Unidad 14

Descargar estos apunte en pdf o html

indice

= indice
¥ Roles entre clases
= |ntroduccion
¥ Coleccion mejorada List<T»>
= Operaciones con List<T>
¥ Rol Todo-Parte
= Definicion de cardinalidad
¥ Agregacion o referencia
» \entajas de la agregacion &
» Desventajas de la agregacion &
¥ Composicion o subobjetos
= Ventajas de la composicion &
= Desventajas de la composicién &
= Ejemplo de Agregacion Simple
= Ejemplo de Composicion
= Ejemplo de Agregacion Multiple

1/24 Programacion 1° DAM Unidad 14 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u14_poo_roles_todo_parte/u14_poo_roles_todo_parte.pdf
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u14_poo_roles_todo_parte/u14_poo_roles_todo_parte.html

Roles entre clases

Introduccion

En la Programacion Orientada a Objetos (POO),

las clases no existen de forma aislada, sino que

interactuan entre si para construir sistemas

complejos y funcionales. Estas interacciones AGREGACION

-1
similar a como las personas desempefian
diferentes funciones en la sociedad. Un rol COMPOSICION
especifica el propdsito o la tarea que una clase

-1

definen los roles y responsabilidades que cada
clase asume dentro del programa, de manera

se compromete a realizar en su relacion con
otras. Por ejemplo, en un sistema de ventas, una
clase Cliente podria tener el rol de "comprador”,
mientras que una clase Producto asume el rol de

"articulo a la venta".

HERENCIA

l
o)
El

Establecer roles claros es fundamental para un buen disefio de software, ya que promueve una alta

cohesion y un bajo acoplamiento entre las clases. Esto significa que cada clase se enfoca en una tarea
especifica (alta cohesion) y depende lo menos posible de los detalles internos de otras (bajo

acoplamiento), lo que facilita la reutilizacion del codigo, el mantenimiento y la escalabilidad del

sistema. Conceptos como la herencia, la composicion y las interfaces son las herramientas que

permiten a los programadores implementar formalmente estos roles, definiendo contratos y

comportamientos esperados que dan forma a la arquitectura de la aplicacion.

2/24 Programacion 1° DAM Unidad 14 IES Doctor Balmis

Coleccién mejorada List<T>

Antes de adentrarnos en los roles entre clases, es importante mencionar que las colecciones
mejoradas son una caracteristica clave en la POO. Aunque profundizaremos en su uso definicion y
comprension mas adelante, durante el tema vamos utilizar el tipo List<T> en lugar de los arrays
tradicionales T[] pues me van a proporcionar ciertas ventajas y ademas, de esta forma, ya nos
vamos a ir acostumbrando a su uso.

Basicamente su uso es igual a de los arrays, pero con la ventaja de que no es necesario especificar
el tamano al crearla, y se pueden anadir, insertar o eliminar elementos de forma dinamica y
eficiente.

Por ejemplo supongamos una implementacion simple de la clase Persona siguiente:

public class Persona
{
public string Nombre { get; }
public int Edad { get; private set; }
public Persona(string nombre, int edad)
{
Nombre = nombre;
Edad = edad;
}
public string ATexto() => $"{Nombre} {Edad} afios";

3/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

Si tuviéramos que anadir personas a un array vacio redimensionando o insertar elementos en una
posicion concreta o borrar elementos de un array, el cédigo seria algo asi:

public static void Main()

{

Persona[] personas = [];

// Anadir personas al final del array redimensionando
personas = [.. personas, new("Ana", 30)];

personas = [.. personas, new("Luis", 25)];

personas = [.. personas, new("Pedro", 40)];

for (int i = @; 1 < personas.Length; i++)

{

Console.WriteLine(personas[i].ATexto());

// Anadir una nueva persona en la posicidén 2 (Maria)
personas = [.. personas[..2], new("Maria", 35), .. personas[2..]];

foreach (Persona p in personas)

{
Console.WriteLine(p.ATexto());

// Eliminar la persona en la posicién 1 (Luis)
personas = [.. personas[..1l], .. personas[2..]];

foreach ((int i, Persona p) in personas.Index())

{
Console.WriteLine($"[{i}] = {p.ATexto()}");

4/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

Pero el codigo anterior es complejo de leer y bastante ineficiente. Si usamos la clase List<T> de la
siguiente forma, el codigo es mucho mas sencillo y eficiente:

public static void Main()

{

List<Persona> personas = new ();

personas.Add(new Persona("Ana", 30));
personas.Add(new Persona("Luis", 25));
personas.Add(new Persona("Pedro", 490));
for (int i = 9; i < personas.Count; i++)

{

Console.WritelLine(personas[i].ATexto());

personas.Insert(2, new Persona("Maria", 35));

foreach (Persona p in personas)

{
Console.WriteLine(p.ATexto());

personas.RemoveAt(1);
for (int i = @; i < personas.Count; i++)

{
Console.WriteLine($"[{i}] = {personas[i].ATexto()}");

Operaciones con List<T>

Si has analizado el cédigo anterior, habras visto que las operaciones con List<T> son mucho mas
sencillas, legibles y eficientes que con los arrays. Ademas y mas importante, las operaciones de
anadir, borrar o insertar sobre arrays crean un array nuevo cada vez y sobre una lista esto no
sucede porque el objeto lista siempre es el mismo y lo Gnico que hacemos es modificar su
contenido o estado. Veamos estas operaciones con un poco mas de detalle:

Inicializar la Lista, para poder usarla.

