRebajado

 a : Articulo

nombre = "Polo Fred Perry"

precio = 70.00

porcentajeRebaja = 15

 +GetPorcentajeRebaja() : ushort

Nota

Aunque creamos un objeto ArticuloRebajado completo en memoria. A través de a solo
podremos acceder a la parte de Articulo que hay dentro del ArticuloRebajado .
Por ejemplo, si tuvieramos una propiedad público en ArticuloRebajado denominada
 ushort PorcentajeRebaja , no podríamos hacer a.PorcentajeRebaja .



19/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Downcasting

Se tratará de la operación contrária a la sustitución o upcasting.
⚠️Pero ojo, solo podremos hacerla si realmente la referencia que tenemos es del tipo al que
queremos hacer el downcasting, en caso contrário obtendremos un ❌Error en tiempo de ejecución.

Siguiendo con la representación en memoria es como si recuperaramos el acceso a la parte de
 ArticuloRebajado del objeto Articulo que hemos creado en el ejemplo anterior.

a

ArticuloRebajado

 a : Articulo

nombre = "Polo Fred Perry"

precio = 70.00

porcentajeRebaja = 15

a

ArticuloRebajado

 a : Articulo

 nombre = "Polo Fred Perry"

 precio = 70.00

porcentajeRebaja = 15

= downcasting =>

ar

Formas de realizar el Downcasting

1. Mediante cast explícito:

Articulo a = new ArticuloRebajado("A004", "Polo Fred Perry", 70d, 15);

ArticuloRebajado ar = (ArticuloRebajado)a; // realmente a es un ArticuloRebajado

Sin embargo el siguiente código produciría un ❌Error al ejecutar.

Articulo a = new ("A001", "Polo Ralph Lauren", 75f);

ArticuloRebajado ar = (ArticuloRebajado)a;

2. Mediante el operador is
Nos sirve para preguntarle a un objeto si es de un determinado tipo y saber así con seguridad si
podemos hacer el downcasting.

Articulo a = new ("A001", "Polo Ralph Lauren", 75f);

if (a is ArticuloRebajado ar) // Preguntamos si admite la forma de ...

{

 Console.WriteLine(ar);

}

Si se cumple la condición, ar se convierte en un objeto de tipo ArticuloRebajado y podemos
acceder a sus propiedades y métodos. Si no se cumple, ar no se inicializa y no podemos usarlo.

20/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/is

3. Mediante el operador as
Realiza directamente el downcasting y si no puede asigna null. EL problema es que vamos a
tener que manejar tipos nulables.

Articulo a = new ("A001", "Polo Ralph Lauren", 75f);

// Generará un Warning porque se puede evaluar a null y ar no es anulable

// deberíamos declarar ArticuloRebajado como nulable

ArticuloRebajado? ar = a as ArticuloRebajado;

Console.WriteLine(ar?.ATexto() ?? "No hay datos de rebaja");

4. Apoyándonos en el operador de uso combinado null ??
⚠️Realmente no sería un downcasting sino una tranformación defensiva.

Articulo a = new ArticuloReacondicionado(id: "A005-R",

 nombre: "iPhone 16 Pro",

 precio: 950,

 fechaReacondicionamiento: new(2025, 8, 17),

 empresa: "Foxconn",

 descripcion: "Cambio de batería");

// Nos aseguramos de que en ar siempre hay un objeto instanciado y evitamos el aviso

// al no ser un tipo anulable 👍

ArticuloRebajado ar = a as ArticuloRebajado

 ??

 new (id: a.Id,

 nombre: a.Nombre,

 precio: a.Precio,

 porcentajeRebaja: 15);

Realmente estamos creando un nuevo artículo porque realmente no es del tipo que
esperábamos. Por lo que no sería una opción muy recomendable al tratarse de programación
defensiva 💀.

5. Usando un switch ya sea como instrucción o expresión sería la forma más elegante y legible
de hacer un downcasting y además nos permite manejar el caso en que no se cumple la
condición.

Articulo a = new ArticuloRebajado("A004", "Polo Fred Perry", 70d, 15);

string salida = a switch

{

 ArticuloRebajado ar when ar.PorcentajeRebaja > 30 => "Artículo rebajado con más del 30% de rebaja",

 ArticuloRebajado ar => $"Es un artículo rebajado con el {ar.PorcentajeRebaja}% de rebaja",

 ArticuloReacondicionado _ => "Es reacondicionado",

 _ => "No es un tipo de objeto contemplado",

};

Console.WriteLine(salida);

21/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/operators/type-testing-and-cast#as-operator
https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/operators/null-coalescing-operator

Ligadura Dinámica
También se le conoce como enlace dinámico.
Una de las principales 'ventajas' de la invalidación, es que al hacer una sustitución como la que
hemos visto del tipo...

