Unidad 13

Descargar estos apunte en pdf o html

indice

= indice
¥ Definiendo tipos de datos en POO
= [ntroduccién
V¥ Definiendo nuestra primera clase a través de CSharp
= Paso 1: Definir los campos (atributos en POO clasica)
¥ Paso 2: Definir los constructores / destructores de objetos
= Referencia implicita this
= Constructor por defecto
= Constructor copia
= Destructor/es
¥ Paso 3: Definir los accesores y mutadores
= Método accesor o getter
= Método mutador o setter
= Tips de diseno de ‘getters'y 'setters’
= Paso 4: Definir métodos u operaciones de la clase
= Paso 5: Crear un pequenio test para nuestra clase (Opcional)
= Resumen de directrices generales de definicion de clases
¥ Sustituyendo los métodos accesores y mutadores por propiedades
» Usando las propiedades definidas
= Sentido del uso de propiedades
= Propiedades calculadas
v Simplificando la definiciéon de propiedades
= Propiedades con cuerpo de expresion
» Propiedades 'autoimplementadas' o ‘automaticas'
¥ Aplicando las simplificaciones a nuestras clases de ejemplo
= Refactorizando con VSCode
¥ Definiendo Value Objects (Objetos Valor)
= Tips para definir un Value Object
¥ Value Object como tipo referecia (Reference Type) en CSharp
= Representaciéon en UML de un Value Object como tipo referencia
= Definir un Value Object por referencia SIMPLIFICADA

1/50 Programacion 1° DAM Unidad 13 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u13_poo_definir_tipos/u13_poo_definir_tipos.pdf
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u13_poo_definir_tipos/u13_poo_definir_tipos.html

Instanciar un Value Object definido por referencia
Comparar dos Value Objects definido por referencia
Copiar un Value Objects definido por referencia
Visualizar un Value Object definido por referencia
Definir un Value Object por referencia EXTENDIDA
¥ Anexo | - Value Object como tipo valor (Value Type) en CSharp

= Un poco de historia y representacion en UML

= Definir un Value Object por valor SIMPLIFICADA

= Uso de un Value Object definido por valor

2/50 Programacion 1° DAM Unidad 13 IES Doctor Balmis

Definiendo tipos de datos en POO

Introduccion

Repasemos a través del siguiente diagrama las definiciones y conceptos iniciales de POO que vimos

en la unidad 10

INMUTABLE
No cambia su estado

MUTABLE las operaciones sobre el
Cambia su estado mismo
através de las dan lugar a nuevos
operaciones. objetos.
v Py
OBJETO
Instancia concreta
del tipo de la clase
'
Definiciones
Basicas
CLASE
Definicién de
un tipo
fcmemm==zzEERT tEEscooL L
ammmmmmmm Lem=TTTT T . ~ o TTEmmmeeeaal -
NOMBRE ATRIBUTOS OPERACIONES ROLES
Definen el estado de un Cambian el estado de Definen las relaciones
objeto un objeto con otras clases

3/50

De ahora en adelante
los denominaremos
con la nomenclatura de
C# CAMPOS

De CLASE
No necesito un objeto
para acceder a ellos.

De INSTANCIA
Pertenecen a la
instancia de un objeto
concreto en memoria.

Programacion 1° DAM Unidad 13

IES Doctor Balmis

De ahora en adelante
los denominaremos
con la nomenclatura de
C# METODOS

De CLASE
No necesito un objeto
para acceder a ellos.

De INSTANCIA
Pertenecen a la
instancia de un objeto
concreto en memoria.

Definiendo nuestra primera clase a través de CSharp

0 Informacion

Para definir una clase en C# seguiremos las convenciones de nomenclatura de
identificadores de Microsoft para C#. Es muy importante conocerlas y seguirlas, pues todos
los programadores del lenguaje la siguen y hace mas facil la lectura del codigo.

Cada lenguaje tiene sus propias convenciones y es imprescindible seguirlas si trabajamos en
proyectos colaborativos. Es mas, debemos adaptarnos a las convenciones de los proyectos en
los que trabajemos, pues no siempre seran las mismas dependiendo de la empresa o del equipo
de desarrollo. Por lo que si has tomado vicios, manias o TOCs, es mejor que los abandones
a partir de ahora y seas escrupuloso con las convenciones siguientes.

Supongamos que queremos definir un tipo que represente libros.
Una posible representacion UML del mismo podria ser:

(©) Libro

-titulo : string {readOnly} Para dibujar los diagramas de clases de UML hemos
-afo : int {readOnly}

-paginas : int {readOnly}
-paginasLeidas : int serviran de forma esquematica para sabes que queremos

+Libro(in titulo : string, in afo : int, in paginas : int) definir a partir del estandar de UML
+Lee(in paginas : int) : int)

+PorcentajeLeido() : int
+ATexto() : string

seguido las convenciones de nombres y tipos de C#. Nos

En la mayoria de lenguajes OO, para definir nuestra clase, seguiremos una plantilla similar a esta:

class <NombreDeLaClase>

{
<campos>
<constructor/es>

<accesores/mutadores>(o <propiedades en C#>)

<métodos>

4/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

https://www.uml-diagrams.org/class-diagrams-overview.html
https://learn.microsoft.com/es-es/dotnet/csharp/fundamentals/coding-style/identifier-names
https://learn.microsoft.com/es-es/dotnet/csharp/fundamentals/coding-style/identifier-names

’ Lee esto antes de seguir !

Es importante que pierdas un tiempo siguiendo los pasos descritos en el tema. Entendiendo el
por qué de cada concepto para entender la posteriores refactorizaciones donde a través de
simplificaciones afiadidas en la sintaxis de los lenguajes Orientados a Objetos modernos quedan
algunos conceptos ocultos o implicitos para que el cédigo sea mas legible y facil de mantener.

Paso 1: Definir los campos (atributos en POO clasica)

Estos, no deben ser nunca accedidos desde fuera de clase. Para ello, antepondremos la clausula
private siempre. Con esto nos aseguraremos seguir el principio de encapsulacion del que
hablamos en la unidad 10.

Fijate que hemos marcado dos campos con la propiedad de atributo de clase {readonly} esto
significa que, una vez creado el objeto, ya no se podran modificar los valores de titulo, afo y
paginas.

Ademas, el convenio de C# es que los campos privados se escriben con _ al principio del nombre del
campo y el resto del nombre en camelcase .

class Libro

{

private readonly string _titulo;
private readonly int _afo;
private readonly int _paginas;

private int _paginasLeidas;

Paso 2: Definir los constructores / destructores de objetos

En C# el método constructor tiene el mismo nombre que la clase y no lleva tipo de retorno (Es
implicito).

o) Tip

Si justo después del nombre de la clase pulsamos clrl+. en VSCode. VSCode nos ofrecera
crear un constructor en la refactorizacién de codigo.

5/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

https://es.wikipedia.org/wiki/Encapsulamiento_(inform%C3%A1tica)
https://www.uml-diagrams.org/property.html

class Libro

{

private
private
private

private

readonly string _titulo;
readonly int _afo;
readonly int _paginas;

int _paginasleidas;

public Libro(string titulo, int afio, int paginas)

{
_titulo = titulo;
_afio = afo;
_paginas = paginas;
_paginaslLeidas = 0;
}
}

Fijate que aunque hemos marcado _titulo Y _afio COMO readonly (solo lectura)los podemos
asignar a un valor inicial en el constructor. Esta es la Unica vez que los podremos asignar. En el
resto de métodos Uunicamente podremos acceder a su valor.

Referencia implicita this

« this es una referencia implicita a la instancia en memoria del objeto que en ese momento
estamos creando o esta accediendo a un método de la clase.

» Nos puede ayudar en algunos lenguajes a diferenciar entre los identificadores de los campos y
los parametros de entrada del constructor si tuviesen el mismo identificador o nomrbe.
Imaginemos que el campo _afio lo lamamos afo sin la barra baja. El parametro de entrada afio
en el constructor se confundiria con el campo que también es accesible. Pero si usamos
this.afio = afio ya no hay confusion, pues this.afo se refiere al campo de la clase y afio al
parametro de entrada del constructor.

Libro | = new Libro("La Biblia",-750, ...);

| : Libro

this >

this._titulo = "La Biblia"
this._afo = -750

6/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/keywords/this

Constructor por defecto

Si no definimos ningun constructor, se define uno por defecto que nos permitira crear instancias de

libro de la siguiente manera.

Libro 1 = new ();

Sin embargo, si definimos un constructor

concreto, dejara de estar disponible el

constructor por defecto, a no ser que lo | : Libro
definamos explicitamente nosotros.

_titulo = null
Pero cuidado, si lo hacemos, esto permitira crear _ano=0
instancias del objeto libro a los valores default _paginas =0

como muestra el objeto instanciado en el _paginasLeidas = 0

diagrama.

Aviso

Estariamos dando la oportunidad de crear objetos libro sin un estado apropiado. Por tanto,
no es conveniente utilizar constructores por defecto, a no ser que por alguna razén
especifica, lo definamos nosotros explicitamente y dispongamos de otras formas de crear
nuestro objetos.

Constructor copia

Se trata de una aproximacion inicial al clonado de objetos mutables. Es un constructor optativo,
que copiara el estado de una instancia de un objeto de la clase que lo define.

