
Unidad 14
Descargar estos apunte en pdf o html

Índice
Índice
Roles entre clases

Introducción
Colección mejorada  List<T> 

Operaciones con  List<T> 
Rol Todo-Parte

Definición de cardinalidad
Agregación o referencia

Ventajas de la agregación 👍
Desventajas de la agregación 👎

Composición o subobjetos
Ventajas de la composición 👍
Desventajas de la composición 👎

Ejemplo de Agregación Simple
Ejemplo de Composición
Ejemplo de Agregación Múltiple

 

1/24 Programación 1º DAM Unidad 14 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u14_poo_roles_todo_parte/u14_poo_roles_todo_parte.pdf
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u14_poo_roles_todo_parte/u14_poo_roles_todo_parte.html


Roles entre clases

Introducción
En la Programación Orientada a Objetos (POO),
las clases no existen de forma aislada, sino que
interactúan entre sí para construir sistemas
complejos y funcionales. Estas interacciones
definen los roles y responsabilidades que cada
clase asume dentro del programa, de manera
similar a como las personas desempeñan
diferentes funciones en la sociedad. Un rol
especifica el propósito o la tarea que una clase
se compromete a realizar en su relación con
otras. Por ejemplo, en un sistema de ventas, una
clase Cliente podría tener el rol de "comprador",
mientras que una clase Producto asume el rol de
"artículo a la venta".

Establecer roles claros es fundamental para un buen diseño de software, ya que promueve una alta
cohesión y un bajo acoplamiento entre las clases. Esto significa que cada clase se enfoca en una tarea
específica (alta cohesión) y depende lo menos posible de los detalles internos de otras (bajo
acoplamiento), lo que facilita la reutilización del código, el mantenimiento y la escalabilidad del
sistema. Conceptos como la herencia, la composición y las interfaces son las herramientas que
permiten a los programadores implementar formalmente estos roles, definiendo contratos y
comportamientos esperados que dan forma a la arquitectura de la aplicación.

 

2/24 Programación 1º DAM Unidad 14 IES Doctor Balmis



Colección mejorada  List<T> 
Antes de adentrarnos en los roles entre clases, es importante mencionar que las colecciones
mejoradas son una característica clave en la POO. Aunque profundizaremos en su uso definición y
comprensión más adelante, durante el tema vamos utilizar el tipo  List<T>  en lugar de los arrays
tradicionales  T[]  pues me van a proporcionar ciertas ventajas y además, de esta forma, ya nos
vamos a ir acostumbrando a su uso.

Básicamente su uso es igual a de los arrays, pero con la ventaja de que no es necesario especificar
el tamaño al crearla, y se pueden añadir, insertar o eliminar elementos de forma dinámica y
eficiente.

Por ejemplo supongamos una implementación simple de la clase  Persona  siguiente:

public class Persona

{

    public string Nombre { get; }

    public int Edad { get; private set; }

    public Persona(string nombre, int edad)

    {

        Nombre = nombre;

        Edad = edad;

    }

    public string ATexto() => $"{Nombre} {Edad} años";

}

 

3/24 Programación 1º DAM Unidad 14 IES Doctor Balmis



Si tuviéramos que añadir personas a un array vacío redimensionando o insertar elementos en una
posición concreta o borrar elementos de un array, el código sería algo así:

public static void Main()

{

    Persona[] personas = [];

    // Añadir personas al final del array redimensionando

    personas = [.. personas, new("Ana", 30)];

    personas = [.. personas, new("Luis", 25)];

    personas = [.. personas, new("Pedro", 40)];

    for (int i = 0; i < personas.Length; i++)

    {

        Console.WriteLine(personas[i].ATexto());

    }

    // Añadir una nueva persona en la posición 2 (María)

    personas = [.. personas[..2], new("María", 35), .. personas[2..]];

    foreach (Persona p in personas)

    {

        Console.WriteLine(p.ATexto());

    }

    // Eliminar la persona en la posición 1 (Luis)

    personas = [.. personas[..1], .. personas[2..]];

    foreach ((int i, Persona p) in personas.Index())

    {

        Console.WriteLine($"[{i}] = {p.ATexto()}");

    }

}

 

4/24 Programación 1º DAM Unidad 14 IES Doctor Balmis



Pero el código anterior es complejo de leer y bastante ineficiente. Si usamos la clase  List<T>  de la
siguiente forma, el código es mucho más sencillo y eficiente:

public static void Main()

{

    List<Persona> personas = new ();

    // Añadir personas al final de la lista

    personas.Add(new Persona("Ana", 30));

    personas.Add(new Persona("Luis", 25));

    personas.Add(new Persona("Pedro", 40));

    for (int i = 0; i < personas.Count; i++)

    {

        Console.WriteLine(personas[i].ATexto());

    }

    // Añadir una nueva persona en la posición 2 (María)

    personas.Insert(2, new Persona("María", 35));

    foreach (Persona p in personas)

    {

        Console.WriteLine(p.ATexto());

    }

    // Eliminar la persona en la posición 1 (Luis)

    personas.RemoveAt(1);

    for (int i = 0; i < personas.Count; i++)