Es lo primero que debemos hacer es instanciar la lista para luego ir afiadiendo elementos. Esto se
hace definiendo una variable de tipo List<T> y usando el operador new para instanciarla como
objeto de tipo referencia.

Supongamos una lista de cadenas, la inicializacion se haria de la siguiente manera...

5/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

List<string> textos = new ();

// Puedo darles un tamafo inicial como a los arrays, aunque no es necesario.

List<string> textos = new (5000);

// Puedo definir unos datos iniciales como en los arrays.

List<string> textos = ["textol", "texto2", "texto3"];

Anadir datos una vez tenemos la lista creada, podemos afadir datos de dos formas:

1. Usando el método de instancia Add, afiadiremos un elemento al final de ella.
textos.Add("cadena afadida")
2. Usando el método de instancia Insert, afiadiremos un elemento en la posicidén que indiquemos.

textos.Insert(1, "otra cadena")

Modificar un dato: Como en los arrays, si queremos cambiar directamente el valor de uno de los
datos de la lista, basta con que accedamos a su indice o posicion y modifiquemos o le asignemos otro
valor.

textos[1] = "Hola"

Eliminar un dato de la lista, se puede hacer de varias formas pero de momento solo vamos a usar la
eliminacion a partir del indice.

Para ello usaremos el método de instdncia RemoveAt, elimina el elemento de la posicion que
indiquemos:
textos.RemoveAt(0);

Cuidado

Debemos tener en cuenta que estas operaciones cambiaran el tamafo de la lista y por tanto
deberemos llevar cuidado si eliminamos elementos mientras la recorremos o si nos hemos
guardado la posicion de algun dato ya que cambiara tras la eliminacion de un elemento anterior.

Recorrer los elementos de la lista a través de un bucle for 0 forech como vimos en el ejemplo
anterior. Fijate que La longitud de la lista ya no es la propiedad Lenght como en los arrays, sino
la propiedad count .

De momento esto es todo lo que necesitamos saber sobre las listas, ya que en el tema de colecciones

veremos mas a fondo su uso y funcionalidades.

6/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

Rol Todo-Parte

La relacion "Todo-Parte" es una de las formas mas intuitivas de conectar objetos en la programacion
orientada a objetos. Para identificarla, nos hacemos la pregunta "¢ Tiene un...?". Si la respuesta es
afirmativa, probablemente estemos ante una relacién de este tipo, también conocida como
composicion o agregacion. Por ejemplo, si analizamos un coche, podemos preguntarnos: {Un Coche
tiene un Motor? La respuesta es si. Esto indica que la clase Coche (el todo) contendra una instancia
o referencia a un objeto de la clase Motor (la parte).

Definicion de cardinalidad

La cardinalidad define el nUmero de instancias de una clase que se relacionan con las instancias
de otra. En las relaciones Todo-Parte, especifica cuantas "partes" puede o debe tener un "todo", y a
veces, a cuantos "todos" puede pertenecer una "parte". Esta regla numérica es fundamental para que
el modelo de software sea preciso y coherente con la realidad que representa. Por ejemplo, la relacion
entre un CuerpoHumano y un Corazon es de uno a uno (1:1), ya que cada cuerpo tiene un unico
corazon.

La cardinalidad puede variar y es clave para definir las reglas del negocio. Un Coche tiene
exactamente cuatro Ruedas (una relacion de uno a cuatro, 1:4), mientras que un Pedido puede tener
"uno o muchos" Productos (una relacion de uno a muchos, 1..n). Definir esta cardinalidad es crucial, ya
que impone restricciones en el sistema. Por ejemplo, el software no deberia permitir crear un coche
con tres ruedas o un pedido sin productos si las reglas no lo contemplan, garantizando asi la integridad
de los datos.

Agregacion o referencia

Es la relacion todo-parte mas comun, donde
. . Representacion UML
almacenamos una referencia (Reference Type) al objeto

‘original' en el objeto 'contenedor'.

La agregacion indica independencia de los objetos, esto
significa que si desaparece el contenedor, no
desaparece el agregado.

En el ejemplo del diagrama diremos que: 'Un Banco
tendra de 0 a N Clientes'. Pero al tratarse de una

agregacion, al desaparecer un objeto banco, no
desapareceran con él sus clientes.