Articulo a = new ArticuloRebajado("Polo Fred Perry", 70d, 15);

Console.WriteLine(a.Precio);

 Console.WriteLine(a.GetPrecio()); mostrará 59,5 y no 70. Pero,... ¿Cómo puede suceder esto si a
esta referenciando a la parte de Articulo que hay en el objeto ArticuloRebajado instanciado y
 GetPrecio() de Articulo me devuelve el precio sin el descuento?

Si nos fijamos en la figura siguiente, lo que realmente sucede es que al hacer a.Precio y ver que la
propiedad virtual Precio { get; ... } está marcado como invalidable o virtual. Buscará posibles
invalidaciones de ese método en el objeto realmente instanciado (ArticuloRebajado) y si existen lo
que hará es llamar a la invalidación.

a

ArticuloRebajado

 a : Articulo

nombre = "Polo Fred Perry"

precio = 70.00

 virtual double Precio { get; ... } → 70

porcentajeRebaja = 15

 override double Precio => base.Precio - Descuento → 59.5

a.Precio

A este enlace entre el método o propiedad virtual y su invalidación, lo denominaremos ligadura
dinámica y se denomina 'dinámica' puesto que se decide en tiempo de ejecución, dependiendo del
objeto que realmente tengamos instanciado y esté referenciado por la sustitución.

22/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Ejemplo de uso del Enlace Dinámico

Veamos un ejemplo más elaborado a través de otro ejemplo donde vamos a ampliar nuestra jerarquía
de artículos.

Supongamos que nos piden hacer una concreción más de artículos, para aquellos que están en
exposición. Nos comentan que los artículos en exposición siempre tienen algún tipo de rebaja.
Por lo tanto podemos decir que un artículo en exposición - es un - artículo rebajado.
Además, se nos especifica que el porcentaje de rebaja coincidirá con los días que el artículo esté en
exposición siendo un mínimo de un 1% y un máximo de 75% de su valor. De esta manera si un artículo
lleva 20 días en exposición su descuento será del 20% pero si lleva 100 días su descuento será del
75%.

De lo expuesto, al crear un artículo en exposición, nos interesará saber la fecha en que se inició la
misma.

Una posible modelación del diagrama de clases para implementación UML siguiendo nuestro convenio
de nomenclatura sería...

«entity»
Articulo

+Articulo(...)
#GetNombre() : string
+GetPrecio() : double {virtual}
+ATexto() : string {virtual}

ArticuloRebajado

+ArticuloRebajado(...)
#GetPorcentajeRebaja() : ushort {virtual}
-/GetDescuento() : double
^/+GetPrecio() : double
^+ATexto() : string

ArticuloEnExposicion

-inicioExposicion : DateOnly {readOnly}

+ArticuloEnExposicion(in id : string, ..., in inicioExposicion : DateTime)
^/#GetPorcentajeRebaja() : ushort
+/GetDiasEnExposicion() : int
^+ATexto() : string

ArticuloReacondicionado

23/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Vamos a realizar una propuesta de implementación, comentada, de la especificación anterior.

En primer lugar marcando como virtual la propiedad PorcentajeRebaja de ArticuloRebajado para
que pueda ser invalidada en la subclase ArticuloEnExposicion .

public class ArticuloRebajado : Articulo

{

 // ... código omitido para abreviar.

 public virtual ushort PorcentajeRebaja { get; private set; }

 private double Descuento => base.Precio * PorcentajeRebaja / 100d;

 public override double Precio => base.Precio - Descuento;

}

En ArticuloEnExposicion , vamos a invalidar la propiedad PorcentajeRebaja y el método ATexto()
para que nos muestre la información de la exposición en el caso de que el objeto lo tengamos como un
tipo de alguna de las superclases.

public class ArticuloEnExposicion : ArticuloRebajado

{

 public DateOnly InicioExposicion { get; }

 // En un principio el descuento es 0 y lo calculeramos dinámicamente.

 public ArticuloEnExposicion(

 string id,

 string nombre,

 double precio,

 DateOnly inicioExposicion) : base(id, nombre, precio, 0)