    {

        Console.WriteLine($"[{i}] = {personas[i].ATexto()}");

    }

}    

Operaciones con  List<T> 

Si has analizado el código anterior, habrás visto que las operaciones con  List<T>  son mucho más
sencillas, legibles y eficientes que con los arrays. Además y más importante, las operaciones de
añadir, borrar o insertar sobre arrays crean un array nuevo cada vez y sobre una lista esto no
sucede porque el objeto lista siempre es el mismo y lo único que hacemos es modificar su
contenido o estado. Veamos estas operaciones con un poco más de detalle:

Inicializar la Lista, para poder usarla.
Es lo primero que debemos hacer es instanciar la lista para luego ir añadiendo elementos. Esto se
hace definiendo una variable de tipo  List<T>  y usando el operador  new  para instanciarla como
objeto de tipo referencia.

Supongamos una lista de cadenas, la inicialización se haría de la siguiente manera...

 

5/24 Programación 1º DAM Unidad 14 IES Doctor Balmis



List<string> textos = new ();

// Puedo darles un tamaño inicial como a los arrays, aunque no es necesario.

List<string> textos = new (5000);

// Puedo definir unos datos iniciales como en los arrays.

List<string> textos = ["texto1", "texto2", "texto3"];

Añadir datos una vez tenemos la lista creada, podemos añadir datos de dos formas:

1. Usando el método de instáncia Add, añadiremos un elemento al final de ella.
 textos.Add("cadena añadida") 

2. Usando el método de instáncia Insert, añadiremos un elemento en la posición que indiquemos.
 textos.Insert(1, "otra cadena") 

Modificar un dato: Como en los arrays, si queremos cambiar directamente el valor de uno de los
datos de la lista, basta con que accedamos a su índice o posición y modifiquemos o le asignemos otro
valor.
 textos[1] = "Hola" 

Eliminar un dato de la lista, se puede hacer de varias formas pero de momento solo vamos a usar la
eliminación a partir del índice.

Para ello usaremos el método de instáncia RemoveAt, elimina el elemento de la posición que
indiquemos:
 textos.RemoveAt(0); 

Recorrer los elementos de la lista a través de un bucle  for  o  forech  como vimos en el ejemplo
anterior. Fíjate que La longitud de la lista ya no es la propiedad  Lenght  como en los arrays, sino
la propiedad  Count .

De momento esto es todo lo que necesitamos saber sobre las listas, ya que en el tema de colecciones
veremos más a fondo su uso y funcionalidades.

Cuidado

Debemos tener en cuenta que estas operaciones cambiarán el tamaño de la lista y por tanto
deberemos llevar cuidado si eliminamos elementos mientras la recorremos o si nos hemos
guardado la posición de algún dato ya que cambiará tras la eliminación de un elemento anterior.



 

6/24 Programación 1º DAM Unidad 14 IES Doctor Balmis



Rol Todo-Parte
La relación "Todo-Parte" es una de las formas más intuitivas de conectar objetos en la programación
orientada a objetos. Para identificarla, nos hacemos la pregunta "¿Tiene un...?". Si la respuesta es
afirmativa, probablemente estemos ante una relación de este tipo, también conocida como
composición o agregación. Por ejemplo, si analizamos un coche, podemos preguntarnos: ¿Un Coche
tiene un Motor? La respuesta es sí. Esto indica que la clase Coche (el todo) contendrá una instancia
o referencia a un objeto de la clase Motor (la parte).

Definición de cardinalidad

La cardinalidad define el número de instancias de una clase que se relacionan con las instancias
de otra. En las relaciones Todo-Parte, especifica cuántas "partes" puede o debe tener un "todo", y a
veces, a cuántos "todos" puede pertenecer una "parte". Esta regla numérica es fundamental para que
el modelo de software sea preciso y coherente con la realidad que representa. Por ejemplo, la relación
entre un CuerpoHumano y un Corazon es de uno a uno (1:1), ya que cada cuerpo tiene un único
corazón.

La cardinalidad puede variar y es clave para definir las reglas del negocio. Un Coche tiene
exactamente cuatro Ruedas (una relación de uno a cuatro, 1:4), mientras que un Pedido puede tener
"uno o muchos" Productos (una relación de uno a muchos, 1..n). Definir esta cardinalidad es crucial, ya
que impone restricciones en el sistema. Por ejemplo, el software no debería permitir crear un coche
con tres ruedas o un pedido sin productos si las reglas no lo contemplan, garantizando así la integridad
de los datos.

Agregación o referencia

Es la relación todo-parte más común, donde
almacenamos una referencia ( Reference Type ) al objeto
'original' en el objeto 'contenedor'.

La agregación indica independencia de los objetos, esto
significa que si desaparece el contenedor, no
desaparece el agregado.

En el ejemplo del diagrama diremos que: 'Un Banco
tendrá de 0 a N Clientes'. Pero al tratarse de una
agregación, al desaparecer un objeto banco, no
desaparecerán con él sus clientes.

Representación UML

Banco

Cliente

agregación

0..n

 

7/24 Programación 1º DAM Unidad 14 IES Doctor Balmis



Ventajas de la agregación 👍

Ahorramos memoria.
Al compartirse la referencia al mismo objeto, mantendremos la integridad referencial.
Mejor manejo de objetos complejos.
Los objetos solo se crean cuando se necesitan.