7124 Programacién 1° DAM Unidad 14 IES Doctor Balmis

Ventajas de la agregacion

Ahorramos memoria.

Mejor manejo de objetos complejos.

Los objetos solo se crean cuando se necesitan.

Desventajas de la agregaciéon 7

Al compartirse la referencia al mismo objeto, mantendremos la integridad referencial.

e Sobre todo en lenguajes no gestionados como C++. Se puede producir un efecto de Aliasing, si

destruimos el objeto agregado.

Composicién o subobjetos

Almacenaremos un Value Object ya sea como

Value Type O COMO Reference Type , en el objeto
‘contenedor'.

La composicién indica dependencia de los objetos, esto
significa que si desaparece el contenedor, desaparece
el subobjeto.

En el ejemplo del diagrama diremos que: 'Un Banco
tendra de 1 a N Sucursales'. Pero al tratarse de una
composicion, al desaparecer un objeto banco,
desapareceran con él sus sucursales.

Nota

Representacion UML

Si el subobjeto fuese un Tipo Valor (value Type) creado con struct O readonly record struct

como por ejemplo: int , DateTime , DateOnly , TimeOnly , Guid , etc. Podremos obviar expresar

la relacion de composicion, pues ya se sobreentiende que al ser un tipo valor, se almacena el

valor directamente en el objeto contenedor y por tanto es un composicion.

Ventajas de la composicion ¢

o Evitaremos efectos de Aliasing en lenguajes no gestionados como C++.

Desventajas de la composicion

e Puede producir un uso excesivo de memoria, ya que se crean objetos que pueden no ser

necesarios.

8/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

» Derivado del anterior, no podremos compartir el objeto entre diferentes contenedores, ya que
al ser un subobjeto, solo puede pertenecer a un unico contenedor. Por tanto, si necesitamos
mantener la integridad referencial, deberemos hacerlo manualmente.

Ejemplo de Agregaciéon Simple

Vamos a crear una relacion las clases de ejemplo que fuimos creando en la unidad 13 Escritor y
Libro de tal manera que el Libro va a tener informacién del Escritor a través de una agregacion.
Cumple con la maxima de que, si desaparece el libro no tiene porque desaparecer el escritor.

Puedes descargarte el codigo de ejemplo de la unidad 13 en los siguientes enlaces: Libro.cs,
Escritor.cs

Una posible forma de expresarlo en UML es la siguiente:

©) Libro

-titulo : string {readOnly}
-afno : int {readOnly}
-paginas : ints {readOnly}
-paginasLeidas : int

+ Libro(in titulo : string, in afio : int, in paginas : int, in autor : Escritor)
+GetTitulo() : string

+GetAfo() : int

+ GetAutor() : Escritor

+GetPaginas() : int

+GetPaginasLeidas() : int

-SetPaginasLeidas(in paginas : int) : void

+Lee(int paginas : int) : int

+/GetPorcentajeLeido() : int

+ATexto() : string

tiene como autor
1

@ Escritor

-nombre : string {readOnly}
-nacimiento : int {readOnly}
-publicaciones : int

+Escritor(in nombre : string, in nacimiento : int)
+GetNombre() : string

+GetNacimiento() : int

+GetPublicaciones() : int

-SetPublicaciones(in publicaciones : int) : void
+/GetEdad() : int

+ Escribe(in titulo : string) : Libro

+ATexto() : string

Aunque no se especifica en el UML, de la relacion se debe deducir que en la clase Libro tendremos
una propiedad nueva que podemos denominar Autor y que sera de solo lectura.

9/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u13_poo_definir_tipos/assets/ejemplos/2_Libro_con_propiedades_ejemplo.cs
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u13_poo_definir_tipos/assets/ejemplos/4_Escritor_con_propiedades_ejemplo.cs

Veamos los cambios que implicara esta relacién en la implementacion de nuestra clase Libro .

public class Libro

{
// ... codigo omitido por brevedad.
// Anadiremos la propiedad Autor de solo lectura
public Escritor Autor { get; }
// ... cédigo omitido por brevedad.
// Recibimos la referencia al escritor en el constructor de libro.
public Libro(
string titulo,
int afo,
int paginas,
Escritor autor)
{
// ... codigo omitido por brevedad.
// Nos quedamos con la referencia y en ningun caso deberemos hacer un copia de escritor.
Autor = autor;
}
// ... coédigo omitido por brevedad.
// Acambiamos Atexto() para la informacidén del escritor a la descripcioén del libro.
public string ATexto() => $"""
Libro
Titulo: {Titulo}
Afo: {Ano}
Paginas: {Paginas}
Paginas leidas: {PaginaslLeidas}
AEEP cccoosoossssssooaaas
{Autor.ATexto()}
B
}

En cuanto a la clase Escritor la Unica modificacién la deberiamos hacer en el método Escribe() que
ahora debe pasar el escritor al constructor de Libro .

