Unidad 11

Descargar estos apunte en pdf o html

indice

= indice
¥ Manejo de cadenas avanzado y expresiones regulares
= |ntroduccién
¥ Cadenas Inmutables
= Formas de instanciar objetos cadena
= Comparacion de cadenas
= Obtener la longitud de una cadena
= Accediendo a los caracteres de una cadena
= Recorrer los caracteres de una cadena
= Operaciones de interés sobre objetos cadena
¥ Cadenas Mutables
» |nstanciar un StringBuilder
= Operaciones de interés sobre objetos cadena mutable
= |nterfaces fluidos o Fluent Interfaces
¥ Expresiones Regulares en CSharp
= Definicion de expresion regular
= Caracteres
¥ Metacaracteres
¥ Clases de caracter
= Alternancia de caracter

Alternancia de expresiones
Aserciones atomicas de ancho cero

Construcciones de agrupamiento o grupos
Cuantificadores

Construcciones de referencia inversa
¥ Uso de expresiones regulares en el lenguaje
= Métodos de utilidad sobre cadenas usando ER
¥ Gestién de grupos con o sin etiqueta
= Buscar una ocurrencia concreta con un patrén

= Buscar todas las ocurrencias de un patron

1/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u11_poo_cadenas/u11_poo_cadenas_y_er.pdf
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u11_poo_cadenas/u11_poo_cadenas_y_er.html

Manejo de cadenas avanzado y expresiones regulares

Introduccion

El manejo de cadenas es una parte fundamental de la programacion, ya que las cadenas son uno de los
tipos de datos mas utilizados. En esta unidad, vamos a profundizar en el manejo avanzado de cadenas y
en el uso de expresiones regulares para trabajar con ellas.

Cadenas Inmutables

Las hemos usado ya y se definen a través de la clase system.String O su alias string . Al tratarse de
una clase sera de un tipo referencia.

Al ser inmutables, una vez creadas no se pueden modificar. Cualquier operaciéon que se realice sobre
una cadena devolvera una nueva cadena con el resultado de la operacion.

Internamente y deforma transparente para nosotros, estos objetos se almacenan como un array de
caracteres. Una operacion que modifique una cadena, como por ejemplo la concatenacion, creara un
nuevo array de caracteres con el resultado de la operacion y devolvera una nueva cadena. Esto nos
permitira indizar de forma analoga a como hacemos en un array, el acceso a los caracteres de una
cadena.

2/53 Programacién 1° DAM Unidad 11 IES Doctor Balmis

Formas de instanciar objetos cadena

// A partir de un literal de cadena.

string t1 =

"Adios";

// A partir de una coleccidn de caracteres.

string t2 =

new (['H', ‘o',

1, ra s

// Inicializando con un caracter de relleno.

string t3 =

new('e', 10);

// Resultado de la concatenacidn de objetos cadena.

// Noétese que la suma de cadenas devuelve un nuevo objeto cadena en memoria. Reflexionaremos sobre sto mas adelar

string t4 =

t1 + t2;

// Para una COPIAS EN MEMORIA

// @ Podemos hacer

string t5 =
string t5 =

new([..t1]);

new(tl.ToCharArray());
Console.WriteLine(ReferenceEquals(tl, t5)); // Imprime "False"

// ¥ No deberiamos hacer @&

string t5

string t5 =
string t5 =

t1;
$"{t1}";

(string)tl.Clone();

// t1l y t5 seran la misma instancia en memoria.

// tl y t5 seran la misma instancia en memoria por optimizaciones de ejecuciodn

// tl y t5 seran la misma instancia en memoria.

Console.WriteLine(ReferenceEquals(tl, t5)); // Imprime "True"

Después de ejecutar este codigo tendremos 5 objetos cadena instanciados en memoria, con sus

respectivas referencias.

t1 : String

"Adios"

t4 : String

@_>

"AdiosHola"

3/53 Programacion 1° DAM Unidad 11

t6 : String

: t2 : String : t3 : String
"Hola" "0000000000"

"Adios"

IES Doctor Balmis

Comparacién de cadenas

Puesto que el tipo string es un tipo referencia, en principio la comparacion entre objetos de este tipo
deberia comparar sus direcciones de memoria como acabamos de ver que pasa con cualquier tipo
referencia. Sin embargo, si ejecutamos el siguiente codigo veremos que esto no asi ocurre en el caso

de las cadenas porque el lenguaje sabe compararlas:

string tl1 = "Adios";
string t2 = t1;
string t3 = new([..t1]);

Console.WritelLine(tl == t1);
Console.WritelLine(tl == t2);
Console.WritelLine(tl == t3);
Console.WritelLine(Object.ReferenceEquals(tl, t3));

Esto se debe a que para hacer mas intuitivo el trabajo con cadenas, en C# se ha modificado el operador
de igualdad == para que cuando se aplique entre cadenas, se considere que sus operandos son
iguales solo si son lexicograficamente equivalentes y no si referencian al mismo objeto en memoria.

Obtener la longitud de una cadena

Usaremos la propiedad Length que me indicara cuantos caracteres contiene la cadena. Este valor es
de solo lectura y no se puede modificar.

Console.WriteLine("Hola".Length);
string t = "Adios";

Console.WritelLine(t.Length);

Accediendo a los caracteres de una cadena

Puedo acceder a un caracter a través del indice, pero no es posible modificar los caracteres que las
forman por ser un objeto inmutable. Esto se debe a que el compilador comparte en memoria las
referencias a literales de cadena lexicograficamente equivalentes, para asi ahorrar memoria. Por tanto, si
se permitiese modificar los cambios que se hiciesen a través de una variable a una cadena compartida,
afectarian al resto de variables que la compartan, lo que podria causar errores dificiles de detectar.

Cuando hacemos...

string texto = "Hola";

4/53 Programacién 1° DAM Unidad 11 IES Doctor Balmis

texto : String

texto : String o 1 2 3
Internamente sera...
e o]

Esto nos permitira acceder a cada uno de los caracteres que conforman la cadena, a través del operador

de indexacion texto[indice] donde indice sera un valor entre @ y texto.Length-1 O ~1 Siusamos
un tipo Index como vimos en el arrays..