Desventajas de la agregación 👎

Sobre todo en lenguajes no gestionados como C++. Se puede producir un efecto de Aliasing, si
destruimos el objeto agregado.

Composición o subobjetos

Almacenaremos un Value Object ya sea como
 Value Type  o como  Reference Type , en el objeto
'contenedor'.
La composición indica dependencia de los objetos, esto
significa que si desaparece el contenedor, desaparece
el subobjeto.
En el ejemplo del diagrama diremos que: 'Un Banco
tendrá de 1 a N Sucursales'. Pero al tratarse de una
composición, al desaparecer un objeto banco,
desaparecerán con él sus sucursales.

Representación UML

Banco

Sucursal

composición

1..*

Ventajas de la composición 👍

Evitaremos efectos de Aliasing en lenguajes no gestionados como C++.

Desventajas de la composición 👎

Puede producir un uso excesivo de memoria, ya que se crean objetos que pueden no ser
necesarios.

Nota

Si el subobjeto fuese un Tipo Valor ( Value Type ) creado con  struct  o  readonly record struct 
como por ejemplo:  int ,  DateTime ,  DateOnly ,  TimeOnly ,  Guid , etc. Podremos obviar expresar
la relación de composición, pues ya se sobreentiende que al ser un tipo valor, se almacena el
valor directamente en el objeto contenedor y por tanto es un composición.



 

8/24 Programación 1º DAM Unidad 14 IES Doctor Balmis



Derivado del anterior, no podremos compartir el objeto entre diferentes contenedores, ya que
al ser un subobjeto, solo puede pertenecer a un único contenedor. Por tanto, si necesitamos
mantener la integridad referencial, deberemos hacerlo manualmente.

Ejemplo de Agregación Simple

Vamos a crear una relación las clases de ejemplo que fuimos creando en la unidad 13  Escritor  y
 Libro  de tal manera que el  Libro  va a tener información del  Escritor  a través de una agregación.
Cumple con la máxima de que, si desaparece el libro no tiene porque desaparecer el escritor.

Puedes descargarte el código de ejemplo de la unidad 13 en los siguientes enlaces: Libro.cs,
Escritor.cs

Una posible forma de expresarlo en UML es la siguiente:

Libro

-titulo : string {readOnly}
-año : int {readOnly}
-paginas : ints {readOnly}
-paginasLeidas : int

+ Libro(in titulo : string, in año : int, in paginas : int, in autor : Escritor)
+GetTitulo() : string
+GetAño() : int
+ GetAutor() : Escritor
+GetPaginas() : int
+GetPaginasLeidas() : int
-SetPaginasLeidas(in paginas : int) : void
+Lee(int paginas : int) : int
+/GetPorcentajeLeido() : int
+ATexto() : string

Escritor

-nombre : string {readOnly}
-nacimiento : int {readOnly}
-publicaciones : int

+Escritor(in nombre : string, in nacimiento : int)
+GetNombre() : string
+GetNacimiento() : int
+GetPublicaciones() : int
-SetPublicaciones(in publicaciones : int) : void
+/GetEdad() : int
+ Escribe(in titulo : string) : Libro
+ATexto() : string

tiene como autor

1

Aunque no se especifica en el UML, de la relación se debe deducir que en la clase  Libro  tendremos
una propiedad nueva que podemos denominar Autor y que será de solo lectura.

 

9/24 Programación 1º DAM Unidad 14 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u13_poo_definir_tipos/assets/ejemplos/2_Libro_con_propiedades_ejemplo.cs
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u13_poo_definir_tipos/assets/ejemplos/4_Escritor_con_propiedades_ejemplo.cs


Veamos los cambios que implicará esta relación en la implementación de nuestra clase  Libro .

public class Libro

{

    // ... código omitido por brevedad.

    // Añadiremos la propiedad Autor de solo lectura

    public Escritor Autor { get; }

    // ... código omitido por brevedad.

    // Recibimos la referencia al escritor en el constructor de libro.

    public Libro(

                string titulo,

                int año,

                int paginas,

                Escritor autor)

    {

        // ... código omitido por brevedad.

        // Nos quedamos con la referencia y en ningún caso deberemos hacer un copia de escritor. 

        Autor = autor;

    }

    // ... código omitido por brevedad.

    // Acambiamos Atexto() para la información del escritor a la descripción del libro.

    public string ATexto() => $"""

                Libro

                --------------------------

                Título: {Titulo}

                Año: {Año}

                Páginas: {Paginas}

                Páginas leídas: {PaginasLeidas}

                Autor --------------------

                {Autor.ATexto()}

                """;

}

En cuanto a la clase  Escritor  la única modificación la deberíamos hacer en el método  Escribe()  que
ahora debe pasar el escritor al constructor de  Libro .