// ... cédigo omitido por brevedad.
public Libro Escribe(string titulo)
{
Range r = 400..800;
Publicaciones++;
return new (
titulo: titulo,
anho: DateTime.Now.Year,
paginas: new Random().Next(r.Start.value, r.End.Value + 1),
autor: this);

10/24 Programacion 1° DAM Unidad 14 IES Doctor Balmis

Si implementamos y ejecutamos el siguiente Mostrara por consola:
codigo de test...

public static void Main()
{ Titulo: Programacién en C#
Ano: 2026

Paginas: 754

Paginas leidas: 0O

Escritor e = new ("Maria", 1980);
Libro 11 = e.Escribe("Programacién en C#");
Console.WriteLine(11.ATexto());

Console.WriteLine(); ,
Nombre: Maria

Nacimiento: 1980
PubTicaciones: 1

Libro 12 = e.Escribe("Programacién en Java");

Console.WriteLine(12.ATexto());

Los dos objetos Libro 11 y 12 referenciaran al

))] .,) . Titulo: Programacidén en Java
mismo objeto Escritor e .Es mas, site fijas en Afio: 2026

la salida, el escritor al ver la primera descripcion Paginas: 443

. . . Padginas Tleidas: 0
en 11 solo ha publicado un libro y después de g
escribir el segundo libro la descripcion de 12 Nombre: Maria

mantiene la integridad referencial indicandonos Nacimiento: 1980
PubTicaciones: 2

que ha publicado 2.

Ademas, en el siguiente diagrama de los objetos creados podemos ver que 11 y 12 referencian al
mismo objeto e de tipo Escritor a través de la propiedad Autor .

I1: Libro
®—> titulo = "Programacion en C#" e, I1::autor, 12::autor : Escritor
aut& - nombre = "Maria"
publicacic.).ﬁes =2
12: Libro
@—> titulo = "Programacién en Java"
aut(-)}—

Puedes descargar el cédigo de ejemplo propuesto para esta agregacion del siguiente enlace:
1_agregacion_simple.cs.

11/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u14_poo_roles_todo_parte/assets/ejemplos/1_agregacion_simple_ejemplo.cs

Ejemplo de Composicion

Para este ejemplo de composicion, vamos ha hacer algunos cambios afadiendo tres clases
colaboradoras mas y quitando alguna propiedad que ya no va a tener sentido. Dichas clases seran
Value Objects que comentamos en la unidad 13. Su caracteristica de inmutabilidad nos permite

usarlas como subobjetos de forma implicita.

1. Una es el (tipo referencia) 1sbn13 se encargara de asignar un identificador unico o id a cada
libro y por tanto convertirlo en una entidad (<<entity>>) y €s una composicion porque obviamente
al desaparecer el libro, desaparece su Isbn. (Enlace a Isbn13.cs). Quitaremos de Libro el
meétodo Lee(..) y la propiedades PaginasLeidas Yy PorcentajeLeido ya que no tienen sentido al
convertirse en una entidad unica. El libro, ya no representara un ejemplar concreto de un libro
que se pueda leer, sino un libro en si mismo como entidad publicada.

2. Otra es el (tipo valor) pateonly definida en la BCL y que sustituiremos por la propiedad Afio
en la clase Libro . Sera una composicion por los mismos motivos que el Isbn. La nueva propiedad
se llamara FechaPublicacion asociada a este tipo sera.

También la vamos a usar en la clase Escritor porlo que vamos ha cambiar la propiedad
int Nacimiento POr DateOnly FechaNacimiento Y la convertiremos en una composicion.

3. La ultima es el (tipo valor) Guid definida en la BCL y que afiadiremos a la clase Escritor como
propiedad Id para identificar de forma Unica a cada escritor. Sera una composicién por los
mismos motivos que el Isbn y hara que el Escritor sea una entidad (<<entity>>).

«entity»
Libro

-titulo : string {readOnly}
-paginas : int {readOnly}

tiene como autor [es identificado
1

«entity»
Escritor

«valueObject»
. j fecha de publicacion

Isbn13

-nombre : string {readOnly}

es identificado fecha de nacimiento

.«data Type»
DateOnly

12/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u13_poo_definir_tipos/assets/ejemplos/6_isbn_record_class_ejemplo.cs

Si te fijas el diagrama anterior, las relaciones tienen cardinalidad 1..1, hemos afadido el estereotipo
<<entity>> alas clases Libro y Escritor . Asi como el estereotipo <<valueObject>> a la clases
Isbnl3 y <<dataType>> a DateOnly Yy Guid .

Estas relaciones se transformaran en las siguientes propiedades definidas en las clases...