Recordemos una poco el funcionamiento de los indices:

// Muestra el caracter 'H'

Console.Writeline(texto[0]); Console.Write(texto[0]); \\ Muestra 'H'

// Muestra el caracter 'a

Console.WritelLine(texto["1]);

.. Console.Write(texto[3]); \\ Muestra 'a'
// X ERROR de OutOfBounds (Fuera de limi- (textof3]): \ Mu

Console.WritelLine(texto[5]);

i

0 1 2 3 4 5
// X ERROR solo lectura. Console.Write(texto[5]); \\ ERROR

wlalt]=] | |
t[e] = 'M'; | -
t[*1] = 'i';

OutOfBounds

5/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

Recorrer los caracteres de una cadena

Basicamente podremos hacerlo a través de un bucle for y un bucle foreach como hemos visto en el

caso de los arrays.

string s = "Hola";

for (int i = 9; i < s.Length; i++)
{
Console.Write($"[{i},{s[i]1}] ");

}

Console.WritelLine();

foreach (var (i, c) in s.Index())

{
Console.Write($"[{i},{c}] ");

}

Console.WritelLine();

Console.Write(string.Join(" ", [..s]));

Console.WritelLine();

foreach (char c in s)

{

Console.Write($"{c} ");

}

Console.WritelLine();

Mostrara por la consola:

[0,H] [1,0] [2,1] [3,al
[0,H] [1,0] [2,1] [3,al

Hola
Hol a

6/53 Programacién 1° DAM Unidad 11 IES Doctor Balmis

Operaciones de interés sobre objetos cadena

Podré realizar numerosas operaciones sobre los objetos cadena. Pero debré tener en cuenta que al ser
inmutables, cualquier operacion que realice sobre una cadena devolvera un nuevo objeto cadena con el
resultado de la operacion, y no modificara la cadena original.

Para ello dispondré de numerosos métodos ya definidos en la clase string de los que destacaremos
los mas comunes y utiles a continuacién y que podremos encontrar en otros lenguajes de
programacion...

Veamos algunos de los mas utiles a través de ejemplos...

cadena.Trim() : Elimina los espacios en blanco al principio y al final de la cadena.
cadena.TrimStart() : Elimina los espacios en blanco al principio de la cadena.
cadena.Trimend() : Elimina los espacios en blanco al final de la cadena.

string cadena = " Hola Mundo R

Console.WritelLine(cadena.Trim()); // Muestra "Hola Mundo"

cadena.PadLeft(int totalWidth) : Rellena la cadena con espacios a la izquierda hasta alcanzar el ancho
total especificado.

cadena.PadRight(int totalWidth) : Rellena la cadena con espacios a la derecha hasta alcanzar el ancho
total especificado.

string cadena = "Hola";
Console.WritelLine(cadena.PadLeft(10)); // Muestra " Hola"
Console.WritelLine(cadena.PadRight(10)); // Muestra "Hola

cadena.ToUpper() / cadena.ToLower() : Devuelve un nuevo objeto cadena con equivalente en
mayusculas de la cadena actual.

string cadena = "Hola";

Console.WriteLine(cadena.ToLower()); // Muestra "hola"

7/53 Programacién 1° DAM Unidad 11 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.string

Ejemplo 1:

Define un método con la signatura static string Capitaliza(string s) que recibe una cadenay
me devuelve la otra capitalizada esto es. Si entra la cadena "esto es un titulo capitalizado” me
devolvera "Esto Es Un Titulo Capitalizado"

public static string Capitaliza(string s)
{

string sCapitalizada;

if (!string.IsNullOrEmpty(s)) // Si la cadena no es null o vacia.
{

// Pasamos el primer caracter a cadena y después esa cadena a mayuscula.

sCapitalizada = s[@].ToString().ToUpper();

// Otra forma de hacerlo es pasar primero el caracter a mayuscula y después a cadena.

// sCapitalizada = char.ToUpper(s[@]).ToString();

// Recorremos el resto de caracteres de la cadena
// Si el anterior es un espacio es blanco lo concatenamos a la cadena capitalizada
// (pasandolo previamente a cadena) sino es espacio en blanco lo dejamos tal cual
// (pasdndolo previamente a cadena)
// Usamos un bucle for en lugar de un foreach porque necesitamos saber la posicidn anterior.
for (int i = 1; 1 < s.Length; i++)
sCapitalizada += char.IsWhiteSpace(s[i - 1])
? s[i].ToString().ToUpper()
: s[i].ToString();
}

else

sCapitalizada = s;

return sCapitalizada;

Console.WritelLine(Capitaliza("hola caracola")); // Mostrara "Hola Caracola"

Fijémonos que cada vez que hacemos ToString() y concatenamos esa cadena a la cadena
capitalizada. Estamos creando objetos cadena nuevos en memoria que luego se van a desechar.
Esto es, para una cadena de 100 caracteres crearemos 200 objetos cadena, lo cual es muy
costoso a nivel de proceso.

Por esta razén este tipo de procesos los realizaremos con cadenas mutables que veremos mas
adelante. Es mas, analizadores semanticos de codigo como SonarLint me indicaran que este tipo de
concatenaciones no es una buena practica.

8/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

Ejemplo 2:

Escribe una método que "Normalize para comparacion™ una cadena de entrada. Consideraremos
normalizar quitar tildes, diéresis y pasar todos los caracteres a minusculas.

public static string Normaliza(string s)

{
string sN = "";
foreach (char c in s)
{
sN += char.ToLower(c) switch
{
'a' => "a",
'é' => "e",
i1t o=> it
'6' => "o",
‘a' => "u",
a' o= "u",
_ => c.ToString().ToLower()
¥
}
return sN;
}

cadena.ToCharArray() : Convierte una cadena de caracteres en una array de caracteres. Recuerda que
internamente al objeto cadena es un array de caracteres.

string cadena = "Hola";
char[] array = cadena.ToCharArray();

char[] array

[..cadena]; // Otra forma de hacerlo.

Cadena.IndexOf(char c) / Cadena.IndexOf(string s) : Devuelve la posicion de la primera ocurrencia del
caracter o la cadena empezando a buscar por indice hasta Length (0 si no se lo paso) y si no encuentra
ninguna ocurrencia retorna -1.

string nombre = "Manuel Garcia";

Console.WritelLine(nombre.Index0f('a'));
Console.WriteLine(nombre.IndexOf("el"));

Console.WriteLine(nombre.IndexOf("a", 3));

Console.WriteLine(nombre.Index0f("z"));

// Imprime : 1

// Imprime :
// Imprime :
// Imprime :

Cadena.LastIndexOf(char c) / Cadena.LastIndexOf(string s) : Devuelve la posicion de la ultima

ocurrencia del caracter o la cadena empezando a buscar por indice hasta 0 (Length si no se lo paso) y si

9/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

no encuentra ninguna ocurrencia retorna -1.

string nombre = "Manuel Garcia";
Console.WritelLine(nombre.LastIndex0f("a")); // Imprime : 12

Console.WriteLine(nombre.LastIndex0f('a', 2)); // Imprime : 1

Ejemplo 1:

Escribe un método, que sin recorrer la cadena, devuelva un entero indicando el numero de
apariciones de un palabra en una frase.

Llamalo: int Coincidencias(string palabra, string frase)

public static class Program

{
public static int Coincidencias(string palabra, string frase)
{
int veces = 0;
int iComienzo = -1;
while ((iComienzo = frase.IndexOf(palabra, iComienzo + 1)) >= 0) veces++;
return veces;
}
public static void Main()
{
string s = "oca, gallina, perro, perro, oca, oca, cerdo";
Console.WriteLine(Coincidencias("oca", s)); // Muestra 3
Console.WriteLine(Coincidencias("perro"”, s)); // Muestra 2
Console.WriteLine(Coincidencias("caballo", s)); // Muestra ©
}
}

10/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

Ejemplo 2:

Escribe una funcién que reciba dos palabras, y averiglie si son anagramas (estan formadas por las
mismas letras pero en diferentes posiciones).