Nota

En un principio vamos a implementarlo como un constructor mas desde el punto de vista de
conceptual, o como lo hace C++. Pero esta, no es la forma correcta de implementarlo en C#
y por eso, mas adelante, veremos que para realizar copias en C# usaremos un método especial
llamado clone() que se se llamara también clone() 0 copy() dependiendo del lenguaje OO
que estemos usando.

7150 Programacién 1° DAM Unidad 13 IES Doctor Balmis

https://docs.microsoft.com/es-es/cpp/cpp/copy-constructors-and-copy-assignment-operators-cpp

Una posible implementaciéon del mismo para nuestro ejemplo que podemos lleva a cualquier lenguaje
OO0 puede ser....

// Entra un objeto libro referencia do por 1 que querremos copiar.

public Libro(Libro 1)

{
// No usamos this porque no hay posibilidad de confusion.
_titulo = 1._titulo;
_afo = 1._aho;
_paginas = 1. _paginas;
_paginaslLeidas = 1. paginaslLeidas;
}

Recordemos del tema 5 que si hiciésemos el siguiente codigo...

Libro 11 = new ("Code Complete 2", 2004, 960);

// 12 y 11 son el mismo objeto
12 = 11;

// 13 y 11 son objetos diferentes.
13 = new Libro(11);

12.Lee(10); // Modifica 12 y por ende 11 dejando leidas 10 pdaginas del libro.

13.Lee(25); // Modifica 13 que es una copia en memoria de 11, no afectando por tanto al estado del objeto 11.

11,12 : Libro 13 : Libro
_titulo = "Code Complete 2" _titulo = "Code Complete 2"
_afio = 2004 _afio = 2004
_paginas = 960 _paginas = 960
_paginasLeidas = 10 _paginasLeidas = 25

8/50 Programacion 1° DAM Unidad 13 IES Doctor Balmis

Destructor/es

Cuando un objeto deja de ser referenciado por algun identificador, al cabo de tiempo es eliminado de
la memoria por el Recolector de Basura (Garbage Collector o GC). Esta eliminacion la hara llamando
a su destructor por defecto, el cual nosotros podremos redefinir de tal manera que deje el estado del

objeto a unos valores que no permitan usarlo mas.

Nota

Este paso de definicion de nuestra clase, nos lo saltaremos en todos los lenguajes
gestionados, esto es, que dispongan de un GC para la eliminacion de objetos. Solo se definira

en lenguajes no gestionados como C++.

Si lo tuviésemos que redefinir, no le aplicaremos ningun modificador de acceso (public, private).

class Libro

{

~Libro()

_paginas = int.MinValue;

_paginasLeidas = int.MinValue;

9/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

https://learn.microsoft.com/es-es/cpp/cpp/destructors-cpp

Paso 3: Definir los accesores y mutadores

Usaremos, para entender el concepto, |la forma de hacerlo a través de métodos especificos de
acceso y modificaciéon de forma similar a como hacen algunos lenguajes orientados a objetos como
Java, JavaScript, Go, Rust, PHP o C++.

Método accesor o getter

Para definir un accesor, crearemos un método con el prefijo Get<idcampo> seguido del nombre del
campo eliminando la barra baja y escribiendo el resto del nombre en PascalCasing (la primera letra de
cada palabra en mayuscula). Por ejemplo, para el campo _titulo el método seria

string GetTitulo() .

Método mutador o setter

Para definir el mutador, crearemos un método con el prefijo Set<idCampo> seguido del nombre del
campo eliminando la barra baja y escribiendo el resto del nombre en PascalCasing. Por ejemplo, para
el campo _titulo el método seria void SetTitulo(string titulo) .

Tips de diseio de ‘getters'y ‘'setters'’

. No tengo porqué definirlos todos, solo si los necesito o me los piden.
. Si el campo es readonly solo podra haber accesor (getter).
. Los accesores (getters) llevaran el modificador public por defecto.

AW N

. Los mutadores (setters) llevaran el modificador private por defecto para asegurar la
encapsulacion y solo seran public si fuese necesario, siempre y cuando nos aseguremos que el
objeto queda en buen estado.

5. En lugar de usar directamente los campos dentro de los métodos y constructores, intentaremos

usar los getters y setters definidos.

2

If you're not failing 90% of the time,
then you're probably not working on
sufficiently challenging problems.

2

- Alan Kay.

10/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Nuestra clase Libro quedaria de la siguiente manera:

class Libro

{
// <campos>
// <constructor/es>
public Libro(string titulo, int afio, int paginas)
{
_titulo = titulo;
afo = afo;
_paginas = paginas;
SetPaginasLeidas(0);
}
public Libro(Libro 1)
{
// Constructor Copia. EN los lenguajes 00 modernos se ha sustituido por
// un método especial denominado Clone o Copy, segin en lenguaje. (Lo abordaremos mas adelante)
_titulo = 1l.GetTitulo();
_afio = 1.GetAno();
_paginas = 1l.GetPaginas();
SetPaginasLeidas(l.GetPaginasLeidas());
}
// <accesores/mutadores>
public string GetTitulo()
{
return _titulo;
}
public int GetAno()
{
return _afo;
}
public int GetPaginas()
{
return _paginas;
}
public int GetPaginasLeidas()
{
return _paginasLeidas;
}
private void SetPaginaslLeidas(int paginas)
{
_paginaslLeidas = paginas;
}
}

11/50 Programacion 1° DAM Unidad 13 IES Doctor Balmis

Paso 4: Definir métodos u operaciones de la clase

Desde cualquier método de instancia, podremos acceder a los campos y accesores/mutadores de la
clase. Ya sea a través de this 0 'inferido' si no hay un parametro formal con el mismo id. Sin
embargo, trataremos de usar los accesores/mutadores en lugar de los campos.

Para nuestro ejemplo tendremos...

class Libro

{
public int Lee(int paginas)
{
int leidas = Math.Clamp(paginas, ©, GetPaginas() - GetPaginasLeidas());
SetPaginasLeidas(GetPaginasLeidas() + leidas);
return leidas;
}
public int PorcentajelLeido()
{
return Convert.ToInt32(GetPaginasLeidas() * 100D / GetPaginas());
}
public string ATexto()
{
r'etur‘n $uuu
Titulo: {GetTitulo()}
Afo: {GetAno()}
Paginas: {GetPaginas()}
}
}

12/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Paso 5: Crear un pequeno test para nuestra clase (Opcional)

En este caso, vamos a hacer un pequefo programa que cree una instancia de un objeto libro y
posteriormente lo lea de 300 en 300 paginas.

Libro libro = new ("Code Complete 2", 2004, 960);

Console.WritelLine(libro.ATexto());

const int MAXIMO_PAGINAS_A LEER = 300,
int leidas;

while((leidas = libro.Lee(MAXIMO_PAGINAS A LEER)) > 0)
{

Console.WritelLine($"leidas: {leidas} {libro.PorcentajeLeido()}%");

Resumen de directrices generales de definicidn de clases

PASO 1 PASO 2 PASO 3 PASO 4 PASO 5
Definir Definir Definir Definir Crear
campos constructor/es accesores publicos los métodos un pequerio test
privados El destructor mutadores privados sobre el objeto para nuestros
(Encapsulacién) no es necesario solo cuando sea necesario como publicos métodos.

13/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Ejemplo:

Junto a la clase Libro anterior, vamos a
modelar la clase Escritor suponiendo que un
escritor tiene un nombre , un ano de

nacimiento Y Un numero de publicaciones .

Ademas del constructor y los accesores y @ Escritor

mutadores para sus campos, vamos a definir el -nombre : string {readOnly}
-nacimiento : int {readOnly}

meétodo descripcidon que me muestre sus datos -publicaciones : int

y método Libro Escribe(string titulo) donde +Escritor(in nombre : string, in nacimiento : int)

el escritor creara un libro con el titulo recibido +GetNombre() : string

+GetNacimiento() : int

+GetPublicaciones() : int

Intenta modelarla e implementarla tu -SetPublicaciones(in publicaciones : int) : void
+Escribe(in titulo : string) : Libro

+ATexto() : string

de entre 400 y 800 paginas.

mismo, antes de ver la propuesta de

solucion.

Podria seguir el diagrama de clases UML
adjunto.

La implementacion propuesta siguiendo los pasos y criterios descritos seria la siguiente (trata de
implementarla antes de ver la solucion):

class Escritor

{

private readonly string _nombre;
private readonly int _nacimiento;

private int _publicaciones;

public string GetNombre()

{
return _nombre;
}
public int GetNacimiento()
{
return _nacimiento;
}
public int GetPublicaciones()
{
return _publicaciones;
}
private void SetPublicaciones(int publicaciones)
{
_publicaciones = publicaciones;
}

14/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

public Escritor(string nombre, int nacimiento)

_nombre = nombre;
_nacimiento = nacimiento;
SetPublicaciones(9);

// No hace falta definir el constructor copia pues no vamos a usarlo.

public string ATexto()

{
return $"""
Nombre: {GetNombre()}
Nacimiento: {GetNacimiento()}
Publicaciones: {GetPublicaciones()}
"

}

public Libro Escribe(string titulo)
{
// Para establecer el rango de paginas de sus libros, hemos usado un nuevo tipo
// afadido en C#8 denominado rango (por ver posibilidades del lenguaje).
// Aunque podriamos haber definido simplemente 2 enteros.
// Este rango podria ser incluso un campo que defina una caracteristica de nuestros
// objetos escritor.
Range r = 400..800;
// Incremento el numero de publicaciones del escritor.
SetPublicaciones(GetPublicaciones() + 1);
// Creo un libro, con el ano actual y un numero de paginas aleatoria en el rango.
return new (
titulo: titulo,
ano: DateTime.Now.Year,
paginas: new Random().Next(r.Start.Value, r.End.Value + 1));

Fijate en el método ...