 {

 InicioExposicion = inicioExposicion;

 }

 // Invalidamo la obtención porcentaje para calcularlo en función de los días en exposición.

 public override ushort PorcentajeRebaja => Convert.ToUInt16(Math.Clamp(DiasEnExposicion, 1, 75));

 // Los días en esposición se calculan en el momento actual, desde el incio de la exposición.

 public int DiasEnExposicion => DateOnly.FromDateTime(DateTime.Now).DayNumber - InicioExposicion.DayNumber;

 // Invalidamos el método ATexto() de Articulo y ArticuloRebajado para que añada la nueva información.

 public override string ATexto() => $"""

 {base.ATexto()}

 En exposición desde: {InicioExposicion.ToShortDateString()} total {DiasEnExposicion} dí

 """;

}

24/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Si ahora en el programa principal ejecutamos el siguiente código...

// Creamos un ArticuloEnExposicion con fecha de inicio hace 10 días.

// Hacemos una sustitución hacia el tipo más genérico Articulo

Articulo a = new ArticuloEnExposicion(

 id: "A006-E",

 nombre: "TV Samsung OLED 50''",

 precio: 999d,

 inicioExposicion: DateOnly.FromDateTime(DateTime.Now.AddDays(-10)));

Console.WriteLine(new string('-', 20));

Console.WriteLine(a.ATexto());

Console.WriteLine(new string('-', 20));

Mostrará por consola:

Id: A006-E

Nombre: TV Samsung OLED 50''

Rebaja: 10%

Antes: 999,00€

Ahora: 899,10€

En exposición desde: <fecha actual - 10 días> total 10 días

Si lo meditamos, se están realizando dos enlaces o ligaduras dinámicas ' → ' ...

1. a.ATexto() → override ArticuloRebajado.Atexto() →
 override ArticuloEnExposicion.Atexto()

2. Al ejecutar override ArticuloEnExposicion.Atexto() se llamará a base.ATexto() el cual llamará a
 override ArticuloRebajado.Precio este al no estar invalidado llama a
 ArticuloRebajado.Descuento que a su vez llama a virtual ArticuloRebajado.PorcentajeRebaja
→ override ArticuloEnExposicion.PorcentajeRebaja produciéndose el segundo enlace.

Si has tenido algún problema, puedes descargar el código del ejemplo anterior del siguiente enlace:
herencia_articuloexposicion.cs

Resumen

En otras palabras, el PorcentajeRebaja que usamos en la propiedad Descuento en
 ArticuloRebajado , no es el de ArticuloRebajado , sino el de ArticuloEnExposicion , que es el
que realmente se está ejecutando en ese momento por la ligadura dinámica.



25/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u15_poo_roles_herencia/assets/ejemplos/herencia_articuloexposicion_ejemplo.cs

Utilidad del polimorfismo de datos (sustitución) y el enlace
dinámico
En ocasiones el software cambia y se añaden nuevas especificaciones, como pudieran ser nuevos
tipos de artículos en la jerarquía. Con el polimorfismo de datos, podremos adaptarnos a futuros
cambios (Nuevas formas de un objeto), sin realizar cambios traumáticos y costosos en nuestros
objetos ni en nuestra implementación.

Ejemplo:

Supongamos que queremos modelar una clase TicketCompra que me permita añadir artículos al
mismo. Además, vamos a añadir un método para mostrar el ticket y una propiedad calculada que
me devuelva el total de la compra. Además, vamos a añanir un método virtual
 virtual stting ATextoLineaTicket() en la clase Articulo que nos permita mostrar una línea del
ticket con el artículo y la invalidaremos en todas las subclases.

Un posible diseño simplificado en UML para expresar esto podría ser ...

TicketCompra

+TicketCompra()
+\GetTotal() : double
+Añade(in a : Articulo):TicketCompra
+ATexto() : string

«entity»
Articulo

+ATextoLineaTicket() : string {virtual}

contiene
1..*

"

"

Software entities (classes, modules,
functions, etc.) should be open for
extension, but closed for
modification.

- Bertrand Mayer.