Ej. (aprobar y probara), (cédigos y cogidos), etc.

// Una aproximacion simplificada podria ser.

public static string Normaliza(string s)

{
const string TILDES = "aéiouiu";
const string SUSTITUCIONES = "aeiouu";
string sN = "";
foreach (char c in s)
{
sN += i >= @ ? SUSTITUCIONES[i].ToString() : c.ToString();
int i = TILDES.IndexO0f(c);
}
return sN;
}

public static bool Anagramas(string pl, string p2)
{
bool anagramas = (pl.Length == p2.Length);
pl = Normaliza(pl);
p2 = Normaliza(p2);
if (anagramas)
{
for (int i = 0; i < pl.Length && anagramas; i++)
anagramas = pl.IndexOf(p2[i]) > -1 && p2.IndexOf(p1[i]) > -1;
}

return anagramas;

Ejemplo 3:

Haz un método que, a partir de una contrasefia de entrada, indique el nivel de proteccion,
devolviendo una de las siguientes cadenas:

e Muy débil: Contiene solo numeros o tiene menos de 8 caracteres.

o Débil: Contiene solo letras y tiene al menos 8 caracteres.

» Fuerte: Contiene letras y niumeros y al menos 8 caracteres.

o Muy fuerte: Contiene letras y/o numeros, caracteres especiales y al menos 8 caracteres.

11/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

public static class Program

{
public static bool SoloNumeros(string texto)
{
bool todoEsLoQueBusco = true;
for (int i = 9; 1 < texto.Length && todoEsLoQueBusco; i++)
todoEsLoQueBusco = char.IsDigit(texto[i]);
return todoEsLoQueBusco;
}
public static bool SoloLetras(string texto)
{
bool todoEsLoQueBusco = true;
for (int i = 0; i < texto.Length && todoEsLoQueBusco; i++)
todoEsLoQueBusco = char.IslLetter(texto[i]);
return todoEsLoQueBusco;
}
public static bool HayUnCaracterEspecial(string texto)
{
bool especial = false;
for (int 1 = @; i < texto.Length & !especial; i++)
especial = !char.IslLetterOrDigit(texto[i]);
return especial;
¥
public static string NivelSeguridad(string clave)
{
string nivel;
if (clave.Length < 8 || SoloNumeros(clave))
nivel = "Muy Débil";
else if (SoloLetras(clave))
nivel = "Débil";
else if (!HayUnCaracterEspecial(clave))
nivel = "Fuerte";
else
nivel = "Muy Fuerte";
return nivel;
}
public static void Main()
{
Console.Write("Introduce una clave: ");
string clave = Console.ReadlLine();
Console.WriteLine($"Su nivel de seguridad es {NivelSeguridad(clave)}");
}
}

12/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

Cadena.Substring(int startIndex, int length) / Cadena.Substring(int startIndex) : Recupera una
subcadena de la instancia. La subcadena comienza en una posicion de caracter especificada y tiene una
longitud especificada.

string s1 = "aaBBBaa";

// Extraigo una subcadena de 3 caracteres desde el indice 2.
string s2 = sl1.Substring(2, 3);

Console.WritelLine(s2); // Muestra "BBB"

También podemos usar rangos de indices para extraer subcadenas, como vimos con los arrays:

string s1 = "aaBBBaa";

// Extraigo una subcadena desde el indice 2 hasta el indice 5 (excusive)
string s2 = s1[2..5];

Console.WriteLine(s2); // Muestra "BBB"

Cadena.Remove(int startIndex, int length) / Cadena.Remove(int startIndex) : Devuelve una nueva
cadena en la que se ha eliminado un numero de caracteres especificado en la instancia actual a partir de
una posicion especificada.

string s1 = "Estofado";
// Elimino una subcadena de 2 caracteres desde el indice 3.
string s2 = sl1l.Remove(3, 2);

Console.WritelLine(s2); // Muestra "Estado"

¢, Se te ocurre como hacerlo usado rangos de indices?

string s1 = "Estofado";
// Elimino una subcadena desde el indice 3 hasta el indice 5 (ambos exclusive)
string s2 = s1[..3] + s1[5..];

Console.WriteLine(s2); // Muestra "Estado"

Cadena.Replace(char oldChar, char newChar) / Cadena.Replace(string oldValue, string newValue) :
Devuelve una nueva cadena en la que todas las apariciones de una cadena especificada en la instancia
actual se reemplazan por otra cadena especificada.

string s1 = "oca, gallina, perro, perro, oca, gallina";
// Sustituimos "oca" por "pato"
sl = sl.Replace("oca", "pato");

Console.WritelLine(sl); // Muestra "pato, gallina, perro, perro, pato, gallina"

13/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

® Caso de Estudio

Vamos a crear un programa que extraiga el texto entre dos delimitadores de texto de una cadena.

Por ejemplo, si la cadena es "<h1>Titulo Principal</h1><p>Este es un parrafo.</p>" , queremos

extraer el texto entre <h1> y </h1> y obtener "Titulo Principal” . Define un metodo llamado
ExtraerEntre para realizar esta tarea.

public class Programa
{
public static string? ExtraerEntre(
string cadenaFuente,
string delimitadorInicial,
string delimitadorFinal)

string? resultado = null;

if (!string.IsNullOrEmpty(cadenaFuente)
&& !string.IsNullOrEmpty(delimitadorInicial)
&& !string.IsNullOrEmpty(delimitadorFinal))

int indiceInicial = cadenaFuente.IndexOf(delimitadorInicial);
if (indiceInicial != -1)
{
indiceInicial += delimitadorInicial.Length;
int indiceFinal = cadenaFuente.IndexOf(delimitadorFinal, indiceInicial);
if (indiceFinal != -1)
{

resultado = cadenaFuente.Substring(indiceInicial, indiceFinal - indiceInicial);

¥

return resultado;
}
public static void Main()
{
string texto = "<h1>Titulo Principal</hl><p>Este es un parrafo.</p>";
string? titulo = ExtraerEntre(
cadenaFuente: texto,
delimitadorInicial: "<h1>",
delimitadorFinal: "</h1>")
?? "No encontrado";
Console.WriteLine($"Texto original: \"{texto}\"");
Console.WriteLine($"Texto extraido entre '<h1>' y '</h1>': {titulo}");

14/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

<« Ampliacién opcional:

Vamos a implementar el método ExtraerEntre en otros lenguajes de programacién como
JavaScript y Kotlin y asi comparar las coincidencias en el uso de los métodos ya vistos.