15/50 Programacion 1° DAM Unidad 13 IES Doctor Balmis

class Escritor

{
1 ooc
public Libro Escribe(string titulo)
{
1) coo
return new Libro(...)
}
1 coc
}

Es un método del objeto Escritor que crea un objeto de una clase diferente Libro . Realmente esta
construyendo una instancia de un objeto Libro . A este tipo de métodos se les denomina

método factoria simple porque crea 'construye' como una fabrica un objeto de un tipo diferente al del
objeto que lo invoca.

16/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Sustituyendo los métodos accesores y mutadores por
propiedades

Aunque implementar métodos accesores y mutadores es una forma valida de implementar la
encapsulacion en cualquier lenguaje. Algunos lenguajes, como C#, Python o Swift nos ofrecen otra
forma de hacerlo a través del concepto de propiedad. Estas son una forma de definir un campo con un
getter y un setter asociados, pero con una sintaxis mas limpia y facil de usar. A este tipo de
simplificaciones del cédigo se les denomina Syntactic Sugar, que en espanol se traduce como azucar

sintactico.
Pasaremos de este esquema... a esta otra sintaxis.
class Clase class Clase
{ {
private <Tipo> _idCampo; private <Tipo> _idCampo;
<Tipo> <IdCampo> {
private <Tipo> Get<IdCampo>() set
{ {
return _idCampo; _idCampo = value;
} }
get
public void Set<idCampo>(<Tipo> idCampo) {
{ return _idCampo;
this._idCampo = idCampo; }
} }
} }

En la nueva sintaxis, aparece una nueva palabra reservada value que hace referencia al valor que se
le asigna a la propiedad. Es como el parametro de entrada del setter, pero sin necesidad de definirlo
explicitamente y tomara el tipo del campo asociado a la propiedad.

Nota
La sintaxis anterior tiene adaptaciones conforme ha ido evolucionando en lenguaje, para

simplificar al maximo su uso, segun casos de uso. Mas adelante, una vez tratemos el
concepto de propiedad, abordaremos dichas simplificaciones.

Veamos como aplicar y usar la nueva sintaxis a traves de la clase Escritor que acabamos de

implementar en el ejemplo.

17/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

https://es.wikipedia.org/wiki/Az%C3%BAcar_sint%C3%A1ctico

A través de ella vamos a ver la forma de usar propiedades y como llevar el concepto a las versiones

mas modernas del lenguaje.

class Escritor

{
private readonly string _nombre;
private readonly int _nacimiento;

private int _publicaciones;

Fijate que hemos implementado las propiedades solo con el get porque los campos asociados son
readonly Yy el id de la propiedad es el mismo que el del campo asociado pero sin la barra bajay en

PascalCasing por ejemplo de _nombre a Nombre .

public string Nombre

{
get
{
return _nombre;
}
}
public int Nacimiento
{
get
{
return _nacimiento;
}
}

Para el campo _publicaciones que no es readonly definimos tanto el get como el set . Fijate que,
por defecto y si no nos especifican lo contrario, hemos puesto el set como private para que solo
pueda ser modificado desde dentro de la clase y asi asegurar la encapsulacion.

public int Publicaciones

{
get
{
return _publicaciones;
}
private set
{
_publicaciones = value;
}
}

18/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Usando las propiedades definidas

Para nosotros sintacticamente sera como si estuviéramos accediendo directamente al campo,
pero con el nombre en PascalCasing. Sin embargo, se estara ejecutando el cédigo definido en el
cuerpo de la propiedad, como sucedia al definir los métodos.

Posiblemente ya te hayas dado cuenta pero normalmente, los IDEs o editores como el VSCode nos
ofrecera ayuda ofreciéndonos los miembros de un objetos accesibles en el contexto. Por ejemplo, si
dentro de un método de instancias escribimos this.p el ide nos mostrara los siguente...

this.Publicaciones = @;
/2 Publicaciones int Escritor.Publicaciones {
& _publicaciones

this.p
#? Publicaciones (Campo)|int Escritor._publicaciones X

& _publicaciones

Fijate que la propiedad (publicacién) tiene un icono asociado de una llave inglesa y por el contrario
el campo tiene asociado un icono con una caja azul y ademas nos indicara que se trata de una campo.
Por ejemplo, si completamos el cédigo de la clase Escritor usando la propiedades definidas.

Tendremos el siguiente codigo...

class Escritor

{
public Escritor(string nombre, in DateTime nacimiento)
{
_nombre = nombre;
_nacimiento = nacimiento;
Publicaciones = 9;
}
public string ATexto()
{
return $"""
Nombre: {Nombre}
Nacimiento: {Nacimiento}
Publicaciones: {Publicaciones}
}
public Libro Escribe(string titulo)
{
Range r = 400..800;
Publicaciones++;
return new (titulo: titulo, afo: DateTime.Now.Year,
paginas: new Random().Next(r.Start.Value, r.End.Value + 1));
}
}

19/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Sentido del uso de propiedades

En la unidad 10 y a lo largo de esta unidad hemos hablado del

concepto de encapsulacion y que se conseguia haciendo los

OBJETO
campos privados (private) y definiendo métodos accesores y

mutadores o propiedades. Pero, vamos recapitular y mas aya de

como se definen vamos a tratar de preguntarnos por su sentido. Reallzas

operacion()

Antes de nada vamos a recapitular los los Objetivos de la

Contenido

encapsulacion: oculto

1. Evitar que un cliente de mis clases puedan dejar objetos instanciados de las mismas en un estado
inadecuado.

2. Ocultar detalles de la implementacién de una clase.

3. Disminuir el acoplamiento, esto es, realizar cambios o actualizaciones en la clases sin
preocuparnos como estan siendo usadas.

Pero... ¢ Realmente qué ganamos con hacer SetPublicaciones(@); O Publicaciones = @; en lugar
de _publicaciones = @; dentro de la propia clase?.

Es una pregunta legitima, pues si examinamos el codigo de

Publicaciones = 0;

realmente esta ejecutando

public int Publicaciones

{
// ... codigo omitido por abreviar

private set

{

_publicaciones = value;

que es como hacer _publicaciones = @; . Entonces, ¢ por qué no usar directamente el campo?.

Realmente el ejecutar un bloque de instrucciones que asigna el valor de una campo a otro, cobra
sentido para mantener la encapsulacién. Imagina que por error asignamos un valor negativo a
_publicaciones por que estamos haciendo un _publicaciones--; inadecuado. Silo hacemos
directamente, el objeto quedara en un estado inadecuado, pues un Escritor no puede tener
publicaciones negativas. Sin embargo, si usamos la propiedad Publicaciones Y definimos su set de
la siguiente manera:

20/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

public int Publicaciones

{

private set

{

Debug.Assert(value >= 9, "E1 numero de publicaciones no puede ser negativo");

_publicaciones = value;

De esta manera, al poder ejecutar un bloque de instrucciones previo a la asignacién o acceso,
podemos hacer transformaciones, comprobaciones y lanzar errores si el valor que se le asigna no
es valido. Incluso en un momento dado podriamos dejar el set publico y permitir que el cliente del
objeto pueda asignar un valor a la propiedad.

Pero, ¢ Hacer dejar set publico tiene sentido?...

Permitiria que un cliente del objeto Escritor estableciese que ese escritor ha escrito un libro sin
llamar al método Escribe(string titulo) . Con lo que el estado del objeto Escritor podria ser
inadecuado también por tener mas publicaciones de las que realmente ha escrito. Por tanto, no es
conveniente dejar el set publico en este caso.

Ante la duda, ya comentamos que por defecto los set deberian ser privados. Esto también es debido
a que si lo dejamos publico sin sentido, puede que un monton de clases clientes de un objeto
Escritor empiecen a establecer el numero de publicaciones. Esto también crea acoplamiento pues
si de repente cambiamos de idea y lo queremos hacer privado, quiza su acceso esté ya en un montén
de clases clientes que no podremos modificar. Por tanto, si no tenemos claro que el set de una
propiedad debe ser publico, mejor lo dejamos privado.

Este tipo de reflexiones son las que deberemos hacernos al definir las propiedades, evitando hacer las
definiciones de forma mecanica y sin pensar.

9

Encapsulation ensures that the internal
representation of an object is not
directly accessible from outside,

2

- Martin Fowler.

21/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Propiedades caiculadas

Son Getters o propiedades que no tienen un
campo asociado, sino que calculan su valor a
partir de otros campos o propiedades del objeto.
Por ejemplo, en la clase Escritor podriamos
definir una propiedad Edad que calcule la edad
del escritor a partir de su afio de nacimiento y el
afio actual.