26/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Lo primero sería la implementación de ATextoLineaTicket() en toda la jerarquía de artículos, para
que cada uno de ellos muestre su información de forma adecuada.

public class Articulo

{

 // ... código omitido para abreviar.

 public virtual string ATextoLineaTicket() => $"""

 {Nombre,-20} {Precio,26:F2}€

 """;

}

public class ArticuloRebajado : Articulo

{

 // ... código omitido para abreviar.

 public override string ATextoLineaTicket() => $"""

 {Nombre,-20} {PrecioBase,8:F2}€ con {PorcentajeRebaja:D2}% {Precio,8:F2}€

 """;

}

public class ArticuloReacondicionado : Articulo

{

 // ... código omitido para abreviar.

 // Como artículo pero añadiendo un R

 public override string ATextoLineaTicket() => $"""

 {base.ATextoLineaTicket()} R ({Descripcion})

 """;

}

public class ArticuloEnExposicion : ArticuloRebajado

{

 // ... código omitido para abreviar.

 // Como artículo rfebajado pero añadiendo un E

 public override string ATextoLineaTicket() => $"""

 {base.ATextoLineaTicket()} R ({Descripcion})

 """;

}

27/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Una propuesta de implementación de la clase TicketCompra podría ser:

public class TicketCompra

{

 // Puesto que no definimos constructor y dejamos el de por defecto,

 // inicializamos la lista de artículos directamente.

 private List<Articulo> Articulos { get; } = [];

 public double Total

 {

 get

 {

 double total = 0d;

 foreach (Articulo a in Articulos)

 total += a.Precio;

 return total;

 }

 }

 // Definimos un interfaz fluido como los que utiliza la clase StringBuilder.

 public TicketCompra Añade(Articulo a)

 {

 Articulos.Add(a);

 return this;

 }

 public string ATexto()

 {

 StringBuilder ticket = new();

 foreach (Articulo a in Articulos)

 ticket.AppendLine(a.ATextoLineaTicket());

 ticket.AppendLine(new string('-', 70))

 .AppendLine($"Total: {Total,41:F2}€");

 return ticket.ToString();

 }

}

28/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Si implementamos el siguiente programa principal de test...

public static void Main()

{

 TicketCompra ticket = new();

 ticket.Añade(new Articulo(

 id: "A001",

 nombre: "Camiseta",

 precio: 19.99))

 .Añade(new ArticuloRebajado(

 id: "A002",

 nombre: "Pantalón",

 precio: 39.99,

 porcentajeRebaja: 20))

 .Añade(new ArticuloReacondicionado(

 id: "A003",

 nombre: "Zapatillas",

 precio: 59.99,

 fechaReacondicionamiento: new (2023, 1, 15),

 empresa: "Reacondicionados S.A.",

 descripcion: "Con caja original"))

 .Añade(new ArticuloEnExposicion(

 id: "A004",

 nombre: "Chaqueta",

 precio: 89.99,

 inicioExposicion: new (2025, 2, 1)))

 Console.WriteLine(ticket.ATexto());

}

Mostrará por consola el siguiente ticket de compra:

Camiseta 19,99?

Pantalón 39,99? con 20% 31,99?

Zapatillas 59,99? R (Con caja original)

Chaqueta 89,99? con 75% 22,50? E (desde 01/02/2025)

--

Total: 134,47?

29/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Si nos fijamos aunque el ticket solo maneje artículos genéricos, ha sabido calcular
correctamente a través del enlace dinámico como hay que mostrar la información de cada uno de
ellos a través del método ATextoLineaTicket() . Además, de csaber calcular el Total sumando la
propiedad Precio de cada uno de los artículos.

Si ahora añadiésemos otro tipo de artículo
como por ejemplo artículos defectuosos, que
funcionan bien y no han sido
reacondicionados, pero tienen algún defecto
menor, como una rozadura, pixel muerto, etc. y
por tanto se les aplica una rebaja, pero
también nos interesa guardar información del
defecto.

A la hora de modelizar podemos decir que un
artículo defectuoso - es un - artículo
rebajado y modelizarlo como la propuesta del
diagrama adjunto.

ArticuloDefectuoso

-defecto : string {readOnly}

+ArticuloDefectuoso(in id : string, ..., in defecto : string)
+GetDefecto() : string
^+ATexto() : string
^+ATextoLineaTicket() : string

ArticuloRebajado

Donde una posible implementación podría ser ...

public class ArticuloDefectuoso : ArticuloRebajado

{

 public string Defecto { get; }

 public ArticuloDefectuoso(

 string id,

 string nombre,

 in double precio,

 in ushort porcentajeRebaja,

 string defecto) : base(id, nombre, precio, porcentajeRebaja)

 {

 Defecto = defecto;

 }

 public override string ATexto() => $"""

 {base.ATexto()}

 Defecto: {Defecto}

 """;

 public override string ATextoLineaTicket() => $"""

 {base.ATextoLineaTicket()} D ({Defecto})

 """;

}

30/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

public static void Main()

{

 TicketCompra ticket = new();

 // ... código omitido para abreviar.