JavaScript:

function extraerEntre(cadenaFuente, delimitadorInicial, delimitadorFinal) {

let resultado = null;

if (cadenaFuente && delimitadorInicial && delimitadorFinal) {
const indiceInicial = cadenaFuente.indexOf(delimitadorInicial);
if (indicelInicial !== -1) {
const indiceInicioContenido = indiceInicial + delimitadorInicial.length;
const indiceFinal = cadenaFuente.indexOf(delimitadorFinal, indiceInicioContenido);
if (indiceFinal !== -1) {

resultado = cadenaFuente.substring(indiceInicioContenido, indiceFinal);

}
}
}
return resultado;
}
Kotlin:

fun extraerEntre(
cadenaFuente: String,
delimitadorInicial: String,
delimitadorFinal: String

): String? {

var resultado: String? = null

if (cadenaFuente.isNotEmpty() && delimitadorInicial.isNotEmpty() && delimitadorFinal.isNotEmpty())

{
val indiceInicial = cadenaFuente.indexOf(delimitadorInicial)
if (indicelInicial != -1) {
val indicelInicioContenido = indiceInicial + delimitadorInicial.length
val indiceFinal = cadenaFuente.indexOf(delimitadorFinal, indiceInicioContenido)
if (indiceFinal != -1) {
resultado = cadenaFuente.substring(indiceInicioContenido, indiceFinal)
}
¥
}

return resultado

15/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

Cadenas Mutables

Si deseamos utilizar cadenas mutables. Deberemos usar la clase System.Text.StringBuilder, que
funciona de manera similar a string , pero permite la modificacion de sus cadenas en tanto que estas
no se comparten en memoria. Podemos decir que, las operaciones de acceso a un caracter son iguales

que en los objetos de la clase string.

Aviso

No sera posible recorrerlas con un foreach , solo con for .

Instanciar un StringBuilder

Para crear objetos de este tipo, basta pasar como parametro de su constructor el objeto string que
contiene la cadena a representar mediante un stringBuilder , y para convertir un StringBuilder en String

siempre puede usarse su método cadenaMutable.ToString() .

string s = "Hola";

StringBuilder sb = new(s); // Pasamos de String a StringBuilder
sb[sb.Length-1] = "i'; // Podemos modificar un caracter por ser mutable
s = sb.ToString(); // Pasamos de StringBuilder a String
Console.WritelLine(s); // Muestra "Holi"

16/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.text.stringbuilder

Ejemplo 1:

Reimplementemos el método con la signatura static string Capitaliza(string s) que recibe una
cadena y me devuelve la otra capitalizada esto es. Si entra la cadena

"esto es un titulo capitalizado” me devolvera "Esto Es Un Titulo Capitalizado"

Este es un caso claro de uso de stringBuilder Yya que hara que el método sea muchisimo mas
eficiente.

public static class Program
{
public static string Capitaliza(string s)
{
string sCapitalizada;
if (!string.IsNullOrEmpty(s))
{
// Transformamos en una cadena mutable si hay al menos 1 caracter a capitalizar.
StringBuilder sb = new StringBuilder(s);
// Cambiamos el nuevo objeto cadena mutable las veces que queramos.
sb[@] = char.ToUpper(sb[@0]);
for (int i = 1; i < sb.Length; i++)
{
sb[i] = char.IsWhiteSpace(sb[i - 1]) ? char.ToUpper(sb[i]) : sb[i];
}
// Al finalizar volvemos a transformarlo a cadena inmutable.
sCapitalizada = sb.ToString();
}
else
sCapitalizada = s;
return sCapitalizada;
}
public public static void Main()
{

Console.WritelLine(Capitaliza("hola caracola")); // Mostrara "Hola Caracola"

17/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

Ejemplo 2:

Lo mismo sucedera con el método de normalizacion que estaria mas correcto con la siguiente
implementacion.

public static string Normaliza(string s)
{
const string TILDES = "aéioui";
const string SUSTITUCIONES = "aeiouu";
StringBuilder sb = new StringBuilder(s.ToLower());
for (int 1 = 0; i < s.Length; i++>)
{
int iVocal = TILDES.IndexOf(sb[i]);
sb[i] = iVocal >= © ? SUSTITUCIONES[iVocal] : sb[i];
}

return sb.ToString();

18/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

«” Ampliacién opcional:

Vamos a implementar el método Normaliza en otros lenguajes de programacion como Kotlin y
Python y asi las coincidencias en el uso de los métodos ya vistos

Kotlin:

Si lo ejecutamos sobre JVM, dispondra de la clase stringBuilder de la libreria estandar de Kotlin,

que es similar a la de C#.

fun normaliza(s: String): String {
const val TILDES = "aéioéuu"
const val SUSTITUCIONES = "aeiouu"
val sb = StringBuilder(s.lowercase())
for (i in s.indices) {
val iVocal = TILDES.indexOf(sb[i])
if (iVocal »>= 0) {
sb[i] = SUSTITUCIONES[iVocal]

)3
b
return sb.toString()
}
Python:

Fijate que en Python no existe el concepto de cadena mutable, por lo que hemos usado una lista de
caracteres para simularlo. Luego usamos el método join para convertir la lista de nuevo en una
cadena. Esto también nos sucedera en otros lenguajes como JavaScript, PHP, etc.

def normaliza(s: str) -> str:
tildes = "aéiouu"
sustituciones = "aeiouu"
sb = list(s.lower())
for i in range(len(sb)):
i_vocal = tildes.find(sb[i])
if i_vocal >= o:
sb[i] = sustituciones[i_vocal]

return ''.join(sb)

19/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

Operaciones de interés sobre objetos cadena mutable

StringBuilder cadenaMutable.Append(<elemento>) : LOsS objetos de tipo StringBuilder se crean
dimensionandose a una capacidad de caracteres por defecto aunque la cadena esté vacia y por tanto su
longitud cero. Ademas, si en vez de modificar un caracter ya existente, queremos afiadir algo al final de
la cadena usaremos el método y si la cadena tiene capacidad suficiente para afadir el nuevo caracter,
la operacion tendra un coste bajo. Si no hay capacidad suficiente, se aumentara la capacidad
automaticamente en un valor no controlado por nosotros, pero tendra un coste mayor que si la
tuviéramos previamente reservada. Copia y sigue detenidamente el siguiente ejemplo para entenderlo ...

// Aunque la cadena de entrada mide 4 reserva espacio o capacidad en el StringBuilder para 16 caracteres.

StringBuilder sb = new StringBuilder("Hola");

// Podré modificar el primer caracter sin problemas.
sb[@0] = 'M';
Console.WriteLine($"Longitud = {sb.Length} Capacidad = {sb.Capacity}"); // Muestra Longitud = 4 Capacidad = 16

// Por defecto reserva espacio para 16 caracteres.

sb = new StringBuilder();

// XK sb[@] = 'M'; Daria ERROR porque la cadena esta vacia.