En el diagrama de clases UML, la propiedad
Edad se representaria con un método Getter sin
campo asociado donde el nombre va precedido
del caracter / .

class Escritor

{
public int Edad

{
get
{

return DateTime.Now.Year - Nacimiento;

@ Escritor

-nombre : string {readOnly}
-nacimiento : int {readOnly}
-publicaciones : int

+Escritor(in nombre : string, in nacimiento : int)
+GetNombre() : string

+GetNacimiento() : int

+GetPublicaciones() : int

-SetPublicaciones(in publicaciones : int) : void
+ /GetEdad() : int

+Escribe(in titulo : string) : Libro

+ATexto() : string

Simplificando la definicion de propiedades

Propiedades con cuerpo de expresion

En la unidad 7 ya se mencionaron de pasada. Una forma de simplificar la definicion de propiedades es

usar miembros con cuerpo de expresion. Para srecordar podemos simplificar diciendo que son

aplicables en aquellos métodos que estén formados por una unica expresion o instruccién en

forma de expresion independientemente de si se evaluan algo o a void.

22/50 Programacién 1° DAM Unidad 13

IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/programming-guide/statements-expressions-operators/expression-bodied-members

En ellos, eliminaremos el cuerpo del método (el bloque de llaves) y dejaremos la expresion precedida
del operador => y quitando return si hubiera. Por ejemplo ...

Pasaremos de este esquema... a este otr otro...
public int Suma(int a, int b) public int Suma(int a, int b) => a + b;
{

return a + b;

Veamos como seria la sintaxis si el miembro es una propiedad. Para ello, vamos a partir de una
clase que tiene dos campos y sus respectivas propiedades de acceso que no usan ‘cuerpo de

expresion'.
Pasaremos de este esquema... a esta otra sintaxis mas reducida...
private readonly int _campoil; private readonly int _campol;
private string _campo2; private string _campo2;
public int Campol public int Campol => _campol;
{
get public string Campo2
{ {
return _campol; get => _campo2;
} private set => _campo2 = value;
} }
public string Campo2
¢ . Fijate que la sintaxis es mas simple aun
ge
(si usamos cuerpos de expresion para la
return _campo2; propiedad de un campo de solo lectura
} porque no hace falta ni poner el get .
private set
{
_campo2 = value;
}
}

23/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

https://learn.microsoft.com/es-es/dotnet/csharp/programming-guide/statements-expressions-operators/expression-bodied-members#properties

Propiedades 'autoimplementadas' o 'automaticas’

Algunos lenguajes como C# usan el concepto de propiedades autoimplementadas que hacen que la
declaracion de propiedad sea mas concisa cuando no se requiere ninguna légica adicional en los
descriptores de acceso de la propiedad o estemos creando asi clases ‘ligeras’.

Al declarar una propiedad autoimplementada, el compilador crea por nosotros un campo de
respaldo privado y anénimo al que solamente puede obtenerse acceso a través de los descriptores

de acceso get y set de la propiedad.

Veamos a través de un ejemplo de definicion de una clase Persona simple, como este 'syntactic sugar
hace que la definicion de nuestra clase sea mas concisa. Supongamos pues el siguiente codigo ...

class Persona

{

private readonly string _dni;

private string _nombre;

public string Dni

{
get

{

return _dni;

public string Nombre

{
get
{

return _nombre;

}

private set

{

_nombre = value;

el codigo anterior con las propiedades automaticas pasaria de 25 a 5 lineas y tendria la misma

funcionalidad...

24/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/programming-guide/classes-and-structs/auto-implemented-properties
https://docs.microsoft.com/es-es/dotnet/csharp/programming-guide/classes-and-structs/how-to-implement-a-lightweight-class-with-auto-implemented-properties
https://docs.microsoft.com/es-es/dotnet/csharp/programming-guide/classes-and-structs/how-to-implement-a-lightweight-class-with-auto-implemented-properties
https://docs.microsoft.com/es-es/dotnet/csharp/programming-guide/classes-and-structs/how-to-implement-a-lightweight-class-with-auto-implemented-properties

class Persona

{
public string Dni { get; }

public string Nombre { get; private set; }

Fijate que ya no definimos los campos privados, estara implicito al definir la propiedad. Ademas,
para las propiedades de solo lectura autoimplementadas eliminaremos el modificador set . Esto
nos permite establecer el valor de la propiedad solo en el constructor, lo que es util para mantener
la inmutabilidad.

Esta sintaxis sera la mas concisa, si no vamos ha realizar comprobaciones o transformaciones en
los setter y getters.

25/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Aplicando las simplificaciones a nuestras clases de ejemplo

¢, Como quedaria la clase Escritor aplicando estas simplificaciones?

class Escritor

{
private int _publicaciones;
public string Nombre { get; }
public int Nacimiento { get; }
public int Edad => DateTime.Now.Year - Nacimiento;
public int Publicaciones
{
get => _publicaciones;
private set
{
Debug.Assert(value >= 0, "E1 numero de publicaciones no puede ser negativo.");
_publicaciones = value;
}
}
public Escritor(string nombre, int nacimiento)
{
Nombre = nombre;
Nacimiento = nacimiento;
Publicaciones = 0;
}
public string ATexto() => $"""
Nombre: {Nombre}
Nacimiento: {Nacimiento}
Publicaciones: {Publicaciones}
public Libro Escribe(string titulo)
{
Range r = 400..800;
Publicaciones++;
return new (
titulo: titulo,
ano: DateTime.Now.Year,
paginas: new Random().Next(r.Start.Value, r.End.Value + 1));
}
}

26/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Refactorizando con VSCode

¢, Como quedaria la clase Libro que implementamos al principio de la unidad utilizando propiedades
simplificadas y cuerpos de expresion?

Para hacer este proceso vamos a aplicar la refactorizacion contextual de cédigo con ctrl+. que nos
ofrece VSCode. Para ello, puedes partir de la implmentacién de este enlace (Libro.cs)

1. Convertir un tnico Getter de un campo de solo lectura en una propiedad:

Nos situamos en el método GetTitulo() public string GetTitulo()
. {
y pulsamos ctrl+. . Seleccionamos la return titulo CO
., 3 42 Extraer clase base...
opcion

Reescribir

0 i o i referencia %, Generate Documentation using Copilot
Reemplazar 'GetTitulo' por la propiedad public int GetAo(.° g Cop

% Generate Tests using Copilot

y nos sustituira el método por una L

return _afio; Mas Acciones...
propiedad con el cuerpo de expresién en } Usar cuerpo de expresiones para el método
todo el codigo del proyecto. eferencias | AL AL 1 b

2. Convertir una propiedad normal en automatica (desaparece el campo sociado):

Nos situamos sobre el identificador de la

propiedad que en la imagen de ejemplo
. public string Titulo => _titulo;
es Titulo y pulsamos Ctrl+. .

Correccion rapida

1 referencia
public int GetAd Usar propiedad automatica

Usar propiedad automatica Yy NOS 1 [Corregir todo: Usar propiedad automética]
return _afio;

Seleccionamos la opcién

Supnmir o configurar incidencias

sustituira la propiedad por una propiedad

e

automatica, eliminando el campo et
asociado _titulo .

Podemos repetir los puntos 1y 2 con Ado y Paginas .

3. Convertir un Getter y Setter en una propiedad:

Igual que en el punto 1, nos situamos en f:‘“bm int GetPapinasteldas()

. Extraer
return _paginasl

Z2 Extraer clase base...

el método GetPaginasLeidas() Y)

Reescribir

pulsamos ctrl+. . Pero seleccionamos public void SetPagin & Goieriie pocumenttion using Copilot
1

<% Generate Tests using Copilot

. s _paginasleidas =
la opcion) Més Acciones..

Usar cuerpo de expresiones para el método

Reemplazar 'GetPaginasLeidas' y 'SetPagine i ...
public Libro(string [

para que reemplace ambos métodos. int afio,

Reemplazar 'GetPaginasLeidas' por la propiedad

Reemplazar 'GetPaginasLeidas' y "SetPaginasLeidas’ por la propiedad l

Pero ahora cdmo vamos a afiadir control de cambios en el setter no definiremos una propiedad
automatica, sino que pasaremos de ...

27/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u13_poo_definir_tipos/assets/ejemplos/1_Libro_sin_propiedades_ejemplo.cs

public int PaginasLeidas { get => _paginasLeidas; set => _paginasLeidas = value; }

a comprobar que no leamos paginas negativas o mas paginas de las que tiene el libro
definiremos la propiedad de la siguiente manera:

public int PaginasLeidas

{
get => _paginaslLeidas;
set
{
Debug.Assert(
condition: value »>= 0,
message: "Paginas leidas negativas.");
Debug.Assert(
condition: value <= Paginas,
message: "Paginas leidas mayor que el total de paginas.");
_paginaslLeidas = value;
}
}

4. Convertir un métodos candidatos a propiedad calculada:

Por ejemplo el método de de la clase Libro :

public int PorcentajelLeido()

{
return Convert.ToInt32(GetPaginasLeidas() * 100D / GetPaginas());

vemos que al ser una unica expresion y no recibir ningun tipo de parametro es candidato a convertirse

en una propiedad calculada. Para ello, nos situamos en el método y pulsamos ctri+.

la opcion Reemplazar 'PorcentajeLeido' por la propiedad Yy nos sustituira el método por una propiedad

con el cuerpo de expresion siguiente...

public int PorcentajeLeido => Convert.ToInt32(PaginasLeidas * 100D / Paginas);

. Por tanto,

. Seleccionamos

En el siguiente enlace (Libro.cs) puedes descargar la clase libro donde hemos aplicado las

refactorizaciones anteriores.