    // ... código omitido por brevedad.

    public Libro Escribe(string titulo)

    {

        Range r = 400..800;

        Publicaciones++;

        return new (

            titulo: titulo, 

            año: DateTime.Now.Year, 

            paginas: new Random().Next(r.Start.Value, r.End.Value + 1),

            autor: this); 

    }

 

10/24 Programación 1º DAM Unidad 14 IES Doctor Balmis



Si implementamos y ejecutamos el siguiente
código de test...

public static void Main()

{

    Escritor e = new ("María", 1980);

    Libro l1 = e.Escribe("Programación en C#");

    Console.WriteLine(l1.ATexto());

    Console.WriteLine();

    Libro l2 = e.Escribe("Programación en Java");

    Console.WriteLine(l2.ATexto());

}

Los dos objetos  Libro   l1  y  l2  referenciarán al
mismo objeto  Escritor   e . Es más, si te fijas en
la salida, el escritor al ver la primera descripción
en  l1  solo ha publicado un libro y después de
escribir el segundo libro la descripción de  l2 
mantiene la integridad referencial indicándonos
que ha publicado 2.

Mostrará por consola:

Libro

--------------------------

Título: Programación en C#

Año: 2026

Páginas: 754

Páginas leídas: 0

Autor --------------------

Nombre: María

Nacimiento: 1980

Publicaciones: 1

Libro

--------------------------

Título: Programación en Java

Año: 2026

Páginas: 443

Páginas leídas: 0

Autor --------------------

Nombre: María

Nacimiento: 1980

Publicaciones: 2

Además, en el siguiente diagrama de los objetos creados podemos ver que  l1  y  l2  referencian al
mismo objeto  e  de tipo  Escritor  a través de la propiedad  Autor .

e

       e, l1::autor, l2::autor : Escritor    

nombre = "María"
...

publicaciones = 2    

l1

       l1: Libro    

titulo = "Programación en C#"
...

autor

l2

       l2: Libro    

titulo = "Programación en Java"
...

autor

Puedes descargar el código de ejemplo propuesto para esta agregación del siguiente enlace:
1_agregacion_simple.cs.

 

11/24 Programación 1º DAM Unidad 14 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u14_poo_roles_todo_parte/assets/ejemplos/1_agregacion_simple_ejemplo.cs


Ejemplo de Composición

Para este ejemplo de composición, vamos ha hacer algunos cambios añadiendo tres clases
colaboradoras más y quitando alguna propiedad que ya no va a tener sentido. Dichas clases serán
Value Objects que comentamos en la unidad 13. Su característica de inmutabilidad nos permite
usarlas como subobjetos de forma implícita.

1. Una es el (tipo referencia)  Isbn13  se encargará de asignar un identificador único o id a cada
libro y por tanto convertirlo en una entidad ( <<entity>> ) y es una composición porque obviamente
al desaparecer el libro, desaparece su Isbn. (Enlace a Isbn13.cs). Quitaremos de  Libro  el
método  Lee(..)  y la propiedades  PaginasLeidas  y  PorcentajeLeido  ya que no tienen sentido al
convertirse en una entidad única. El libro, ya no representará un ejemplar concreto de un libro
que se pueda leer, sino un libro en sí mismo como entidad publicada.

2. Otra es el (tipo valor)  DateOnly  definida en la BCL y que sustituiremos por la propiedad  Año 
en la clase  Libro . Será una composición por los mismos motivos que el Isbn. La nueva propiedad
se llamará  FechaPublicacion  asociada a este tipo será.
También la vamos a usar en la clase  Escritor  por lo que vamos ha cambiar la propiedad
 int Nacimiento  por  DateOnly FechaNacimiento  y la convertiremos en una composición.

3. La última es el (tipo valor)  Guid  definida en la BCL y que añadiremos a la clase  Escritor  como
propiedad  Id  para identificar de forma única a cada escritor. Será una composición por los
mismos motivos que el Isbn y hará que el  Escritor  sea una entidad ( <<entity>> ).

«entity»
Libro

-titulo : string {readOnly}
-paginas : int {readOnly}

«entity»
Escritor

-nombre : string {readOnly}

«valueObject»
Isbn13

«dataType»
Guid

«dataType»
DateOnly

tiene como autor

1

es identificado

1

fecha de publicacion

1

fecha de nacimiento

1

es identificado

1

 

12/24 Programación 1º DAM Unidad 14 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u13_poo_definir_tipos/assets/ejemplos/6_isbn_record_class_ejemplo.cs


Si te fijas el diagrama anterior, las relaciones tienen cardinalidad  1..1 , hemos añadido el estereotipo
 <<entity>>  a las clases  Libro  y  Escritor . Así como el estereotipo  <<valueObject>>  a la clases
 Isbn13  y  <<dataType>>  a  DateOnly  y  Guid .

Estas relaciones se transformarán en las siguientes propiedades definidas en las clases...