 .Añade(new ArticuloDefectuoso(

 id: "A005",

 nombre: "Gorra",

 precio: 15.99,

 porcentajeRebaja: 10,

 defecto: "Pequeño rasguño"));

 Console.WriteLine(ticket.ATexto());

}

Mostrará por consola el ticket de compra modificado:

Camiseta 19,99?

Pantalón 39,99? con 20% 31,99?

Zapatillas 59,99? R (Con caja original)

Chaqueta 89,99? con 75% 22,50? E (desde 01/02/2025)

Gorra 15,99? con 10% 14,39? D (Pequeño rasguño)

--

Total: 148,86?

Puedes descargar el código del ejemplo anterior del siguiente enlace:
herencia_ticket_articulos.cs

Importante

Si ahora añadimos un nuevo artículo de este tipo a nuestro ticket. No tendremos que
modificar nuestra clase TicketCompra y esto será gracias al polimorfismo de datos.



31/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u15_poo_roles_herencia/assets/ejemplos/herencia_ticket_articulos_ejemplo.cs

El caso especial de la clase object en CSharp
La Clase Object definida en System , es una clase especial de la cual heredan de forma implícita
todos los objetos, tanto valor como refrencia, creados en C#. Por tanto, podemos decir que un objeto
de la clase object puede sustituir a cualquier objeto definido por nosotros o en las BCL.

Historicamente, en los principios de C#, esta clase se utilizaba para tratar objetos de forma genérica
como en colecciones, antes de que el lenguaje implementara la genericidad a través de genéricos o
clases parametrizadas, cuyo uso es más recomendable. Además, podemos encontrar esta clase en
otros lenguajes como Java.

Define una serie de métodos invalidables o virtuales que podremos redefinir en cualquiera de las
clases que nosotros creemos. Entre ellos podemos destacar:

object.ToString()

El método public virtual string ToString() , es llamado automáticamente cada vez que un objeto
se intenta formatear cómo cadena y equivaldría en cierta manera al método string ATexto() que
hemos definido en nuestras clases de ejemplo.

En el fondo, aunque no se especifique, Articulo hereda implícitamente de Object y por tanto las
clases Articulo , ArticuloRebajado , ArticuloReacondicionado , etc. heredan el método ToString() y
además pueden invalidarlo.

De hecho si no lo invalidamos mostrará por consola el nombre completo de la clase, que en el
caso caso del siguiente ejemplo sería EjemploHerencia.Articulo:

namespace EjemploHerencia;

public class Articulo { ... }

public class Program

{

 public static void Main()

 {

 Articulo a = new (

 id: "A001",

 nombre: "Camiseta",

 precio: 19.99);

 Console.WriteLine(a);

 }

}

Mostrará por consola:

EjemploHerencia.Articulo

32/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Si ahora sustituimos el nombre del método
 ATexto() por el método ToString() toda la
jerarquía de artículos podrá mostrar su
información de forma adecuada y podremos
evitar tener que llamar a ATexto() cada vez que
queramos mostrar un artículo. Pues
 Console.WriteLine(a) llamará automáticamente
a ToString() .

Ten en cuenta que al ser un método de object
no debemos declararlo como virtual en la clase
 Articulo , sino aplicar el modificador override
para invalidarlo, ya que ToString() ya está
definido en la clase object .

public class Articulo

{

 // ... código omitido para abreviar.

 public override string ToString() => $"""

 Id: {Id}

 Nombre: {Nombre}

 Precio: {Precio:F2}€

 """;

}

Object

+ToString() : string {virtual}

Articulo

^+ToString() : string

ArticuloRebajado

^+ToString() : string

ArticuloReacondicionado

^+ToString() : string

ArticuloEnExposicion

^+ToString() : string

ArticuloDefectuoso

^+ToString() : string

Ahora el Main mostrará por consola:

Id: A001

Nombre: Camiseta

Precio: 19,99?

object.Equals() y object.GetHashCode()

Los métodos virtual bool Equals(object obj) y virtual int GetHashCode() deben implementarse
siempre juntos y se usan para comparar el objeto sobre el que se aplica con cualquier otro que se le
pase como parámetro en profundidad y para obtener un valor de hash único del objeto,
respectivamente.