28/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u13_poo_definir_tipos/assets/ejemplos/2_Libro_con_propiedades_ejemplo.cs

«” Ampliacién opcional:

lenguajes como Python o Kotlin?

Python:

class Libro:

self. titulo = titulo
self._anyo = anyo
self. paginas = paginas

self. paginas_leidas = ©

@property
def titulo(self) -> str:
return self. titulo
@property
def anyo(self) -> int:
return self._anyo
@property
def paginas(self) -> int:
return self. paginas
@property
def paginas_leidas(self) -> int:
return self._paginas_leidas

@paginas_leidas.setter

self._paginas_leidas = value
@property
def porcentaje_leido(self) -> int:
if self.paginas == 0:
return 100

def lee(self, paginas: int) -> int:
leidas =
self.paginas_leidas += leidas
return leidas

def a_texto(self) -> str:

return """
Titulo: {self.titulo}
Afio: {self.anyo}
Paginas: {self.paginas}

Paginas leidas: {self.paginas_leidas}

29/50 Programacion 1° DAM Unidad 13

def _init_ (self, titulo: str, anyo: int, paginas:

def paginas_leidas(self, value: int):

IES Doctor Balmis

¢, Serias capaz de reconoces los elementos de de nuestra definicion de Libro en C# en otros

int):

assert value >= 0, "E1l numero de paginas leidas no puede ser negativo."

assert value <= self.paginas, "El numero de paginas leidas no puede ser mayor que las del libro."

return int(self.paginas_leidas * 100 / self.paginas)

max(@, min(paginas, self.paginas - self.paginas_leidas))

) A
}
}
}
30/50

def main():
libro = Libro("Code Complete 2", 2004, 960)
print(libro)
MAXIMO_PAGINAS_A LEER = 300
while (leidas := libro.lee(MAXIMO_PAGINAS A LEER)) > @:

print(f"leidas: {leidas} {libro.porcentaje_leido}%")

if __name__ == "_main__":
main()
Kotlin:
import kotlin.math.min

class Libro(
val titulo: String,
val anyo: Int,

val paginas: Int

var paginaslLeidas: Int = ©

set(value) {
require(value >= 0) { "ELl numero de paginas leidas no puede ser negativo." }
require(value <= paginas) { "El numero de paginas leidas no puede ser mayor que las del libro.

field = value

val porcentajelLeido: Int

get() {
if (paginas == 0) return 100
return (paginasLeidas * 100.0 / paginas).toInt()

fun lee(paginasALeer: Int): Int {

val leidas = min(paginasALeer, paginas - paginasLeidas).coerceAtLeast(0)
paginasLeidas += leidas
return leidas

override fun toString(): String {

return """
Titulo: $titulo
Afo: $anyo

Paginas: $paginas
Paginas leidas: $paginasLeidas
""" trimIndent()

Programacion 1° DAM Unidad 13 IES Doctor Balmis

fun main() {
val libro = Libro("Code Complete 2", 2004, 960)
println(libro)

val maximoPaginasAlLeer = 300
while (true) {
val leidas = libro.lee(maximoPaginasALeer)
if (leidas == @) break
println("leidas: $leidas ${libro.porcentajeLeido}%")

Ejemplo:

Vamos a definir una clase en C# para simular el comportamiento de un motor de gasolina,
encapsulando sus propiedades y funcionalidades principales. Para ello, crearemos la clase
MotorGasolina que cumplird con las siguientes especificaciones:

1. Campos y Propiedades:

e cCilindrada (entero): Representa la cilindrada del motor en centimetros cubicos (cc).
Debe ser una propiedad publica de solo lectura, inicializada unicamente a través del
constructor.

e Cilindros (entero): Indica el numero de cilindros del motor. También debe ser una
propiedad publica de solo lectura, establecida en el constructor.

e Revoluciones (entero): Almacena las revoluciones por minuto (RPM) actuales del motor.
Con las condiciones siguientes:

o No puede tener un valor negativo.
o No puede superar un maximo calculado como Cilindrada * Cilindros * 10 .

e Encendido (booleano): Indica si el motor esta encendido o apagado. Generaremos un
error si se intenta cambiar el estado del motor a uno que ya tiene.

e consumo (double): Una propiedad que calcula el consumo de combustible en "L/7100km"
basandose en la siguiente férmula:

Consumo = (Revoluciones/500.0) * (Cilindrada/1000.0) * Cilindros * 0.2

e Estado (string): Una propiedad que devuelve una cadena de texto multilinea con el
estado actual del motor, incluyendo cilindrada, cilindros, revoluciones, estado de
encendido y consumo (formateado a dos decimales).

2. Métodos:
e Enciende() : Cambia el estado del motor a encendido y establece las revoluciones a un

ralenti de 800 RPM.

31/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

e Apaga() : Cambia el estado del motor a apagado y establece las revoluciones a 0 RPM.

e DarGas(int revoluciones) : Aumenta las revoluciones actuales segun el parametro
revoluciones especificado.

e QuitarGas(int revoluciones) : Disminuye las revoluciones actuales segun el
parametro revoluciones . Las revoluciones nunca deben bajar del ralenti (800 RPM)
mientras el motor esté encendido.

3. Programa de Prueba (Program.cs):
Crea un programa principal (Main) para
demostrar el funcionamiento de la clase

MotorGasolina con la siguiente secuencia de (© wotorGasoina

-cilindrada : int {readOnly}

acciones: -cilindros : int {readOnly}
-encendido : bool
o Crea una objeto motor con 1600cc y 4 -revoluciones : int
cilindros. +MotorGasolina(in cilindrada : int, in cilindros : int)
L +GetCilindrada() : int
o Muestra el estado inicial del motor. +GetCilindros() : int

+GetEncendido() : bool

* Enciende el motor y muestra su nuevo -SetEncendido(in encendido : bool) : void

estado. +GetRevoluciones() : int
L. -SetRevoluciones(in revoluciones : int) : void
e Aumenta el régimen del motor en 2000 +/GetConsumo() : dpuble
RPM y muestra el estado. +/GetEstado() : string
+Enciende() : void
e Disminuye el régimen del motor 1000 +Apagal() : void

+DarGas(in revoluciones : int) : void
+QuiarGas(in revoluciones : int) : void

RPM y muestra el estado.

» Finalmente, apaga el motor y muestra
su estado final.

Vamos explicar el proceso de definicion de la clase en C# pero puedes descargar el cédigo
completo de la misma de ets enlace MotorGasolina.cs.

Empezaremos pues definiendo el estado con las propiedades de solo lectura automaticas y
aquellos campos que no se pueden definir como propiedades automaticas, como _encendido Yy
_revoluciones por tener control al establecer su valor.

public int Cilindrada { get; }
public int Cilindros { get; }
private bool _encendido;

private int _revoluciones;

Para definir las propiedades de Revoluciones y Encendido puedo usar la refactorizacion de
VSCode que hemos visto anteriormente. Por ejemplo, nos situamos encima del campo
_encendido y pulsamos ctrl+. . Seleccionamos la opcion

Encapsular campo 'Encendido' y usar la propiedad. Nnos generara el siguiente codigo:

32/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u13_poo_definir_tipos/assets/ejemplos/3_MotorGasolina_ejemplo.cs

public bool Encendido { get => _encendido; set => _encendido = value; }

que cambiaremos por ...

public bool Encendido

{
get => _encendido;
private set
{
Debug.Assert(
condition: value != _encendido,
message: "El motor ya estd en el estado solicitado.");
_encendido = value;
}
}

un proceso similar haremos con el campo _revoluciones quedando asi:

public int Revoluciones

{
get => _revoluciones;
private set
{
int maxRevoluciones = Cilindrada * Cilindros * 10;
Debug.Assert(
condition: value >= 0 && value <= maxRevoluciones,
message: $"Las revoluciones deben estar entre @ y {maxRevoluciones}.");
_revoluciones = value;
}
}

Las proiedades calculadas consumo y Estado las definiremos cuerpo de expresion y multilinea a
partir de el valor de otras propiedades. Fijate que no accedemos al valor de los campos
directamente, sino a través de las propiedades que hemos definido.

public double Consumo => Revoluciones / 500.0 * (Cilindrada / 1000.0) * Cilindros * 0.2;

public string Estado => $"""
Cilindrada: {Cilindrada} cc
Cilindros: {Cilindros}
Revoluciones: {Revoluciones} RPM
Encendido: {Encendido}
Consumo: {Consumo:F2} L/100km

[IRTRTEN
>

33/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Definimos el unico constructor de la clase, que inicializa las propiedades de solo lectura y los
campos privados. Fijate que el campo _revoluciones se inicializa a 0 y el campo _encendido a
false pero no usamos las propiedades porque, por ejemplo, produciria un error al intentar

establecer el estado del motor a apagado cuando ya lo esta.