«entity»
Libro

- isbn : Isbn13 {id}
-titulo : string {readOnly}
- fechaPublicacion : DateOnly {readOnly}
-paginas : int {readOnly}

+ Libro(in isbn: Isbn13, ..., in fecha : DateOnly, ..., in autor : Escritor)
+ GetIsbn() : Isbn
+GetTitulo() : string
+ GetFechaPublicacion() : DateOnly
+GetAutor() : Escritor
+GetPaginas() : int
+ATexto() : string

«entity»
Escritor

- id : Guid {id}
-nombre : string {readOnly}
-fechaNacimiento : DateOnly {readOnly}
-publicaciones : int {readOnly}

+ Escritor(in nombre : string, in fechaNacimiento : DateOnly)
+ GetId() : Guid
+GetNombre() : strings
+ GetNacimiento() : DateOnly
+GetPublicaciones() : int
+ Escribe(in titulo : string, in isbn Isbn13) : Libro
+/GetEdad() : int
+ATexto() : string

tiene como autor

1

Fíjate que hemos añadido el estereotipo  {id}  a  Isbn  y al  Id  del escritor. Este además de indicar
que es un identificador único, lleva implícito que es un de solo lectura ( {readonly} ).

Empecemos con la implementación. Primero vamos a modificar la clase  Libro  para que tenga las
nuevas propiedades y el constructor que recibe los nuevos parámetros:

Aviso

Recuerda borrar el método  Lee(..)  y las propiedades  PaginasLeidas  y  PorcentajeLeido  de la
clase  Libro , ya que no tienen sentido como hemos comentado..



 

13/24 Programación 1º DAM Unidad 14 IES Doctor Balmis



Al modificar el constructor de la clase  Libro , deberemos modificar el método  Escribe()  de la clase
 Escritor  para que cree un objeto  Isbn13  y un objeto  DateOnly  y los pase al constructor de  Libro .
Además, tiene cierto sentido que el método  Escribe()  reciba el  Isbn13  con el que se va a publicar el
libro por parte de algún tipo de editorial o publicador.

Además, vamos a añadir las nuevas propiedades  Id  y  FechaNacimiento  a la clase  Escritor  y
modificar el constructor que las inicializa y otros métodos donde se usen como la propiedad calculada
 Edad  o el método  ATexto() .

public class Libro

{

    // ... código omitido por brevedad.

    public Isbn13 Isbn { get; }

    public DateOnly FechaPublicacion { get; }

    // ... código omitido por brevedad.

    public Libro(

        Isbn13 isbn,

        string titulo,

        DateOnly fechaPublicacion,

        int paginas,

        Escritor autor)

    {

        Isbn = isbn;

        Titulo = titulo;

        FechaPublicacion = fechaPublicacion;

        Paginas = paginas;

        Autor = autor;

    }

    // ... código omitido por brevedad.

    public string ATexto() => $"""

                Libro

                --------------------------

                ISBN: {Isbn.ATexto("-")}

                Título: {Titulo}

                Fecha Publicación: {FechaPublicacion:dd-MM-yyyy}

                Páginas: {Paginas}

                Autor --------------------

                {Autor.Nombre}

                """;

}

4

5

9

11

25

27

 

14/24 Programación 1º DAM Unidad 14 IES Doctor Balmis



public class Escritor

{

    // ... código omitido por brevedad.

    public Guid Id { get; }

    public DateOnly FechaNacimiento { get; }

    public int Edad => DateTime.Now.Year - FechaNacimiento.Year;

    // ... código omitido por brevedad.

    public Escritor(string nombre, DateOnly fechaNacimiento)

    {

        Id = Guid.NewGuid();

        Nombre = nombre;

        FechaNacimiento = fechaNacimiento;

        Publicaciones = 0;

    }

    public string ATexto() => $"""

                    Id: {Id}

                    Nombre: {Nombre}

                    Nacimiento: {FechaNacimiento}

                    Publicaciones: {Publicaciones}

                    """;

    public Libro Escribe(

        string titulo, 

        Isbn13 isbn)

    {

        Range r = 400..800;

        Publicaciones++;

        return new (

            isbn: isbn,

            titulo: titulo, 

            fechaPublicacion: DateOnly.FromDateTime(DateTime.Now),

            paginas: new Random().Next(r.Start.Value, r.End.Value + 1),

            autor: this);

    }

}

4

5

11

18

20

26

31

33

 

15/24 Programación 1º DAM Unidad 14 IES Doctor Balmis



Por último, vamos modificar el  Main()  para que introducir el nuevo objeto  Isbn13  en el momento de
crear el  Libro  y añadir  FechaDeNacimiento  al constructor de  Escritor .

public static void Main()

{

    Escritor e = new(

        nombre: "María Pérez",

        fechaNacimiento: new DateOnly(1985, 5, 15));

    Libro l = e.Escribe(

        titulo: "Programación en C#",

        isbn: new Isbn13(

            prefijo: 978,

            grupoDeRegistro: 84,

            titular: 935489,

            publicacion: 1));

    Console.WriteLine(l.ATexto());

}

Mostrará por consola:

Libro

--------------------------

ISBN: 978-84-935489-1-9

Título: Programación en C#

Fecha Publicación: 13-01-2026

Páginas: 555

Autor --------------------

María Pérez

Fíjate que al mostrar el libro  l  podemos su Isbn y la fecha de publicación como objetos
compuestos y los datos del autor como objeto agregado.

Puedes descargar el código de ejemplo propuesto para esta composición del siguiente enlace:
2_composicion_simple_ejemplo.cs.