// Pero si afado un caracter, su sb.Longitud es ahora 1y

// como teniamos capacidad de 16 la operaciodn tendra bajo coste

sb.Append('M");

// Podré modificar ahora posiciones por debajo de sb.Length-1 aunque la capacidad sea superior.

sb[@] = 'I";

Console.WriteLine($"Longitud = {sb.Length} Capacidad = {sb.Capacity}"); // Muestra Longitud = 1 Capacidad = 16

// Reservamos un espacio previo para 2 caracteres.
sb = new StringBuilder(2);
Console.WriteLine($"Longitud = {sb.Length} Capacidad

{sb.Capacity}"); // Muestra Longitud = @ Capacidad = 2

// XK sb[@] = 'M'; Daria ERROR porque la cadena esta vacia.

sb.Append('1');

sb.Append('2');

// Como ya no queda espacio reservado o capacidad para el nuevo caracter.

// Aumenta la capacidad automaticamente en un valor no controlado por nosotros,

// pero tendra un coste mayor que si la tuviéramos previamente reservada.

sb.Append('3');

Console.WritelLine($"Longitud = {sb.Length} Capacidad = {sb.Capacity}"); // Longitud = 3 Capacidad = 4

20/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

StringBuilder cadenaMutable.Insert(int indice, <elemento>) : Inserta elementos en una cadena
mutable.

StringBuilder cadenaMutable = new StringBuilder("aaaa");
string cadena = "bbbb";

// Inserto la cadena en el indice 2
cadenaMutable.Insert(2, cadena);

Console.WritelLine(cadenaMutable); // Muestra: aabbbbaa

char[] array = new char[] { 'C', 'D' };
// Inserto el array en el indice 2
cadenaMutable.Insert(2, array);

Console.WritelLine(cadenaMutable); // Muestra: aaCDbbbbaa

StringBuilder cadenaMutable.Remove(int indice, int longitud) : Elimina n caracteres a partir de un
indice.

StringBuilder cadenaMutable = new StringBuilder("aBBa");
// Elimino 2 caracteres a partir del indice 1
cadenaMutable.Remove(1l, 2);

Console.WritelLine(cadenaMutable); // Muestra: aa

StringBuilder cadenaMutable.Replace(<elementoAReemplazar> , <elementoDeReemplazo>) : Reemplazo
ocurrencias de un caracter por otro o de una cadena por otra.

StringBuilder cadenaMutable = new StringBuilder("Banana");
// Reemplaso ocurrencias del caracter 'a' por 'e’
cadenaMutable.Replace('a', 'e');

Console.WritelLine(cadenaMutable); // Muestra: Benene

cadenaMutable = new StringBuilder("Dile a Juanjo que lo entiendo");
// Reemplaso ocurrencias del la cadena "Juanjo" por "Xusa"
cadenaMutable.Replace("Juanjo", "Xusa");

Console.WritelLine(cadenaMutable); // Muestra: "Dile a Xusa que lo entiendo"

21/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

Interfaces fluidos o Fluent Interfaces

Término acuiado por Martin Fowler. Se trata de un patrén de disefio que permite encadenar llamadas
a métodos de un objeto, facilitando la lectura y escritura del cédigo. Este patron es especialmente util
cuando se trabaja con objetos que tienen multiples propiedades o configuraciones.

Para usar interfaces fluidos deberemos hacernos estas dos preguntas:

1. ¢ Es mutable?
2. ;Los métodos de devuelven el propio tipo en este caso StringBuilder ?

Posiblemente te hayas fijado que los métodos que hemos visto aqui y la mayoria de métodos de la
documentacion oficial retornan un stringBuilder . Ademas, la documentacion oficial también nos
comenta sobre el objeto stringBuilder de retorno que: "Referencia a la instancia después de que se
complete la operacién de insercioén.". Significa que retorna la misma referencia al objeto al que
aplicamos el método. Esto es, si hacemos cadenaMutable.Replace("Juanjo", "Xusa"); esta llamada
retornara el propio cadenaMutable por lo cual deduciremos que es mutable.

En este caso pues, la respuesta a las dos preguntas es si y entonces podemos aplicar el patrén de
disefo Fluent Interfaces.

Veamos un ejemplo de como usar este patron con stringBuilder que hemos visto que cumple las
condiciones para ello.

Ejemplo 1:

Imaginemos que la siguiente cadena: "Texto a modificar” Yy queremos transformarla a html de la
siguiente forma:

<p>
Texto a modificar

</p>

Una opcion posible usando stringBuilder Seria la siguiente:

StringBuilder htmlBuilder = new StringBuilder("Texto a modificar");
htmlBuilder.Insert(0, "<p>\n\t");

htmlBuilder.Replace("modificar", "modificar");
htmlBuilder.Append("\n</p>\n");

string html = htmlBuilder.ToString();

Console.WriteLine(html);

22/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

https://martinfowler.com/bliki/FluentInterface.html
https://docs.microsoft.com/es-es/dotnet/api/system.text.stringbuilder

Pero el interfaz fluido de stringBuilder también nos permitira hacer la implementacion

encadenando llamadas de la siguiente forma:

string html = new StringBuilder("Texto a modificar")
.Insert(@, "<p>\n\t")
.Replace("modificar", "modificar")
.Append("\n</p>\n")
.ToString();

Console.WriteLine(html);

6 Pista

Si nos colocamos con el cursor antes del operador '.' y vemos la opcion de refactorizacion
que nos ofrece VSCode con ctrl+. . Nos ofrecera la opcion
"Encapsular cadena de Llamadas" que alinea todas las llamadas tal y como se ve en el

ejemplo.

23/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

Ejemplo 2:

Crea una aplicacion generadora de contrasenas. Para ello, debes pedir cuantos digitos de 0 a 9,
caracteres especiales (_-%/]"><#) y letras debe contener. Las letras se generan aleatoriamente en
mayuscula o en minuscula con una probabilidad del 50%.

La longitud total de la misma sera la suma de los tres valores introducidos y ademas, solicitaremos

al usuario cuantas contrasefas desea generar.

Por ultimo, mostraremos cada una de las contrasefias generadas.

¢) Pista

Generaremos los diferentes tipos de caracter siempre en el mismo orden, para simplificar el
algoritmo, pero antes de devolver la contrasefia generada mezclaremos los mismos
ayudandonos de objetos de tipo stringBuilder .

Para ello supongamos que tenemos una clave con 2 digitos, 1 caracter especial y 3 letras en un
StringBuilder referenciado porelid ¢ y creamos otro StringBuilder con una capacidad inicial de
la longitud de nuestra clave que es 6, referenciado por el id cm y en el cual iremos generando la
clave mezclada.

c : StringBuilder cm : StringBuilder
Length=6 Length=0
Capacity=7? Capacity=6

@_>o12345 @_>012345
e[o []. (TTITT]

Ahora eligieremos aleatoriamente un caracter de ¢ loa afadiremos a e¢m con cm.Append(...) Y lo

eliminaremos con c.Remove(...)