public MotorGasolina(int cilindrada, int cilindros)

{
Cilindrada = cilindrada;
Cilindros = cilindros;
_revoluciones = 0;
_encendido = false;

}

Los métodos o operaciones que realiza el motor las podemos definir de la siguiente manera segun

las especificaciones:

public void Enciende()

{

Encendido = true;

Revoluciones = 800;

public void Apaga()
{

Encendido = false;

Revoluciones = 9;

Por ultimo, los métodos DarGas(int revoluciones) Yy QuitarGas(int revoluciones) que aumentan
o disminuyen las revoluciones del motor, asegurando que no se bajen de 800 RPM mientras el
motor esté encendido comprobaran que el motor esté encendido. Fijate que el control del
estado del estado de la propiedad revoluciones ya se hace en el setter y no hara falta
repetirlo en cualquier método donde se asigne un valor a la propiedad Revoluciones .

public void DarGas(int revoluciones)

{
Debug.Assert(
condition: Encendido,
message: "El motor debe estar encendido para dar Gas.");
Revoluciones += revoluciones;
}

34/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

public void QuitarGas(int revoluciones)

{
Debug.Assert(
condition: Encendido,
message: "E1 motor debe estar encendido para quitar Gas.");
Revoluciones = Math.Max(800, Revoluciones - revoluciones);
}

Ya podemos usar la clase MotorGasolina
asegurandonos que el estado del motor se mantiene Estado inicial del motor:
CiTindrada: 1600 cc

Cilindros: 4
lanza un error. Si impolementamos el programa de Revoluciones: 0 RPM

adecuado y cualquier operacion incorrecta se detecta y

prueba de las especificaciones anteriores, tendremos Encendido: False
consumo: 0,00 L/100Km

los siguientes codigo y salida por consola:
Encendiendo el motor...
Cilindrada: 1600 cc
Cilindros: 4
Revoluciones: 800 RPM
Encendido: True
consumo: 2,05 L/100Km

MotorGasolina motor = new (cilindrada: 1600, cilindros: 4);

Console.WritelLine("Estado inicial del motor:");

Console.WritelLine(motor.Estado);

Console.WriteLine("\nEncendiendo el motor..."); Aumentando revoluciones. ..
oAZI ol G A2 Cilindrada: 1600 cc
Console.WritelLine(motor.Estado); Cilindros: 4

Revoluciones: 2800 RPM
Console.WritelLine("\nAumentando revoluciones..."); Encendido: True
motor.DarGas(2000); consumo: 7,17 L/100Km

Console.WritelLine(motor.Estado);
Reduciendo revoluciones...

Console.WriteLine("\nReduciendo revoluciones..."); Cilindrada: 1600 cc

motor.QuitarGas(1000); Cilindros: 4

Console.Writeline(motor.Estado); Revoluciones: 1800 RPM
Encendido: True

Console.WriteLine("\nApagando el motor..."); Consumo: 4,61 L/100Km

motor.Apaga();

Apagando el motor...
Cilindrada: 1600 cc
Cilindros: 4
Revoluciones: 0 RPM
Encendido: False
consumo: 0,00 L/100Km

Console.WritelLine(motor.Estado);

35/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Definiendo Value Objects (Objetos Valor)

Los value Objects son una definicion conceptual facil del condunfir por muchos motivos con los
Tipos Valor (value Types) que vimos en la unidad 12. Por eso debes prestar atencion para entender
la diferencia entre ambos conceptos. Podriamos simplificar diciendo que los value Types o tipos
valor son una forma de implementar los value Objects pero hay otras formas dependiendo del
lenguaje que usemos porque no todos los lengajes permiten definir value Types .

El concepto de Value Object fue acufiado por el Ingeniero de Software Martin Fowler en el contexto
del DDD (Domain Driven Design) que es un marco de trabajo para el desarrollo de software que se
centra en la definicion de un modelo de clases y relaciones entre ellas para representar el
dominio del problema que se esta resolviendo. En este contexto, los value Objects son objetos
que representan un valor o una propiedad en el dominio y no tienen identidad propia, ni estado. Es
decir, dos instancias de un value Object con los mismos valores son consideradas iguales.

Tips para definir un Value Object
Estas son las reglas que deberemos seguir para saber si queremos definir un value object :

1. Deberian ser inmutables, esto es, cualquier operacion sobre un value object deberia producir
un nuevo value object con el nuevo valor en lugar de modificar el existente.

2. De lo anterior deberemos deducir que las propiedades o campos que definan deberian ser
value object .

3. No deberian tener ningun campo marcado con el stereotipo {id} que haga a los objetos unicos.

4. Los objetos representan entidades completamente intercambiables. Por ejemplo...

e Un simple valor entero 5 es intercambiable por otro 5 . Sigo teniendo el mismo ‘valor’.

e Un objeto billete de 5€ es intercambiable por otro billete de 5€ . Sigo teniendo la misma
cosa. El mismo 'valor’.

e Un objeto naipe con el 7 de picas es intercambiable por otro 7 de picas . Puedo
intercambiarlo por otra carta igual y ademas es inmutable porque si cambiara su valor seria
otra carta completamente diferente.

e Un objeto IP con el valor 192.168.0.1 es intercambiable por otro 192.168.0.1 .

e Una objeto coordenada de la consola con los valores X (columna) = 40 y Y (fila) = 10 €S
intercambiable con otro objetos con los mismos valores.

e Un objeto Fecha 21/e3/2e3e es intercambiable por otro objeto fecha idéntico. Seguiria
teniendo el mismo valor.

5. Tienen un constructor principal que recibe todos los valores necesarios para definir el objeto.
6. Deberian tener un método de comparacion de igualdad para comparar si dos objetos son iguales
en profundidad, esto es, son iguales todas sus propiedades.

36/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

https://martinfowler.com/bliki/ValueObject.html
https://es.wikipedia.org/wiki/Martin_Fowler
https://martinfowler.com/bliki/DomainDrivenDesign.html

Dependiendo del lenguaje de programacion que usemos, podemos definir los value Objects de
diferentes formas.

Existen lenguajes como JavaScript donde tenemos que ser nosotros, al definir una ‘clase normal’,
quien le demos las caracteristicas de un value Object . En otros lenguajes, podemos usar palabras
clave especificas del lenguaje pcomo struct , record, data class , etc para darle las caracteristicas
de forma directa.

Pero es muy importante que distingamos si estamos definiendo un tipo valor (value Type) que se
almacenan en la pila (Stack) o un tipo referencia (Reference Types) que se almacenan en la memoria
monton (Heap) como ya hemos comentado en mas de una ocasion.

Comparativa palabras reservadas especificas para definir Value Objects en diferentes lenguajes y
como se almacenan en memoria:

C# readonly record struct
Swift struct
.~=1 ComoTipoValor fF===-- C++ struct
. Rust struct

J Go struct
Value Object |43

“ C# record class
Java record
Kotlin data class
Python @dataclass

Fijate que en algunos lenguajes no se pueden definir como tipos valor (value Types).

2

Los Value Objects son el camino a la
inmutabilidad, y la inmutabilidad es el
camino a la simplicidad concurrente.

»

- Greg Young

37/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Value Object como tipo referecia (Reference Type) en CSharp

Es lo mas comun y recomendable ya que lo vamos a poder hacer en todos los lenguajes. Para
ello, al definir la clase deberemos cumplir con las reglas de lI0s value Objects Yy en algunos de ellos

como C#, Java, Python o Kotlin vamos a disponer incluso de una palabra reservada que me permitira

definirlos de forma mas sencilla.

Representacion en UML de un Value Object como tipo referencia

No tienen una representacion directa en UML,
pero podemos representarlos como una clase
normal donde los campos sean privados y
{readonly} Yy ninguno de ellos tenga el
estereotipo {id} . Solo tengamos un constructor
que reciba todos los valores necesarios para
definir el objeto y un método de comparacion de
igualdad.

«valueObject»
Punto2D

-x : double {readOnly}
-y : double {readOnly}

+Punto2D(x : double, y : double)
+GetX() : double

+GetY() : double

+Equals(p : Punto2D) : boolean

Definir un Value Object por referencia SIMPLIFICADA

En C# podemos definir un value object por referencia (como reference type) con la palabra

reservada record class O simplemente record que es una forma de definir una clase inmutable con

propiedades de solo lectura. Puedes ver la documentacion oficial en el siguiente enlace Record types.

La sintaxis mas compactas para definirlos seria la siguiente:

public record class TipoReferencia(Tipol Propiedadl, Tipo2 Propiedad2, ...)

{

public record class TipoReferencia(Tipol Propiedadl, Tipo2 Propiedad2, ...);

Fijate que con solo una linea hemos definido un TipoReferencia con dos propiedades de solo lectura

Propiedadl Y Propiedad2 Yy ademas un unico constructor que recibe los valores de las propiedades.

Veamos un ejeplo mas concreto implementando la definicidn de Punto2D usando record class .