 

16/24 Programación 1º DAM Unidad 14 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u14_poo_roles_todo_parte/assets/ejemplos/2_composicion_simple_ejemplo.cs


Vamos tratar de representar una vez más cómo quedarían los objetos creados en el  Main()  en la
memoria para repasar una vez más los conceptos de  value types  y  reference types , así como el
Stack y el Heap.

l

       l: Libro    

DateOnly

FechaPublicacion
Day

Month
Year

Autor
Isbn

e

e, autor: Escritor

...    

isbn: Isbn13

Prefijo
GrupoDeRegistro

Titular
Publicacion

STACK

HEAP

e (ref)

l (ref)

       Escritor    

       ...    

        Isbn   

       ...    

DateOnly

FechaPublicacion
Day

Month
Year

Autor (ref)
Isbn (ref)

Cima
Pila

En el proceso de creación de los objetos tendremos que:

1. En el Stack tendremos dos referencias:
 e  que referencia al objeto de tipo  Escritor   "María" 
 l  que referencia al objeto de tipo  Libro   "Programación en C#" 

2. En el Heap tendremos:
El objeto de tipo  Escritor  referenciado por  e  en el Stack
El objeto valor de tipo  Isbn13  que aunque se ha creado en el main no se guarda ninguna
referencia en el Stack pues se crea al hacer la llamada y por tanta estará referenciado
únicamente a través de la propiedad  Isbn  dentro de  Libro .
El objeto de tipo  Libro  que contiene el objeto valor  DateOnly  que al ser un tipo valor lo
hemos representando formando parte del propio objeto  Libro  y no es una referencia a otro
objeto en el Heap. Esto significa que será destruido junto con el libro.

En el proceso de destrucción de los objetos tendremos que:

1. Se desapilarán las referencias  l  y  e  por lo que:
El objeto de tipo  Libro  ya no estará referenciado por nadie y será liberado en la siguiente
pasada del GC.
El objeto de tipo  Escritor  aún seguirá referenciado por la propiedad  Autor  del objeto  Libro 
y no se liberará.

2. Al liberarse El objeto de tipo  Libro ...
La propiedad  FechaPublicacion  se liberará con él al ser un  value type .
Los objetos de tipo  Isbn13  y  Escritor  dejará de estar referenciados y en la 'siguiente'
pasada del  GC  se liberarán.

 

17/24 Programación 1º DAM Unidad 14 IES Doctor Balmis



Ejemplo de Agregación Múltiple

Vamos ha hacer una última modificación
sobre
2_composicion_simple_ejemplo.cs
para añadir agregación con cardinalidad
 1..n  y  0..n , es decir, que un Libro
puede tener varios autores
(Escritores) y un Escritor puede haber
escrito ningún o varios Libros. Con
esta relación un  Escritor  ya no escribe
directamente un  Libro , sino que lo hará
a través de una Editorial que lo publica.
Por tanto, vamos a eliminar el método
 Libro Escribe(..)  de la clase
 Escritor  y en su lugar crearemos el
método  void Publica(Libro l)  como se
aprecia en el diagrama. Además, la
propiedad  Publicaciones  pasará a ser
calculada a partir de la colección de
libros que tenga el escritor.

La clase  Libro  ya no recibirá un único
 Escritor  en su constructor, sino una
colección de tipo  List<Escritor>  de
escritores que comentamos a principio
del tema.

Por último, aparece una nueva clase
 Editorial  que se encargará de
gestionar la publicación de los libros y
que tendrá una colección de libros

«entity»
Libro

-isbn : Isbn13 {id}
-titulo : string {readOnly}
-fechaPublicacion : DateOnly {readOnly}
-paginas : int {readOnly}

+Libro(in isbn : Isbn13, ..., in autores : List<Escritor>)
+GetIsbn() : Isbn13
+GetTitulo() : string
+GetFechaPublicacion() : int
- GetAutores() : List<Escritor>
+GetPaginas() : int
+ATexto() : string

«entity»
Escritor

-id : Guid {id}
-nombre : string {readOnly}
-fechaNacimiento : DateOnly {readOnly}

+Escritor(in nombre : string, in fechaNacimiento : DateOnly)
+GetId() : Guid
+GetNombre() : string
+GetNacimiento() : DateOnly
+Publica(in libro : Libro) : void
- GetLibrosPublicados() : List<Libro>
+/GetPublicaciones() : int
+/GetEdad() : int
+ATexto() : string

«entity»
Editorial

-cif : string {id}
-nombre : string {readOnly}
-direccion : string

+Editorial(in nombre : string, in fechaFundacion : DateOnly)
+GetCif() : string
+GetNombre() : string
+GetDireccion() : string
-SetDireccion(in direccion : string) : void
+ Publica(in titulo : string, in paginas : int, in autores : List<Escritor>) : Libro
- GetLibrosPublicados() : List<Libro>
+ATexto() : string

tiene como autores

0..n

1..n

publica

0..n

publicados y si te fijas en el diagrama es una entidad  <<entity>>  con un identificador que es la
propiedad  Cif  de tipo  string . Un método factoría
 Libro Publica(string titulo, int páginas, List<Escritor> autores)  que se encargará de crear un
libro y añadirlo a la colección de libros publicados. Además, se encargará de llamar al método
 Publica(Libro l)  de cada uno de los escritores que hayan colaborado en la publicación del libro.