Ambos metodos se imvalidan de forma automática en aquellas clases que tienen en su definición
la palabra reservada record , esto es, se comportan como Value Objects .

Veamos un ejemplo en el cual los invalidaremos en la clase Articulo .

Una opción es comparar propiedad por propiedad no calculada. Pero en este caso, como la propiedad
 Id es única para cada artículo, podemos comparar directamente su valor. Además, como Id es de
tipo string , podemos usar el Equals de string para comparar su valor puesto que ya está
implementado en la clase string .

33/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

La función GetHashCode() nos devolverá un valor de hash único para el objeto. En este caso,
usaremos la función HashCode.Combine() para combinar los valores de las propiedades que
consideremos relevantes para la comparación, como Id , Precio y Nombre . También podríamos usar
el método GetHashCode() de string para obtener un valor de hash único para la propiedad Id por
ejemplo Id.GetHashCode() .

class Articulo

{

 // ... código omitido para abreviar.

 public override bool Equals(object? obj) => obj is Articulo a && a.Id.Equals(Id);

 public override int GetHashCode() => HashCode.Combine(Id, Precio, Nombre);

}

En las subclases, como ArticuloRebajado , ArticuloReacondicionado o ArticuloEnExposicion ,
podemos invalidar estos métodos para que también se comparen las propiedades específicas de cada
subclase, pero en este caso no es necesario, ya que al heredar de Articulo se ejecutaría el método
 Equals() de la superclase y se compararían por Id .

public static void Main()

{

 ArticuloRebajado ar1 = new(

 id: "A002",

 nombre: "Pantalón",

 precio: 39.99,

 porcentajeRebaja: 20);

 ArticuloDefectuoso ad2 = new(

 id: "A002",

 nombre: "Pantalón",

 precio: 39.99,

 porcentajeRebaja: 20,

 defecto: "Cremallera rota");

 Console.WriteLine(ar1.Equals(ad2));

}

En el ejemplo anterior, al comparar ar1 y ad2 ,
ambos tienen el mismo Id y por tanto el
resultado de la comparación será true aunque
son de tipos diferentes.

object.GetType()

El métodos virtual Type GetType() es un método que nos permite obtener el tipo del objeto en
tiempo de ejecución. Este método es muy útil cuando queremos saber el tipo real de un objeto,
especialmente cuando trabajamos con herencia y polimorfismo. Por ejemplo ...

Articulo a = new ArticuloRebajado("A002", "Pantalón", 39.99, 20);

Console.WriteLine(a.GetType().Name); // Mostrará "ArticuloRebajado"

34/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

🎓 Caso de estudio modelo de examen:

Vamos a aplicar un poco todos los conceptos que hemos visto hasta ahora, a través de un caso
de estudio 'simplificado'.

Vamos a suponer que el propietario de una campa de aparcamiento vehículos a largo plazo y
que decidimos instalar un sistema automatizado de entrada y salida de vehículos. Para ello,
decide poner un sistema de cámaras y una IA que trata de identificar información de los vehiculos
que entran y salen.

El sistema es capaz de identificar de un vehículo al pasar, la siguiente información común que
podemos modelar a través de la clase Vehiculo con las siguientes propiedades publicas de
solo lectura:

 Matricula que será un identificador único con formato ' DDDD LLL ' donde D será un dígito
de 0 a 9 y L una letra mayúscula excluidas las vocales. La modelaremos a través de un
 Value Object que la guaradará como una cadena de texto.
 Color que será un conjunto de valores con las tonalidades básicas. Devolviendo la IA la
predominante en el vehículo. Estas podrán ser uno de los siguiente valores de un tipo
enumerado:

public enum Color

{

 Blanco, Morado, Cian, Azul, Rojo, Verde, Negro, Naranja, Gris

}

Los tipos enumerados se te proporcionarán junto al programa principal y deben declararse
fuera del ámbito de esta clase para evitar un conflicto de nombres con las propiedades
correspondientes.
 Marca que será un conjunto de valores de logos que la IA es capaz de identificar en las
imágenes como un tipo enumerado de entre los siguientes:

public enum Marca

{

 DESCONOCIDA, BMW, SEAT, AUDI, RENAULT, MAN, DAF, CITROEN, TOYOTA, SUZUKI, YAMAHA, MERCEDES, PEGAS

}

 Ocupantes que la IA cree que hay en el interior del vehículo.
 Tipo propiedad calculada e invalidable, que nos devolverá como texto el tipo de
vehículo que ha identificado la IA dentro de una determinada categoría. Si la IA no ha
podido identificar la categoría del vehículo, devolverá el valor "SinIdentificar".