38/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/builtin-types/record

public record class Punto2D(double X, double Y)

{
public double Distancia(Punto2D p) => Math.Sgrt(Math.Pow(X - p.X, 2) + Math.Pow(Y - p.Y, 2));

Cuidado

Esta definicion simplificada solo la usaremos cuando NO tenemos que realizar
comprobaciones en los valores de las propiedades. Pues sea cual sea el valor que tengan el
objeto estara correctamente definido.

Instanciar un Value Object definido por referencia

Si queremos crear una instancia de Punto2D lo haremos como si fuera una clase normal:

Punto2D pl = new(X: 10, Y: 20);
Punto2D p2 = new(X: 10, Y: 20);
Punto2D p3 = new(X: 30, Y: 20);
Punto2D p4 = p3;

Comparar dos Value Objects definido por referencia

Aunque p1 y p2 son dos instancias diferentes, si comparamos sus valores, seran iguales porque
los record implementan automaticamente la comparacién de igualdad basandose en los valores de
sus propiedades. Podremos usar tanto Equals como los operadores == 1= para comparar dos
instancias de Punto2D y obtendremos el mismo resultado.

Por tanto, podemos comparar dos instancias de punto2p de la siguiente manera:

Console.WritelLine(ReferenceEquals(pl, p2)); // False, porque pl y p2 son diferentes instancias

Console.WritelLine(pl.Equals(p2)); // True, porque los valores de X e Y son iguales.
Console.WriteLine(pl == p2); // True, porque los valores de X e Y son iguales.
Console.WriteLine(pl != p2); // False, porque los valores de X e Y son iguales.

Console.WriteLine(ReferenceEquals(p2, p3)); // False, porque p2 y p3 son diferentes instancias

Console.WritelLine(p2.Equals(p3)); // False, porque los valores de X e Y son diferentes.

Console.WritelLine(ReferenceEquals(p3, p4)); // True, porque p3 y p4 son la misma referencia
Console.WriteLine(p3.Equals(p4)); // True, porque los valores de X e Y son iguales.

39/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Copiar un Value Objects definido por referencia

Puesto que son tipos referencia, si queremos hacer una copia no podremos hacer una simple
asignacion con =, pero dispondremos de la palabra reservada with que nos permite crear una copia
e incluso momofificar en la copia alguna de sus propiedades. Logicamente si fueramos a modificar el
valor de todas las propiedades, podriamos hacer una copia con new pero si solo queremos
modificar una de ellas es mas sencillo usar with .

Punto2D p5 = pl with { };

Punto2D pé

pl with { X = p1.X + 15 };

Cuidado

La copia con with solo la podremos usar si hemos definido el record class con la sintaxis
simplificada y no nos importa modificar el valor de una propiedad sin que afecte al estedo del
objeto original.

Visualizar un Value Object definido por referencia

Al contrario de las clases normales, podemos mostrar el contenido de un record directamente sin
necesidad de definirlo de forma explicita.

Console.WritelLine(pl);
Console.WritelLine(p2);
Console.WritelLine(p5);
Console.WritelLine(p6);

Definir un Value Object por referencia EXTENDIDA

Imaginemos que queremos defininir una posicién en un almacén que tiene un pasillo con una letra
mayuscula entre A y z , un estante con un numero entre 1 y 1@ y un nivel con un numero entre 1 y
5 . Para ello, podemos definir la clase UbicacionAlmacen como Value Object a través de un

record class pero como tenemos que cumplir unas restricciones no podemos definir propiedades y
constructor junto con el tipo de forma simplificada. Por tanto, tendremos que usar la forma completa
que hemos utilizado al definir una clase normal por ejemplo:

40/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

public record class UbicacionAlmacen

{
public char Pasillo { get; }
public int Estante { get; }
public int Nivel { get; }
public UbicacionAlmacen(char pasillo, int estante, int nivel)
{
Debug.Assert(pasillo >= 'A' && pasillo <= 'Z', "El pasillo debe estar entre Ay Z");
Debug.Assert(estante >= 1 && estante <= 10, "El estante debe estar entre 1 y 10");
Debug.Assert(nivel >= 1 && nivel <= 5, "El nivel debe estar entre 1y 5");
Pasillo = pasillo;
Estante = estante;
Nivel = nivel;
}
}

Aviso

Al usar propiedades automaticas de solo lectura { get; } , no podremos modificar el valor de
las propiedades una vez que se ha creado la instancia del objeto en el constructor y nos
aseguraremos que el estado del objeto es correcto. Sin embargo, ya no podremos usar la
palabra reservada with para crear una copia del objeto y modificar alguna de sus propiedades.

Si ejecutamos la siguiente prueba en C# veremos que se comporta como un value Object :

public static void Main()

{
UbicacionAlmacen ubicacionl = new(pasillo: 'B', estante: 3, nivel: 2);
UbicacionAlmacen ubicacion2 = new(pasillo: 'B', estante: 3, nivel: 3);
Console.WritelLine($"Ubicacién 1: {ubicacioni}");
Console.WritelLine($"Ubicacidén 2: {ubicacion2}");
Console.WriteLine($"Iguales: {(ubicacionl == ubicacion2 ? "Si" : "No")}");
//)(Ya no es posible hacer ...
// ubicacion2 = ubicacion2 with { Nivel = ubicacion2.Nivel - 1 };
// @ Usaremos el contsructor que comprobara que el nuevo nivel sea correcto
ubicacion2 = new(ubicacion2.Pasillo, ubicacion2.Estante, ubicacion2.Nivel - 1);
Console.WritelLine($"Ubicacién 1: {ubicacioni}");
Console.WritelLine($"Ubicacidén 2: {ubicacion2}");
Console.WritelLine($"Iguales: {(ubicacionl == ubicacion2 ? "Si" : "No")}");

}

41/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Mostrara al ejecutarse:

Ubicacidén 1: ubicacionAlmacen
Ubicacidén 2: UbicacionAlmacen
Iguales: No

Ubicacién 1: UbicacionAlmacen
Ubicacidén 2: UbicacionAlmacen
Iguales: Si

42/50

Programacién 1° DAM Unidad 13

Pasillo
Pasillo

Pasillo
Pasillo

Estante
Estante

Estante
Estante

IES Doctor Balmis

«” Ampliacién opcional:

¢ Serias capaz de reconoces los elementos de de nuestra definicion de Punto2b en C# en otros
lenguajes como Python o Kotlin?

public record class Punto2D(double X, double Y)

{
public double Distancia(Punto2D p) => Math.Sqgrt(Math.Pow(X - p.X, 2) + Math.Pow(Y - p.Y, 2));
}
public static void Main()
{
Punto2D pl = new(10, 20);
Punto2D p2 = pl with { X = 15 };
}
Python:

import math

from dataclasses import dataclass

@dataclass(frozen=True)
class Punto2D:

x: float

y: float

def distancia(self, otro: 'Punto2D') -> float:
return math.sqrt((self.x - otro.x)**2 + (self.y - otro.y)**2)

def main():
pl = Punto2D(10, 20)
p2 = replace(pl, x=15)

Kotlin:

data class Punto2D(val x: Double, val y: Double) {

fun distancia(otro: Punto2D): Double = sqrt((x - otro.x).pow(2) + (y - otro.y).pow(2))
}
fun main() {

val pl = Punto2D(10.0, 20.0)

val p2

pl.copy(x = 15.0)

43/50 Programacion 1° DAM Unidad 13 IES Doctor Balmis

® Caso de estudio:

Vamos a definir una clase para modelar un ISBN. Un ISBN es un c6digo normalizado internacional
para libros (International Standard Book Number). Los ISBN tuvieron 10 digitos hasta diciembre
de 2006 pero, desde enero de 2007, tienen siempre 13 digitos que se corresponden con los
numeros del cddigo de barras EAN13 (codigo de barras de 13 digitos). Cada ISBN ademas, se
compone de 5 elementos separados entre si por un espacio o un guion. Tres de los cinco

elementos pueden variar en longitud:

1. Prefijo: Actualmente solo pueden ser 978 o 979. Siempre tiene 3 digitos de longitud.

2. Grupo de registro: Identifica a un determinado pais, una region geografica o un area
linguistica que participan en el sistema ISBN. Este elemento puede tener entre 1 y 5 digitos
de longitud.

3. Titular: Identifica a un determinado editor o a un sello editorial. Puede tener hasta 7 digitos
de longitud.

4. Publicacioén: Identifica una determinada edicion y formato de un determinado titulo. Puede
ser de hasta 6 digitos de longitud. Ademas, este elemento se rellenara con ceros por la
izquierda si el ISBN no alcanzase los 13 digitos.

5. Digito de control: Es siempre el ultimo y unico digito que valida matematicamente al resto
del numero. Se calcula utilizando el sistema de médulo 10 con pesos alternativos de 1y
3.