 

18/24 Programación 1º DAM Unidad 14 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u14_poo_roles_todo_parte/assets/ejemplos/2_composicion_simple_ejemplo.cs


Veamos como quedará el código de las clases implicadas que puedes puedes descargar del siguiente
enlace: 3_agregacion_multiple_ejemplo.cs.

Importante

Lo más importante es tener en cuenta que cada relación de agregación múltiple, implicará una
propiedad privada de tipo  List<T>  en la clase que hace de todo.



public class Libro

{

    public Isbn13 Isbn { get; }

    public string Titulo { get; }

    public DateOnly FechaPublicacion { get; }

    public int Paginas { get; }

    private List<Escritor> Autores { get; }

    public Libro(

        Isbn13 isbn, string titulo, DateOnly fechaPublicacion, int paginas,

        List<Escritor> autores)

    {

        Isbn = isbn;

        Titulo = titulo;

        FechaPublicacion = fechaPublicacion;

        Paginas = paginas;

        Autores = [.. autores]; // En este contexto me haré una copia de la lista de autores.

    }

    public string ATexto()

    {

        StringBuilder autoresTexto = new();

        foreach (Escritor autor in Autores)

            autoresTexto.AppendLine($"\t- {autor.Nombre}");

        return $"""

                Libro

                --------------------------

                ISBN: {Isbn.ATexto("-")}

                Título: {Titulo}

                Fecha Publicación: {FechaPublicacion:dd-MM-yyyy}

                Páginas: {Paginas}

                Autores:

                {autoresTexto}

                """;

    }

}

7

11

17

21

23

 

19/24 Programación 1º DAM Unidad 14 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u14_poo_roles_todo_parte/assets/ejemplos/3_agregacion_multiple_ejemplo.cs


Es importante volver a recalcar que la propiedad  LibrosPublicados  es privada y no se puede acceder
directamente desde fuera de la clase  Escritor . Por tanto, la única forma de añadir un libro a la
colección es a través del método  Publica(Libro l) . Esto garantiza un bajo acoplamiento y que por
error alguien manipule la lista de libros publicados directamente.

public class Escritor

{

    public Guid Id { get; }

    public string Nombre { get; }

    public DateOnly FechaNacimiento { get; }

    public int Edad => DateTime.Now.Year - FechaNacimiento.Year;

    private List<Libro> LibrosPublicados { get; }

    public int Publicaciones => LibrosPublicados.Count;

    public Escritor(string nombre, DateOnly fechaNacimiento)

    {

        Id = Guid.NewGuid();

        Nombre = nombre;

        FechaNacimiento = fechaNacimiento;

        LibrosPublicados = [];

    }

    public void Publica(Libro libro)

    {

        LibrosPublicados.Add(libro);

    }

    public string ATexto()

    {

        StringBuilder librosTexto = new();

        foreach (Libro libro in LibrosPublicados)

            librosTexto.AppendLine($"\t- {libro.Titulo}");

        return $"""

                Escritor

                --------------------------

                ID: {Id}

                Nombre: {Nombre}

                Nacimiento: {FechaNacimiento}

                Publicaciones: {Publicaciones}

                Edad: {Edad}

                Libros:

                {librosTexto}

                """;

    }

}

7

8

15

20

 

20/24 Programación 1º DAM Unidad 14 IES Doctor Balmis



public class Editorial

{

    public string Cif { get; }

    public string Nombre { get; }

    public string Direccion { get; }

    private List<Libro> LibrosPublicados  { get; }

    public static bool ValidarCif(string cif) =>

            !string.IsNullOrWhiteSpace(cif)

            && Regex.IsMatch(cif, @"^[A-Z]\d{8}$");

    public Editorial(string cif, string nombre, string direccion)

    {

        Debug.Assert(

            condition: ValidarCif(cif),

            message: $"El CIF {cif} no es válido.");

        Cif = cif;

        Nombre = nombre;

        Direccion = direccion;

        LibrosPublicados = [];

    }

    public string ATexto()

    {

        StringBuilder librosTexto = new();

        foreach (Libro libro in LibrosPublicados)

            librosTexto.AppendLine($"\t- {libro.Titulo}");

        return $"""

                Editorial

                --------------------------

                CIF: {Cif}

                Nombre: {Nombre}

                Dirección: {Direccion}

                Libros Publicados:

                {librosTexto}

                """;

    }

6

20

 

21/24 Programación 1º DAM Unidad 14 IES Doctor Balmis



   public Libro Publica(

        string titulo,s

        int paginas,

        List<Escritor> autores)

    {

        Libro l = new(

            // Creamos un nuevo objeto Isbn13 para el libro.

            isbn: new(

                prefijo: 978,

                grupoDeRegistro: 84,

                titular: 935489,

                publicacion: LibrosPublicados.Count + 1),

            titulo: titulo,

            fechaPublicacion: DateOnly.FromDateTime(DateTime.Now),

            paginas: paginas,

            // Pasamos la lista de autores al libro.

            autores: autores);

        // Añadimos el libro a la colección de libros publicados.