«entity»
Libro

-isbn : Isbn13 {id}

-titulo : string {readOnly}

- fechaPublicacion : DateOnly {readOnly}
-paginas : int {readOnly}

+ Libro(in isbn: Isbn13, ..., in fecha : DateOnly, ..., in autor : Escritor)
+ Getlsbn() : Isbn

+GetTitulo() : string

+ GetFechaPublicacion() : DateOnly

+GetAutor() : Escritor

+GetPaginas() : int

+ATexto() : string

tiene como autor
1

«entity»
Escritor

- id : Guid {id}

-nombre : string {readOnly}
-fechaNacimiento : DateOnly {readOnly}
-publicaciones : int {readOnly}

+ Escritor(in nombre : string, in fechaNacimiento : DateOnly)
+ Getld() : Guid

+GetNombre() : strings

+ GetNacimiento() : DateOnly

+GetPublicaciones() : int

+ Escribe(in titulo : string, in isbn Isbn13) : Libro
+/GetEdad() : int

+ATexto() : string

Fijate que hemos afadido el estereotipo {id} a 1sbn y al 1d del escritor. Este ademas de indicar
que es un identificador unico, lleva implicito que es un de solo lectura ({readonly}).

Empecemos con la implementacion. Primero vamos a modificar la clase Libro para que tenga las
nuevas propiedades y el constructor que recibe los nuevos parametros:

Aviso

Recuerda borrar el método Lee(..) y las propiedades PaginasLeidas Yy PorcentajeLeido de la
clase Libro, Ya que no tienen sentido como hemos comentado..

13/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

public class Libro

{

// ... codigo omitido por brevedad.
public Isbnl3 Isbn { get; }
public DateOnly FechaPublicacion { get; }

// ... coédigo omitido por brevedad.
public Libro(

Isbnl3 isbn,

string titulo,

DateOnly fechaPublicacion,

int paginas,

Escritor autor)

Isbn = isbn;

Titulo = titulo;

FechaPublicacion = fechaPublicacion;
Paginas = paginas;

Autor = autor;

}
// ... cédigo omitido por brevedad.
public string ATexto() => $"""

Libro

ISBN: {Isbn.ATexto("-")}
Titulo: {Titulo}
Fecha Publicacién: {FechaPublicacion:dd-MM-yyyy}

Paginas: {Paginas}

{Autor.Nombre}

B

Al modificar el constructor de la clase Libro , deberemos modificar el método Escribe() de la clase
Escritor para que cree un objeto Isbni13 y un objeto DateOnly Yy los pase al constructor de Libro .
Ademas, tiene cierto sentido que el método Escribe() reciba el Isbni3 con el que se va a publicar el

libro por parte de algun tipo de editorial o publicador.

Ademas, vamos a afadir las nuevas propiedades 1d Yy FechaNacimiento a la clase Escritor Y
modificar el constructor que las inicializa y otros métodos donde se usen como la propiedad calculada
Edad 0 el método ATexto() .

14/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

public class Escritor

{
// ... codigo omitido por brevedad.
public Guid Id { get; }
public DateOnly FechaNacimiento { get; }
public int Edad => DateTime.Now.Year - FechaNacimiento.Year;
// ... codigo omitido por brevedad.
public Escritor(string nombre, DateOnly fechaNacimiento)
{
Id = Guid.NewGuid();
Nombre = nombre;
FechaNacimiento = fechaNacimiento;
Publicaciones = 0;
}
public string ATexto() => $"""
Id: {Id}
Nombre: {Nombre}
Nacimiento: {FechaNacimiento}
Publicaciones: {Publicaciones}
5
public Libro Escribe(
string titulo,
Isbnl3 isbn)
{
Range r = 400..800;
Publicaciones++;
return new (
isbn: isbn,
titulo: titulo,
fechaPublicacion: DateOnly.FromDateTime(DateTime.Now),
paginas: new Random().Next(r.Start.Value, r.End.Value + 1),
autor: this);
}
}

15/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

Por ultimo, vamos modificar el Main() para que introducir el nuevo objeto Isbn13 en el momento de

crear el Libro y afnadir FechaDeNacimiento al constructor de Escritor .

public static void Main()
{
Escritor e = new(
nombre: "Maria Pérez",
fechaNacimiento: new DateOnly(1985, 5, 15));
Libro 1 = e.Escribe(
titulo: "Programacién en C#",
isbn: new Isbni13(
prefijo: 978,
grupoDeRegistro: 84,
titular: 935489,
publicacion: 1));
Console.WriteLine(1l.ATexto());

Mostrara por consola:

ISBN: 978-84-935489-1-9
Titulo: Programacion en C#

Fecha Publicacién: 13-01-2026
Paginas: 555

Maria Pérez

Fijate que al mostrar el libro 1 podemos su Isbn y la fecha de publicacion como objetos
compuestos y los datos del autor como objeto agregado.

Puedes descargar el codigo de ejemplo propuesto para esta composicion del siguiente enlace:

2_composicion_simple_ejemplo.cs.