Ejemplo: Para el ISBN 978-1-78528-144 el DC se calculara.

suma = 9 + 7*3 + 8 + 1*3 + 7 + 8*%3 + 5 + 2*3 + 8 + 1*3 + 4 + 4*3 =
=9 +21+8+3+7+24+5+6+8+3+4+ 12 =110
resto = suma % 10 = 110 % 10 = O

dc = resto == : @ ? 10 - resto;

Cumple esta clase cumple todos los tips para ser un value Object pues es intercambiable por
otro ISBN idéntico, es inmutable una vez se define y sus campos son a su vez value Objects Y
una aproximacion preliminar al disefio mediante UML de nuestro value object como tipo
referencia podria ser la siguiente:

44/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Puesto que

cumple con
siguiente (p

public reco

{
// Cons
private
private
private
private
private
// Prop
public
public
public
public

public
{
get
{
}
}

. «valueObject»
Isbn13
-prefijo : string {readOnly}

-grupoDeRegistro : string {readOnly}
-titular : string {readOnly}
-publicacion : string {readOnly}

+lsbn13(in prefijo : int, in grupoDeRegistro : int, in titular : int, in publicacion : int)
+GetPrefijo() : string

+GetGrupoDeRegistro() : string

+GetTitular() : string

+GetPublicacion() : string

+/GetDigitoDeControl() : int

+ATexto(in separador : string) : string

va a ser un Value Object por referencia, lo definiremos como un record class pero

usaremos la sintaxis normal para poder comrprobar que el estado del ISBN es correcto y que

las especificaciones anteriores. Por tanto, la definicion de la clase ISBN seria la
uedes descargar el codigo completo de este enlace Isbn13.cs):

rd class Isbnl3

tantes privadas y de clase para validaciodn
static readonly int[] PREFIJOS = [978, 979];
const int MAX_LONGITUD_GRUPO = 5;

const int MAX_LONGITUD_TITULAR = 7;

const int MAX_LONGITUD_PUBLICACION = 6;
const int LONGITUD_ISBN = 13;

iedades automdticas de solo lectura

string Prefijo { get; }

string GrupoDeRegistro { get; }

string Titular { get; }

string Publicacion { get; }

A continuacion definimos |la propiedad calculada pigitobecontrol que calcula el digito de control
del ISBN segun las especificaciones. Fijate que no hace falta que comprobemos el estado de las
propiedades porque ya se hizo en el constructor y sabemos que son validas.

int DigitoDeControl

string isbn

string.Join(
0;
for (int i = @; i < isbn.Length; i++)

suma += ((i % 2 ==0) ? 1 : 3) * int.Parse(isbn[i].ToString());
double resto = suma % 10;

, Prefijo, GrupoDeRegistro, Titular, Publicacion);

double suma

return resto == 0 ? @ : Convert.ToInt32(10 - resto);

45/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u13_poo_definir_tipos/assets/ejemplos/6_isbn_record_class_ejemplo.cs

Definimos el constructor que recibe los valores de los cuatro elementos del ISBN y comprueba
que son validos segun las especificaciones. De esta manera cualquier objeto ISBN que creemos
sera valido y no tendremos que preocuparnos de validar su estado posteriormente.

public Isbnl3(in int prefijo, in int grupoDeRegistro, in int titular, in int publicacion)
{
Prefijo = prefijo.ToString();
bool esPrefijoValido = Array.IndexOf(PREFIJOS, prefijo) >= 0;
Debug.Assert(
condition: esPrefijovalido,

message: $"E1l prefijo {prefijo} no es vdlido. Debe ser 978 o 979.");

GrupoDeRegistro = grupoDeRegistro.ToString();
Debug.Assert(
condition: GrupoDeRegistro.Length <= MAX_LONGITUD_GRUPO,

message: $"E1l grupo de registro {grupoDeRegistro} es demasiado largo.");

Titular = titular.ToString();
Debug.Assert(
condition: Titular.Length <= MAX_LONGITUD_TITULAR,

message: $"E1l titular {titular} es demasiado largo.");

Publicacion = publicacion.ToString();

Debug.Assert(
condition: Publicacion.Length <= MAX_LONGITUD_PUBLICACION,
message: $"La publicacién {publicacion} es demasiado larga.");

string isbn = string.Join("", prefijo, grupoDeRegistro, titular, publicacion);
// No tenemos la seguridad de que siendo correctoas
// las longitudes de los elementos el total seamenor que 12.
Debug.Assert(
condition: isbn.Length <= LONGITUD_ISBN - 1,

message: $"ELl ISBN {isbn} es demasiado largo.");

// Para que el ISBN tenga 13 digitos, rellenamos con ceros a la izquierda la publicaciodn
int excesolLongitud = isbn.Length - (LONGITUD_ISBN - 1);
if (excesolLongitud < 9)

Publicacion = Publicacion.PadLeft(Math.Abs(excesoLongitud) + Publicacion.Length, '0');

Por ultimo, definimos el método ATexto que devuelve una representacion del ISBN como texto,
separando los elementos por un separador dado. Este método es util para mostrar el ISBN de
forma legible incluyendo su digito de control correcto.

public string ATexto(string separador) =>

string.Join(separador, Prefijo, GrupoDeRegistro, Titular, Publicacion, DigitoDeControl.ToString()

46/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Veamos un ejemplo de uso de la clase 1SBN que hemos definido:

public static void Main()

! Mostrara por pantalla:
Isbnl3 isbnl = new(978, 84, 935489, 1);

Console.WritelLine(isbnl.ATexto("-"));

978-84-935489-1-9

Isbnl3 isbn2 = new(978, 1, 78528, 144); 978 1 78528 144 0
Console.WritelLine(isbn2.ATexto(" "));

47/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

Anexo | - Value Object como tipo valor (Value Type) en
CSharp

Un poco de historia y representacion en UML

Usaremos la palabra reservada struct que si te fijas en el diagrama de los value objects como tipos
valor, es comun a diferentes lenguajes como: C#, C++, Go, Rust o Swift. Originariamente viene del
lenguaje ALGOL 68 (1968) y como ves se ha ido respetando a lo largo del tiempo.

A principios de la década del 2000 cuando Anders Hejlsberg definié el lenguaje C#, incluyd la palabra
reservada struct que permitia definir tipos tipos valor. Por ejemplo, si nos fjamos int es una alias
para el tipo system.Int32 Y si nos fjamos en su definicion, este es un struct .

Por ejemplo, todas las clases que hemos visto en
la unidad 12 que definian tipos valor, como

DateTime , TimeSpan , DateOnly , TimeOnly , etc.

«dataType»
son un struct Punto2D
-x : double {readOnly}
En disefio orientado a objetos a través de -y : double {readOnly}
diagramas UML a los tipos valor también se les +Punto2D(x : double, y : double)

+GetX() : double

+GetY() : double
pondermos el estereotipo <<dataType>> junto al +Equals(p : Punto2D) : boolean

conoce como Data Type y por tanto les

nombre del tipo el cual nos indicara a partir de
ahora que es un value Object por valor.

Definir un Value Object por valor SIMPLIFICADA

En C# podemos definir un value Object por valor (como value type) cCOn readonly record struct
una cla inmutable con propiedades de solo lectura. La sintaxis mas compactas para definirlos seria la

siguiente:
public readonly record struct TipoValor(Tipol Propiedadl, Tipo2 Propiedad2, ...)
{
¥
public readonly record struct TipoValor(Tipol Propiedadl, Tipo2 Propiedad2, ...);

48/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

https://en.wikipedia.org/wiki/ALGOL_68#struct,_union_&_%5B:%5D:_Structures,_unions_and_arrays
https://es.wikipedia.org/wiki/Anders_Hejlsberg
https://docs.microsoft.com/es-es/dotnet/api/system.int32
https://www.uml-diagrams.org/data-type.html

Fijate que la sintaxis es muy similar a la de un record class pero con la palabra reservada struct y
marcando las propiedades como readonly de forma global.

Si la definiramos por extension seria equivalente a la siguiente definicion donde podriamos quitar el

readonly global porque las propiedades son { get; } y por tanto ya son de solo lectura.

public record struct TipoValor

{
public Tipol Propiedadl { get; }
public Tipo2 Propiedad2 { get; }

public TipoValor(Tipol propiedadl, Tipo2 propiedad2)
{

Propiedadl = propiedadl;
propiedad2;

Propiedad2

Por ejemplo, si queremos definir un Punto2D COMO Vvalue Object por valor, lo haremos de la siguiente

manera...

public readonly record struct Punto2D(double X, double Y)

{
public double Distancia(Punto2D p) => Math.Sgrt(Math.Pow(X - p.X, 2) + Math.Pow(Y - p.Y, 2));

Uso de un Value Object definido por valor

El uso es idéntico al de un value oObject por referencia. Pero teniendo encuenta que al asignar con =

una instancia a otra, se copia el valor y no la referencia.

Lo mismo sucedera si lo pasamos por parametro a un método, se pasara una copia del valor y no la

referencia y por tanto es algo menos eficiente que un value Object por referencia.

Deberemos llevar mas cuidado al definir value object como tipo valor yaque al almacenarse en el
Stack o Pila, no deberian de superar los 16 bytes de tamafio por motivos de eficiencia en la lecturas y
copias. Si ocupan mas, nuestros programas se pueden ralentizar demasiado y podremos desbordar la
pila que recordemos que tiene un tamafo menor al Heap.

¢) Importante

Por todas las razones anteriores y porque existen lenguajes donde no se puede hacer, no es
recomendable definir Value Objects como tipos valor salvo en las librerias de clases del

49/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

w propio lenguaje y por tanto, nosotros en ente curso no lo vamos a hacer.

50/50 Programacién 1° DAM Unidad 13 IES Doctor Balmis