Supongamos que elegimos aleatoriamente el indice 3 donde se encuentra el caracter 'k’

¢ : StringBuilder cm : StringBuilder
Length=5 Length=1
Capacity=?? Capacity=6

@_»01234 @_»012345
HEEEER

Este proceso lo podremos repetir hasta que la c.Length sea o

24/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

public static class Program

{
public static char GeneralLetra(Random seed)
{
const string LETRAS = "ABCDEFGHIJKLMNOPQRSTUVXYZ";
char letra = LETRAS[seed.Next(@, LETRAS.Length)];
return seed.Next(2) == @ ? letra : char.ToLower(letra);
}

public static char GeneraDigito(Random seed)
{
const string DIGITOS = "©123456789";
return DIGITOS[seed.Next(®, DIGITOS.Length)];

public static char GeneraEspecial(Random seed)
{
const string ESPECIALES = "_-%/]"><#";
return ESPECIALES[seed.Next(®, ESPECIALES.Length)];

public static string Mezcla(Random seed, string texto)
{
StringBuilder c¢ = new StringBuilder(texto);
StringBuilder cm = new StringBuilder(c.Length);
while (c.Length > ©)
{
int i = seed.Next(@, c.Length);
cm.Append(c[i]);
c.Remove(i, 1);
}

return cm.ToString();

25/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

public static string ClaveAleatoriaParametrizada(Random seed,
{
int longitud = digitos + especiales + letras;
StringBuilder contrasefia = new StringBuilder(longitud);
int cDigitos = 0;
int cEspeciales = 0;
for (int i = 0; 1 < longitud; i++)
{
char? c;
if (cDigitos < digitos)
{
c = GeneraDigito(seed);
cDigitos++;
}
else if (cEspeciales < especiales)
{
c = GeneraEspecial(seed);
cEspeciales++;
}
else
c = Generaletra(seed);

contrasena.Append(c);

return Mezcla(seed, contrasefia.ToString());

public static void Main()

int digitos, int especiales, int letras)

{
Console.WritelLine("Parametriza la generacién de claves...");
Console.Write("sCuantos digitos contiene?: ");
int digitos = int.Parse(Console.ReadLine() ?? "6");
Console.Write("¢Cuantos caracteres especiales?: ");
int especiales = int.Parse(Console.ReadlLine() ?? "2");
Console.Write("¢Cuantas letras?: ");
int letras = int.Parse(Console.ReadlLine() ?? "2");
Console.Write("¢Cuantas claves quieres generar?: ");
int claves = int.Parse(Console.ReadlLine() ?? "1");
// Generamos la semilla aleatoria aqui para no obtener siempre las mismas contrasenas.
// Esta semilla, la iremos pasando a través de los diferentes moédulos que generan
Random seed = new Random();
for (int 1 = 0; i < claves; i++)

Console.WriteLine(ClaveAleatoriaParametrizada(seed, digitos, especiales, letras));
}
}
26/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

® Caso de estudio
A continuacion tienes un programa que ira pidiendo frases hasta que se introduzca la frase "fin" .

Cada una de las frases las pasara por el método estatico string TraduceAlTiko(string frase) que
me devolvera la frase modificada con una jerga de mensajeria instantanea que usa la ficticia 'tribu
urbana' de los tikos.

Analiza el codigo he intenta deducir las reglas que se han usado para la traduccion.
Puedes probar las frases:

e (¢Has probado el Chimichurri?

e Mi socio dice que estd muy bueno por Elche

Fijate como se ha autodocumentado el cédigo a través de variables locales, constantes y funciones.

public static class Program

{

public static void PasaletrasAMayusculasAleatoriamente(StringBuilder frase, int pocenetaje)
{

Random seed = new Random();

for (int i = 9; 1 < frase.Length; i++)

{

if (seed.NextDouble() < pocenetaje / 100d)
frase[i] = char.ToUpper(frase[i]);

¥

}

27/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

28/53

public static string TraduceAlTiko(string frase)

{

frase = frase.TolLower();

StringBuilder fraseTiko = new StringBuilder(frase.Length * 2);

Random seed = new Random();

for (int i = @; i < frase.Length; i++)
{

const string VOCAL = "aeiuo";

char ¢ = frase[i];

string sustitucion;

bool eslLetraSiguienteEoIl = i + 1 < frase.Length & (frase[i + 1]

bool esLetraSiguienteAoO = i + 1 < frase.Length && (frase[i + 1]
bool esLetraAnteriorVocal = i > © && VOCAL.IndexOf(frase[i - 1])
bool esUltimalLetra = i == frase.Length - 1;
switch (c)
{

case 'h':

case '¢'

case 'd' when esLetraAnteriorVocal && eslLetraSiguienteAoO:

case '?' when l!esUltimalLetra:
case '!" when l!esUltimalLetra:
sustitucioén = "";

break;

case '"?' when esUltimaletra:

== 'e' || frase[i + 1] == 'i");
== 'a' || frase[i + 1] == 'o0');
>= 0;

sustitucién = $" lokooo{new string('?', seed.Next(2, 6))}";

break;

case '!" when esUltimalLetra:

sustitucién = $" ermanooo{new string('!', seed.Next(2, 6))}";

break;

= 0:
g

case 'c' when i

sustitucion

break;

case C

sustituciéon = "x";
break;
case 'c' when esLetraSiguienteEoI:

sustitucidén = "s";

break;

Programacion 1° DAM Unidad 11 IES Doctor Balmis

when i + 1 < frase.Length && frase[i + 1] == 'h':

default:

{
StringBuilder auxiliar = new StringBuilder();
bool esUnaPalabraQueAcabaEnVocal = i < frase.Length - 1
&& VOCAL.Index0f(c) >= ©
&& char.IsSeparator(frase[i + 1]);
if (!esUnaPalabraQueAcabaEnVocal)
{
const string LETRAS = "gbvzaéiou";
const string EQUIVALENTE_LETRAS_EN_TIKO = "jvbsaeiou";
int pos = LETRAS.IndexOf(c);
auxiliar.Append(pos >= © ? EQUIVALENTE_LETRAS_EN_TIKO[pos] : c);
}
else
auxiliar.Append(c, seed.Next(1l, 5));
if (esUltimaLetra)
auxiliar.Append(" ermanoo");
sustitucion = auxiliar.ToString();
break;
}

}
fraseTiko.Append(sustitucion);
}
const int PORCENTAJE_DE_MAYUCULAS_EN_FRASE = 20;
PasalLetrasAMayusculasAleatoriamente(
fraseTiko.Replace(" por ", " x ")
.Replace(" que ", " k ")
.Replace(" muy ", " to "),
PORCENTAJE_DE_MAYUCULAS_EN_FRASE);

return fraseTiko.ToString();

}
public static void Main()
{
while (true)
{
Console.Write("Introduce una frase a traducir (fin para acabar): ");
string frase = Console.ReadlLine();
bool acabar = frase.ToUpper() == "FIN";
string fraseTiko = acabar ? "aDid soSssio !!!" : TraduceAlTiko(frase);
Console.WritelLine(fraseTiko);
if (acabar) break;
¥
¥

29/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

Expresiones Regulares en CSharp

Para probar las expresiones regulares 'on-line' podemos usar la siguiente url regexr.com.