16/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u14_poo_roles_todo_parte/assets/ejemplos/2_composicion_simple_ejemplo.cs

Vamos tratar de representar una vez mas como quedarian los objetos creados en el Main() enla
memoria para repasar una vez mas los conceptos de value types Yy reference types , asi como el
Stack y el Heap.

@\ HEAP
e, autor: Escritor
Escritor [T
v
I: Libro
Cima ____|
DateOnly Pila Isbn |
Day
FechaPublicacion [Month
Year
isbn: Isbn13 DateOnly
Day
Autor— . la| [FechaPublicacionMonth
Isbn———>» Pr_eﬁJO Year
GrupoDeRegistro Autor (refj—~—
Titular Isbn (ref)-|_|
Publicacion

En el proceso de creacion de los objetos tendremos que:

1. En el Stack tendremos dos referencias:
e e que referencia al objeto de tipo Escritor "Maria"
* 1 que referencia al objeto de tipo Libro "Programacién en C#"
2. En el Heap tendremos:
o El objeto de tipo Escritor referenciado por e en el Stack
e El objeto valor de tipo 1Isbn13 que aunque se ha creado en el main no se guarda ninguna
referencia en el Stack pues se crea al hacer la llamada y por tanta estara referenciado
unicamente a través de la propiedad Isbn dentro de Libro .
o El objeto de tipo Libro que contiene el objeto valor pateonly que al ser un tipo valor lo
hemos representando formando parte del propio objeto Libro Y no es una referencia a otro
objeto en el Heap. Esto significa que sera destruido junto con el libro.

En el proceso de destruccion de los objetos tendremos que:

1. Se desapilaran las referencias 1 y e porlo que:
o El objeto de tipo Libro ya no estara referenciado por nadie y sera liberado en la siguiente
pasada del GC.
o El objeto de tipo Escritor aun seguira referenciado por la propiedad Autor del objeto Libro
y no se liberara.
2. Al liberarse El objeto de tipo Libro ...
e La propiedad FechaPublicacion se liberara con él al ser un value type .
e Los objetos de tipo 1Isbn13 Yy Escritor dejara de estar referenciados y en la 'siguiente'
pasada del Gc se liberaran.

17/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

Ejemplo de Agregacion Multiple

Vamos ha hacer una ultima modificacion

«entity»

sobre Editorial

2_composicion_simple_ejemplo.cs

-cif : string {id}
-nombre : string {readOnly}
-direccion : string

para afiadir agregacion con cardinalidad

+Editorial(in nombre : string, in fechaFundacion : DateOnly)

+GetCif() : string

+GetNombre() : string

+GetDireccion() : string

-SetDireccion(in direccion : string) : void

+ Publica(in titulo : string, in paginas : int, in autores : List<Escritor>) : Libro
- GetLibrosPublicados() : List<Libro>

+ATexto() : string

1..n Y o..n, es decir, que un Libro
puede tener varios autores
(Escritores) y un Escritor puede haber
escrito ningun o varios Libros. Con

esta relacion un Escritor ya no escribe

publica
directamente un Libro , sino que lo hara 0..n
- . . . «entity»
a través de una Editorial que lo publica. =

-isbn : 1sbn13 {id}

-titulo : string {readOnly}
-fechaPublicacion : DateOnly {readOnly}
-paginas : int {readOnly}

Por tanto, vamos a eliminar el método
Libro Escribe(..) de la clase

+Libro(in isbn : Isbn13, ..., in autores : List<Escritor>)
+Getlsbn() : Isbn13

+GetTitulo() : string

+GetFechaPublicacion() : int

- GetAutores() : List<Escritor>

+GetPaginas() : int

+ATexto() : string

Escritor Yy en su lugar crearemos el
método void Publica(Libro 1) como se
aprecia en el diagrama. Ademas, la

propiedad Publicaciones pasara a ser

. ., 0..
calculada a partir de la coleccion de i
tiene como autores
libros que tenga el escritor. 1.
«entity»
Escritor

La clase Libro Yya no recibira un unico id : Guid {id}

-nombre : string {readOnly}

Escritor en su constructor, sino una
coleccion de tipo List<Escritor> de
escritores que comentamos a principio
del tema.

Por ultimo, aparece una nueva clase
Editorial que se encargara de
gestionar la publicacion de los libros y
que tendra una coleccion de libros

-fechaNacimiento : DateOnly {readOnly}

+Escritor(in nombre : string, in fechaNacimiento : DateOnly)
+Getld() : Guid

+GetNombre() : string

+GetNacimiento() : DateOnly

+Publica(in libro : Libro) : void

- GetLibrosPublicados() : List<Libro>
+/GetPublicaciones() : int

+/GetEdad() : int

+ATexto() : string

publicados vy si te fijas en el diagrama es una entidad <<entity>> con un identificador que es la
propiedad cif de tipo string . Un método factoria

Libro Publica(string titulo, int paginas, List<Escritor> autores) que se encargara de crear un
libro y afiadirlo a la coleccion de libros publicados. Ademas, se encargara de llamar al método
Publica(Libro 1) de cada uno de los escritores que hayan colaborado en la publicacion del libro.