        LibrosPublicados.Add(l);

        // Llamamos al método Publica de cada autor para que se añada a su colección de libros publicados.

        foreach (Escritor autor in autores) autor.Publica(l);

        return l;

    }

}

Veamos ahora la ejecución e implementación de un código de test en el  Main()  que creará una
editorial, varios escritores y publicará dos libros con diferentes autores.

Aviso

Es muy importante dar una dimensión inicial a la colección de libros publicados de la
 Editorial  y el  Escritor  en los constructores. Para ellos hemos usado  LibrosPublicados = [] .
Pues la lista es un objeto que se quedará a null si no lo inicializamos.
Otra posibilidad menos recomendable sería inicializar la lista al definir la propiedad ...

private List<Libro> LibrosPublicados { get; } = [];

Aunque se puede dar un valor inicial a las propiedades al definirlas, solo es recomendable
hacerlos si tenemos más de un constructor, o hay un únicos constructor principal que definimos
al definir el tipo como en los como hicimos con los  record class  simplificados.



 

22/24 Programación 1º DAM Unidad 14 IES Doctor Balmis



public static void Main()

{

    Editorial editorial = new(

        cif: "A12345678",

        nombre: "Editorial Balmis S.L.",

        direccion: "Calle La Cerámica, 12");

    Escritor e1 = new(

        nombre: "María Pérez",

        fechaNacimiento: new(1980, 5, 15));

    Escritor e2 = new(

        nombre: "Juan López",

        fechaNacimiento: new(1975, 3, 20));

    Escritor e3 = new(

        nombre: "Ana García",

        fechaNacimiento: new(1990, 8, 30));

    Libro l1 = editorial.Publica(

        titulo: "Aprendiendo C#",

        paginas: 300,

        autores: [e1, e2]);

    Console.WriteLine(l1.ATexto());

    Console.WriteLine(e1.ATexto());

    Console.WriteLine(e2.ATexto());

    Console.WriteLine(e3.ATexto());

    Console.WriteLine(editorial.ATexto());

    Libro l2 = editorial.Publica(

        titulo: "Roles entre clases",

        paginas: 200,

        autores: [e2, e3]);

    Console.WriteLine(l2.ATexto());

    Console.WriteLine(e1.ATexto());

    Console.WriteLine(e2.ATexto());

    Console.WriteLine(e3.ATexto());

    Console.WriteLine(editorial.ATexto());

}

Salida tras pubicar  e1  y  e2  en el primer libro
 l1 :

Libro

--------------------------

ISBN: 978-84-935489-1-9

Título: Aprendiendo C#

Fecha Publicación: 15-08-2025

Páginas: 300

Autores:

        - María Pérez

        - Juan López

Escritor

--------------------------

ID: c120b322-df35-4a02-ae42-9243778ed65d

Nombre: María Pérez

Nacimiento: 15/05/1980

Publicaciones: 1

Edad: 45

Libros:

        - Aprendiendo C#

Escritor

--------------------------

ID: fd5e5689-f3eb-4833-abb4-a05c91646be2

Nombre: Juan López

Nacimiento: 20/03/1975

Publicaciones: 1

Edad: 50

Libros:

        - Aprendiendo C#

Escritor

--------------------------

ID: 87d415f7-611a-46a2-84ff-85fcdfa8cf5d

Nombre: Ana García

Nacimiento: 30/08/1990

Publicaciones: 0

Edad: 35

Libros:

Editorial

--------------------------

CIF: A12345678

Nombre: Editorial Balmis S.L.

Dirección: Calle La Cerámica, 12

Libros Publicados:

        - Aprendiendo C#

 

23/24 Programación 1º DAM Unidad 14 IES Doctor Balmis



Salida tras pubicar  e2  y  e3  en el segundo libro  l2 :

Libro

--------------------------

ISBN: 978-84-935489-2-6

Título: Roles entre clases

Fecha Publicación: 15-08-2025

Páginas: 200

Autores:

        - Juan López

        - Ana García

Escritor

--------------------------

ID: c120b322-df35-4a02-ae42-9243778ed65d

Nombre: María Pérez

Nacimiento: 15/05/1980

Publicaciones: 1

Edad: 45

Libros:

        - Aprendiendo C#

Escritor

--------------------------

ID: fd5e5689-f3eb-4833-abb4-a05c91646be2

Nombre: Juan López

Nacimiento: 20/03/1975

Publicaciones: 2

Edad: 50

Libros:

        - Aprendiendo C#

        - Roles entre clases

Escritor

--------------------------

ID: 87d415f7-611a-46a2-84ff-85fcdfa8cf5d

Nombre: Ana García

Nacimiento: 30/08/1990

Publicaciones: 1

Edad: 35

Libros:

        - Roles entre clases

Editorial

--------------------------

CIF: A12345678

Nombre: Editorial Balmis S.L.

Dirección: Calle La Cerámica, 12

Libros Publicados:

        - Aprendiendo C#

        - Roles entre clases

 

24/24 Programación 1º DAM Unidad 14 IES Doctor Balmis