35/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Además, esta clase inavalidará los métodos Equals(object obj) , int GetHashCode() y
 string ToString() de la clase object De tal manera que muesa la iformación del vehículo en una
sola línea de texto.

public override string ToString() => $"""

 {GetType().Name} {Marca} {Tipo} {Matricula} color {Color} y {Ocupantes} ocupantes.

 """;

Fíjate que hemos usado el método GetType().Name para mostrar el nombre de la clase real del
objeto. Además, Tipo tendrá el valor "SinIdentificar", si no es invalidado en las subclases.

La IA, de momento, sabe clasificar muchos vehículos en estás tres categorías: Coche , Moto
y Camión . Las cuales vamos a modelizar a través de herencia. Cada categoría, como hemos
comentado, tendrá a su vez diferentes tipos a través de un conjunto de valores enumerados.

Coche: Podrá tomar uno de los valores del siguiente conjunto de valores enumrados:

public enum TipoCoche

{

 SinIdentificar, Berlina, Coupe, Sedan, Cabrio, TodoTerreno, MonoVolumen, Crossover

}

Moto: Podrá tomar uno de los valores del siguiente conjunto de valores enumerados:

public enum TipoMoto

{

 SinIdentificar, Scooter, Motocross, Naked, Trail, Supermotard

}

Camion: Podrá tomar uno de los valores del siguiente conjunto de valores enumerados:

public enum TipoCamion

{

 SinIdentificar, Articulado, Frigorífico, Cisterna, Trailer

}

Todas las subclases de Vehiculo invalidarán la propiedad Tipo para devolver el tipo de vehículo
correspondiente como texto. De tal manera que guardarán el valor enumerado de tipo como
campo privado. Además, los camiones, guaradrán dos propiedades adicionales identificables
por la IA que son el número de ejes y carga máxima (MMA) en kilos. Por tanto, la subclase
 Camion invalidará el método ToString() para mostrar esta información adicional intercalaándola
entre el nombre de la categoría y la marca del camión.

Plaza n: Camion 2 ejes con MMA de 6000 Kg DAF Frigorífico 8798 JWR color Blanco y 1 ocupa

36/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

¿Se te ocurre como hacerlo reutilizando el ToString() de Vehículo y no repitiendo el
código?

Por último, nuestra IA, pasará la generalización de Vehiculo , con la información que ha podido
recolectar, a un objeto CampaVehiculos que tendrá una capacidad de plazas determinada (para
nuestro caso de estudio 5 vehículos independientemente de su tamaño para simplificar). Estás
plazas se numerarán de la 1 a la 5.

La clase CampaVehiculos tendrá pues los siguientes miembros:

Privados:

 List<Vehiculo?> Plazas : Propiedad de solo lectura que contiene la lista de vehículos que se
encuentran aparcados en la campa. Si en una plaza no hay vehículo, se guardará un null .
 int? PlazaVacia : Propiedad calculada que me retornará el primer índice vacío en un array
de vehículos o null si no lo encuentra ninguno.
 int PlazasOcupadas : Propiedad calculada que me retornará el número de plazas ocupadas
en la campa.
 int? Busca(Vehiculo v) : Método que me retornará el índice en la lista de vehículos que
ocupa el vehículo v o null si no lo encuentra.

Públicos:

Constructor que recibe un entero con la capacidad de la campa (número de plazas) y que
inicializará la propiedad Plazas a dicha dimensión con null en todas sus plazas pues aún
no hay vehículos aparcados.
 (bool puedeEntrar, int plaza, string? problema) PuedeEntrar(Vehiculo v) : Método que me
retornará un tupla con un booleano que indica si el vehículo puede entrar en la campa, el
número de plaza donde se podría aparcar y un mensaje de aviso en caso de que no pueda
entrar. Retornos posibles...

Si la campa está llena, retornará false , 0 y el mensaje ' Aparcamiento lleno '.
Si la matrícula del vehículo ya se encuentra registrada, retornará false , 0 y el mensaje
' Ya se encuentra en el aparcamiento el vehículo DDDD LL '.