18/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u14_poo_roles_todo_parte/assets/ejemplos/2_composicion_simple_ejemplo.cs

¢) Importante

Lo mas importante es tener en cuenta que cada relacion de agregacion multiple, implicara una

propiedad privada de tipo List<T> en la clase que hace de todo.

Veamos como quedara el codigo de las clases implicadas que puedes puedes descargar del siguiente

enlace: 3_agregacion_multiple_ejemplo.cs.

public class Libro

{

19/24

public Isbnl3 Isbn { get; }
public string Titulo { get; }

public DateOnly FechaPublicacion { get; }

public int Paginas { get; }

private List<Escritor> Autores { get; }

public Libro(

}

Isbnl3 isbn, string titulo, DateOnly fechaPublicacion, int paginas,
List<Escritor> autores)

Isbn = isbn;

Titulo = titulo;

FechaPublicacion = fechaPublicacion;
Paginas = paginas;

Autores = [.. autores]; // En este contexto me haré una copia de la lista de autores.

public string ATexto()

{

StringBuilder autoresTexto = new();

foreach (Escritor autor in Autores)
autoresTexto.AppendLine($"\t- {autor.Nombre}");

return $"""

Libro

ISBN: {Isbn.ATexto("-")}

Titulo: {Titulo}

Fecha Publicacién: {FechaPublicacion:dd-MM-yyyy}

Paginas: {Paginas}

Autores:

{autoresTexto}

[IRTRTIN
3

Programacién 1° DAM Unidad 14 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u14_poo_roles_todo_parte/assets/ejemplos/3_agregacion_multiple_ejemplo.cs

public class Escritor

{
public Guid Id { get; }
public string Nombre { get; }
public DateOnly FechaNacimiento { get; }
public int Edad => DateTime.Now.Year - FechaNacimiento.Year;
private List<Libro> LibrosPublicados { get; }
public int Publicaciones => LibrosPublicados.Count;
public Escritor(string nombre, DateOnly fechaNacimiento)
{
Id = Guid.NewGuid();
Nombre = nombre;
FechaNacimiento = fechaNacimiento;
LibrosPublicados = [];
}
public void Publica(Libro 1libro)
{
LibrosPublicados.Add(1libro);
}
public string ATexto()
{
StringBuilder librosTexto = new();
foreach (Libro libro in LibrosPublicados)
librosTexto.AppendLine($"\t- {libro.Titulo}");
return $"""
Escritor
ID: {Id}
Nombre: {Nombre}
Nacimiento: {FechaNacimiento}
Publicaciones: {Publicaciones}
Edad: {Edad}
Libros:
{librosTexto}
}
}

Es importante volver a recalcar que la propiedad LibrosPublicados es privada y no se puede acceder
directamente desde fuera de la clase Escritor . Por tanto, la unica forma de anadir un libro a la
coleccion es a través del método Publica(Libro 1) . Esto garantiza un bajo acoplamiento y que por
error alguien manipule la lista de libros publicados directamente.

20/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

public class Editorial

{
public string Cif { get; }
public string Nombre { get; }
public string Direccion { get; }

private List<Libro> LibrosPublicados { get; }

public static bool ValidarCif(string cif) =>
Istring.IsNullOrWhiteSpace(cif)
&& Regex.IsMatch(cif, @"~[A-Z]\d{8}%");

public Editorial(string cif, string nombre, string direccion)
{
Debug.Assert(
condition: ValidarCif(cif),
message: $"E1l CIF {cif} no es vdalido.");
Cif = cif;
Nombre = nombre;
Direccion = direccion;

LibrosPublicados = [];

public string ATexto()
{
StringBuilder librosTexto = new();
foreach (Libro libro in LibrosPublicados)
librosTexto.AppendLine($"\t- {libro.Titulo}");
return $"""
Editorial
CIF: {Cif}
Nombre: {Nombre}
Direccidén: {Direccion}
Libros Publicados:
{librosTexto}

[IRTRTIN
E)

21/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

public Libro Publica(
string titulo,s
int paginas,

List<Escritor> autores)

{
Libro 1 = new(
// Creamos un nuevo objeto Isbnl3 para el libro.
isbn: new(
prefijo: 978,
grupoDeRegistro: 84,
titular: 935489,
publicacion: LibrosPublicados.Count + 1),
titulo: titulo,
fechaPublicacion: DateOnly.FromDateTime(DateTime.Now),
paginas: paginas,
// Pasamos la lista de autores al libro.
autores: autores);
// Ahadimos el libro a la colecciodn de libros publicados.
LibrosPublicados.Add(1);
// Llamamos al método Publica de cada autor para que se anada a su coleccidén de libros publicados.
foreach (Escritor autor in autores) autor.Publica(l);
return 1;
}
}
Aviso

Es muy importante dar una dimensién inicial a la coleccién de libros publicados de la
Editorial Y el Escritor en los constructores. Para ellos hemos usado LibrosPublicados = [] .
Pues la lista es un objeto que se quedara a null si no lo inicializamos.