Definicion de expresién regular

Una expresion regular, a menudo llamada también patrén, es una expresién representada por
caracteres y metacaracteres que describe un conjunto de cadenas sin enumerar sus elementos.

A través de la expresidn regular es posible interpretar rapidamente vastas cantidades de texto y ejecutar
varias operaciones como:

e Buscar patrones.
o Eliminar texto.

o Extraer patrones.

Caracteres

Sera todo lo que no sean metacaracteres. Coinciden en la expresion con ellos mismos.

Metacaracteres
Son caracteres que tienen cierto significado especial "', '?', etc.

root

En el enlace del tema podras ver la especificacion oficial del la sintaxis soportada por C# para
expresiones regulares. Nosotros en este tema hemos hecho un 'resumen’ con las caracteristicas mas
comunes de las mismas y que podras encontrar en la mayoria de lenguajes.

30/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

https://regexr.com/

Clases de caracter

Son conjuntos de caracteres que encontraran una correspondencia si uno de los caracteres incluido en el

conjunto coincide.

Metacaracter Descripcion

Coincide con cualquier caracter menos \n. Para poner ".' usaremos \.

[aeiou] Coincide con cualquier caracter dentro del grupo

[~aeiou] Coincide con cualquier caracter que no pertenezca al grupo

[e-9] Coincide con cualquier caracter dentro del rango indicado

[0-9A-Z] Coincide con cualquier caracter dentro del rango indicado, con espacio
\w Coincide con cualquier caracter de palabra [a-zA-z0-9]

\W Coincide con cualquier caracter de no-palabra

\s Coincide con cualquier caracter de espacio

\s Coincide con cualquier caracter de no-espacio

\UNNNN Coincide con cualquier caracter Unicode. Por ejemplo, \ueeAs significa ©
\d Coincide con cualquier digito. Otra manera es usar [0-9]

\D Coincide con cualquier no-digito. Otra manera es usar [~@-9]

Alternancia de caracter

C# los denomina también 'grupo de caracteres positivos'.

La obtendremos con los corchetes [<caracterls><caracter2s...]

Advertencias

1. Los metacaracteres dentro del corchete no sera interpretados como tales sino como los
caracteres tal cual *, $, +, ?, | ... salvo el caso de algunas clases de caracter como
\d, \D, \w, \W, \s, \S y por tanto |la barra de escape \ deberemos escaparla si queremos
que se interpreta tal cual.

2. Si queremos definir alternancia de caracteres o un grupo de caracteres positivos donde
tengamos clases de caracter estas deberan ir al principio del grupo. Por ejemplo,
@"[\sa-z]" seria alternancia de un caracter de espacio o una letra minuscula. Sin embargo,

31/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/standard/base-types/character-classes-in-regular-expressions#positive-character-group--

@"[a-z\s]" , que funcionaria en otros lenguajes, podria generarnos errores en ejecucion en
CH.

32/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

Alternancia de expresiones

Nos sirve para indicar una de varias opciones entre varias expresiones regulares, separadas por el
metacaracter barra vertical | (A1t + 124 0 Alt Gr + 4 y espacio).

Ejemplos:

1. este|oeste|norte|sur — Permitira encontrar cualquiera de los nombres de los puntos
cardinales.
2. \b(mi|[ts]Ju)\b — Permitira encontrar pronombres posesivos.

Aserciones atomicas de ancho cero

No hacen avanzar el motor a través de la cadena de consumo. Simplemente producen coincidencia o
error en funcién de la posicién actual en la cadena.

Metacaracter Descripcion

Especifica que la coincidencia debe producirse al principio de la cadena o de la
linea.

Especifica que la coincidencia debe producirse al final de la cadena, antes de \n o

’ al final de la linea.
\A La coincidencia se debe producir al principio de la cadena.
\Z La coincidencia se debe producir al final de la cadena.
La coincidencia debe producirse en limites de palabras separadas por caracteres
\P no alfanumeérico (letras y numeros).
\B Especifica que la coincidencia no se debe producir en un limite \b .
Ejemplos:

1. ~\d$ — Permite asegurar de que la cadena a verificar representa un unico digito, sin nada
antes y después.

2. ~\d\d\/\d\d\/\d\d\d\d$ — Permite validar un formato de fecha, aunque no permite verificar si
es una fecha valida, ya que 99/99/9999 también seria valido en este formato.
Aunque C# no lo necesita, es conveniente escapar la barra "/" ya que en otros lenguajes
cémo JavaScript es necesario por tanto pondremos @"\/" .

33/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

34/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

Construcciones de agrupamiento o grupos

Las construcciones de agrupamiento permiten capturar grupos de sub-expresiones.

Metacaracter Descripcion

Captura la subcadena coincidente o grupo sin captura. Las capturas que utilizan
() se numeran automaticamente en funcion del orden del paréntesis de apertura,

(e) comenzando por el numero uno. La primera captura, la captura de elemento
numero cero, es el texto que coincide con el modelo completo de la expresion
regular.

Captura la subcadena coincidente dentro de un nombre de grupo o nombre de
(?<nombre>e) numero. La cadena que se utiliza para nombre no debe contener ningun signo de
puntuacion y no puede comenzar por un numero.

Advertencia

En C# no es posible usar (?<nombre>) sin etiquetar el resto de grupos. Por tanto, si usamos un
grupo etiquetado, deberemos etiquetar todos los grupos o la expresion no sera valida.

Ejemplos:

1. al (norte|sur) de — Permite crear un grupo sin captura para norte y sur representando las
cadenas ...al norte de...y ...al surde...

: ‘norte” :
@ &l > dc @
‘sur’

2. ~(?<dia>\d\d)\/(?<mes>\d\d)\/(?<afo>\d\d\d\d)$ — Busca la coincidencia exacta con una
fecha. Pero ademas tendremos 3 grupos etiquetados con las sub-expresiones encontradas
en dia, mes y ano.

35/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

Cuantificadores

Los cuantificadores agregan datos de cantidades opcionales a una expresion regular. Una expresion de
cuantificador se aplica al caracter, grupo o clase de caracteres que lo precede inmediatamente.

Metacaracter Descripcion

e* Especifica 0 o mas coincidencias

e+ Especifica 1 0 mas coincidencias

e? Especifica 0 o 1 coincidencias

e{n} Especifica exactamente n coincidencias

e{n,} Especifica n coincidencias como minimo.

e{n,m} Especifica n coincidencias como minimo y m como maximo.
Ejemplos:

1. ~bo+m{1,4}$ — Onomatopeya de explosion.