Idea

Recuerda que el tipo int? puede valer null, por lo que si tenemos int? dato ,
podemos usar las propiedades HasValue y Value para comprobar si tiene un valor y
obtenerlo, respectivamente. Por ejemplo...
 int valor = (dato.HasValue) ? dato.Value : 0;



37/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

Si la campa no está llena y la matrícula no se encuentra registrada, retornará true , el
número de plaza donde se podría aparcar (1 a Numero Plazas) y null como mensaje.

 void Entra(Vehiculo v) : Método que recibe un vehículo y lo aparca en la plaza indicada por
el método PuedeEntrar(Vehiculo v) . Si no se puede aparcar, lanzará una aserción con el
problema indicado por dicho método.
 (bool puedeSalir, int plaza, string? problema) PuedeSalir(Vehiculo v) : Método que me
retornará un tupla con un booleano que indica si el vehículo puede salir de la campa, el
número de plaza donde se encuentra aparcado y un mensaje de aviso en caso de que no
pueda salir. Retornos posibles:

Si la campa está vacía, retornará false , 0 y el mensaje ' Aparcamiento vacío '.
Si la matrícula del vehículo no se encuentra registrada, retornará false , 0 y el mensaje
' No se registró la entrada del vehículo DDDD LL '.
Si la matrícula del vehículo se encuentra registrada, retornará true , el número de plaza
donde se encuentra aparcado (1 a Numero Plazas) y null como mensaje.

 void Sale(Vehiculo v) : Método que recibe un vehículo y lo saca de la plaza indicada por el
método PuedeSalir(Vehiculo v) . Si no se puede sacar, lanzará una aserción con el
problema indicado por dicho método.
 string ToString() imvalidado para que nuestre las plazas y los datos que se recibieron de la
IA de cada vehículo en el siguiente formato:

Plaza n: <datos del vehículo devueltos por ToString()>

Plaza n: Vacía

Purdes decargar, el código con el programa principal que simulará la ejecución de la IA crando
instancias de vehículo para probar tus clases y métodos: campa_vehiculos.cs

La ejecución del programa principal, con la siguiente entrada de vehículos, debería producir la
siguiente salida por consola:

38/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u15_poo_roles_herencia/assets/ejemplos/campa_vehiculos_test_ejemplo.cs

Entrando Coche Coupe 1020 DRG -> Aparcado en la plaza 1

Entrando Camion Frigorífico 8798 JWR -> Aparcado en la plaza 2

Entrando Coche TodoTerreno 7643 LRF -> Aparcado en la plaza 3

Entrando Coche Coupe 1020 DRG -> Aparcado en la plaza 4

Entrando Vehiculo SinIdentificar 0000 DGP -> Aparcado en la plaza 5

Entrando Moto Naked 1111 GRF -> Aparcamiento lleno

Entrando Coche Coupe 1020 DRG -> Aparcamiento lleno

Saliendo Camion Frigorífico 8798 JWR -> No se registró la entrada del vehículo 8798

Saliendo Camion Frigorífico 8798 JWR -> No se registró la entrada del vehículo 8798

Saliendo Moto Naked 1111 GRF -> No se registró la entrada del vehículo 1111

Entrando Moto Naked 1111 GRF -> Aparcamiento lleno

Entrando Camion SinIdentificar 8798 JWR -> Aparcamiento lleno

Veículos en el aparcamiento...

Plaza 1: Coche SEAT Coupe 1020 DRG color Azul y 3 ocupantes.

Plaza 2: Camion 2 ejes con MMA de 6000 Kg DAF Frigorífico 8798 JWR color Blanco y 1 ocupa

Plaza 3: Coche BMW TodoTerreno 7643 LRF color Rojo y 4 ocupantes.

Plaza 4: Coche SEAT Coupe 1020 DRG color Azul y 3 ocupantes.

Plaza 5: Vehiculo DESCONOCIDA SinIdentificar 0000 DGP color Negro y 2 ocupantes.

Nota

Intenta realizar primero por tu cuenta la implementación de la especificación anterior.
Posteriormente comparala con la propueta de solución que encontrarás en el siguiente
enlace: campa_vehiculos_solucion.cs



39/39 Programación 1º DAM Unidad 15 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u15_poo_roles_herencia/assets/ejemplos/campa_vehiculos_ejemplo.cs