Otra posibilidad menos recomendable seria inicializar la lista al definir la propiedad ...

private List<Libro> LibrosPublicados { get; } = [];
Aunque se puede dar un valor inicial a las propiedades al definirlas, solo es recomendable

hacerlos si tenemos mas de un constructor, o hay un unicos constructor principal que definimos
al definir el tipo como en los como hicimos con l0s record class simplificados.

Veamos ahora la ejecuciéon e implementacion de un codigo de test en el Main() que creara una
editorial, varios escritores y publicara dos libros con diferentes autores.

22/24 Programacién 1° DAM Unidad 14 IES Doctor Balmis

public static void Main() Salida tras pubicar e1 y e2 en el primer libro

{ 11 :
Editorial editorial = new(
cif: "A12345678",
nombre: "Editorial Balmis S.L.",

direccion: "Calle La Ceramica, 12");

ISBN: 978-84-935489-1-9
Titulo: Aprendiendo C#

Fecha Publicacién: 15-08-2025
Paginas: 300

Autores:

- Maria Pérez
nombre: "Juan Lépez", - Juan Lépez

fechaNacimiento: new(1975, 3, 20));

Escritor el = new(
nombre: "Maria Pérez",
fechaNacimiento: new(1980, 5, 15));

Escritor e2 = new(

Escritor e3 = new(Escritor
nombre: "Ana Garcia",
fechaNacimiento: new(1990, 8, 30)); ID: c120b322-df35-4a02-ae42-9243778ed65d
Nombre: Maria Pérez
Libro 11 = editorial.Publica(Nacimiento: 15/05/1980
titulo: "Aprendiendo C#", Publicaciones: 1
paginas: 300, Edad: 45

autores: [el, e2]); Libros:

- Aprendiendo C#
Console.WriteLine(11.ATexto());
Console.WritelLine(el.ATexto());
Console.WritelLine(e2.ATexto());
Console.WritelLine(e3.ATexto());

Escritor

ID: fd5e5689-f3eb-4833-abb4-a05c91646be?2

Nombre: Juan Lopez

Console.WritelLine(editorial.ATexto()); Nacimiento: 20/03/1975
PubTlicaciones: 1
Libro 12 = editorial.Publica(Edad: 50
titulo: "Roles entre clases”, Libros:
paginas: 260, - Aprendiendo c#
autores: [e2, e3]);
Escritor
Console.WritelLine(12.ATexto());
Console.WriteLine(el.ATexto()); ID: 87d415f7-611la-46a2-84ff-85fcdfa8cf5d
Console.WriteLine(e2.ATexto()); Nombre: Ana Garcia
Console.WritelLine(e3.ATexto()); Nacimiento: 30/08/1990

Console.WriteLine(editorial.ATexto()); Publicaciones: 0
} Edad: 35

Libros:
Editorial

CIF: A12345678
Nombre: Editorial Balmis S.L.
Direccién: cCalle La Ceramica, 12
Libros Publicados:

- Aprendiendo C#

23/24 Programacion 1° DAM Unidad 14 IES Doctor Balmis

Salida tras pubicar e2 y e3 en el segundo libro 12:

ISBN: 978-84-935489-2-6
Titulo: Roles entre clases
Fecha Publicacién: 15-08-2025
Paginas: 200
Autores:

- Juan LOpez

- Ana Garcia

Escritor

ID: c120b322-df35-4a02-ae42-9243778ed65d
Nombre: Maria Pérez
Nacimiento: 15/05/1980
PubTlicaciones: 1
Edad: 45
Libros:
- Aprendiendo C#

Escritor

ID: fd5e5689-f3eb-4833-abb4-a05c91646be2
Nombre: Juan Lépez
Nacimiento: 20/03/1975
Publicaciones: 2
Edad: 50
Libros:
- Aprendiendo C#
- Roles entre clases

Escritor

ID: 87d415f7-61la-46a2-84ff-85fcdfa8cf5d
Nombre: Ana Garcia
Nacimiento: 30/08/1990
Publicaciones: 1
Edad: 35
Libros:
- Roles entre clases

Editorial

CIF: A12345678
Nombre: Editorial Balmis S.L.
Direccién: calle La Ceramica, 12
Libros Publicados:

- Aprendiendo C#

- Roles entre clases

24/24 Programacion 1° DAM Unidad 14 IES Doctor Balmis