[N o ¢ o 37 IR

at most 3 times

2. "\d{1,2}\/\d{1,2}\/\d{4}$ — Fecha.

S suoine e R 2 ™

at most once at most once 3 times

3. \b(?<usuario>[\w._%-]+)@(?<dominio>[\w._]+\.[a-zA-Z]{2,4})\b — Correo electronico
(Simplificado).

group#l______
One of:

1
I
1
I
word i
1
1
1
1
1

.' word boundary word boundary '.

36/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

Construcciones de referencia inversa

Una construccion referencia inversa permite identificar una sub-expresion coincidente previamente

mas adelante en la misma expresion regular.

Metacaracter Descripcion

\1 Referencia inversa. Coincide con el valor de una sub-expresiéon numerada 1... n.
\k<nombre> Referencia inversa. Coincide con el valor de una sub-expresion con nombre.
Ejemplos:

1. (\w)\1 — Devolvera 'aa' en ‘aaron’
2. (2<letra>\w)\k<letra> — Devolvera 'aa' en ‘aaron’
3. Su pongamos esta expresion para detectar fechas:
Md{1,2}[\s\/-]1\d{1,2}[\s\/-]1\d{2,4}$ Si nos fijamos la separacion entre los valores de dia,
mes y ano pueden ser diferentes por lo que podrian ser validas entradas como: 22/03-2021 y 3-
12 2021 pero... COmo hacernos para asegurarnos que el separador que se ponga entre
mes y afo sea el mismo que se consumio entre diay mes?
e Lo que quiero ver si se repite 0 no mas adelante, lo pondré en un grupo.
» Haré referencia al grupo con los ejemplos que hemos visto mas adelante.
Tendremos pues la espresion ~\d{1,2}([\s\/-1)\d{1,2}\1\d{2,4}$

roupEl . -
.
1 One of: 1
' i
white space !

1

1

1

1

|
1
i
1
] .

at most once | : at most once 1...3 times
I
1 1

37/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/standard/base-types/backreference-constructs-in-regular-expressions

Uso de expresiones regulares en el lenguaje

Utilizaremos la clase de las BCL Regex definida en el espacio de nombres
System.Text.RegularExpressions , que contendra métodos estaticos para usarlas.

A la hora de usar el patron podemos indicar mediante una serie de flags definidos en el enumerado
RegexOptions, como se va a comportar el motor de expresiones regulares.

Ejemplo:
Comprobacion simple de la ER para comprobar un e-mail anterior.
public static void Main()
{
Console.Write("Introduce una e-mail: ");
string correo = Console.ReadlLine()!;
// Las opciones del enumerado para el motor de e.r. seran un grupo de flags.
RegexOptions opciones = RegexOptions.Compiled | RegexOptions.IgnoreCase;
string patron = @"~[\w.%-]+@[\w.-]+\.[a-zA-Z]{2,4}$";
bool correoValido = Regex.IsMatch(input: correo, pattern: patron, options: opciones);
Console.WriteLine($"E1l correo {correo} {(!correovValido ? "no " : "")}es valido.");
¥
#’ Nota

Si nos fijamos en el editor de VSCode, mientras escribimos el patrén, si pulsamos ctrl+Espacio
nos ofrecera una ayuda visual con los diferentes metacaracteres y clases de caracter que
podemos usar, ofreciéndonos una lista de opciones para completar el patron. Ademas, aunque
estamos asignandolo a una cadena de texto, nos lo colorea como se muestra en la imagen de

ejemplo distinguiendo los diferentes metacaracteres y clases de caracter.

string patron = @""[\w.%—]l+@[\w.-]+\.[a—zA-Z]{2,4}$";

S cualquier caracter | Bl antificador + coincide con el elemento
eiE ¥ coincidir cero o mas veces anterior una o mas veces. Es equivalente al
abe *? coincidir cero o mas veces (diferido) - antificador {1). + es un cuantificador
L3 coincidir una o varias veces aynansivo cuyo equivalente diferido es +2.
abc +7 coincidir una o varias veces (diferido)

abc ? coincidir cero veces o una vez

abc ?? coincidir cero veces o una vez (diferi..

abc {n} coincidir exactamente "n" veces

abc {n}? coincidir exactamente "n" veces (difer..

abe {n, } coincidir al menos "n" veces

abe {n,}? coincidir al menos "n" veces (diferido)

abe {m,n} coincidir entre "m" y “"n" veces

X

38/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.text.regularexpressions.regexoptions

39/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

También también podemos instanciar un objeto de la clase RegEx por si nos interesara aplicar diferentes
operaciones sobre el mismo patron.

-

Ejemplo:

Igual que el ejemplo 1 pero rehusando un objeto instanciado de RegEx .

public static void Main()

{
bool correoValido;
Regex patron = new (pattern: @"~[\w.%-]+@[\w.-]+\.[a-zA-Z]{2,6}%",
options: RegexOptions.Compiled | RegexOptions.IgnhoreCase);
do
{
Console.Write("Introduce una direccién de correo: ");
string correo = Console.ReadlLine()!;
correoValido = patron.IsMatch(correo);
if (!correoVvalido)
Console.WriteLine($"{correo} no es un correo valido.");
} while (!correoValido);
}

40/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

Métodos de utilidad sobre cadenas usando ER

Destacaremos un par de ellos, tendremos la posibilidad de usarlos tanto sobre un objeto instanciado o
como métodos de clase estaticos (nosotros vamos a ver estos ultimos).

static string Replace(string cadenaConsumo, string patrén, string reemplazo, RegexOptions opciones)

: Reemplaza un patrén en la cadena de consumo por una cadena de reemplazo.

string textol = "Esta es una cadena con " +

"un numero de espacios en blanco indeterminado.";
Console.WritelLine(textol);
string texto2 = Regex.Replace(textol, @"\s+", " ");

Console.WritelLine(texto2);

static string[] Split(string cadenaConsumo, string patrén, RegexOptions opciones) : Trocea una

cadena por un patrén.

string texto = "Esta es una cadena con " +
"un numero de espacios en blanco indeterminado.";
string[] palabras = Regex.Split(texto, @"\s+");

Console.WritelLine(string.Join("\n", palabras));

Gestion de grupos con o sin etiqueta

Utilizaremos la clase Match que ademas de contener informacion de los grupos, me ayudara a gestionar
coincidencias.

1. Como ha sucedido hasta ahora, obtendremos un objeto Match a partir de una instancia de objeto
RegEx O directamente a través de un método de clase de RegEx:
e Match objRegex.Match(string cadenaDeEntrada);
e static Match RegEx.Match(string cadenaDeEntrada, string patron);
2. Una vez tenemos un objeto match ...
e Dispondremos de la propiedad bool objMatch.Success que medira si se encontro una
coincidéncia o no (del grupo principal).
» Dispondremos de la propiedad bool objMatch.Groups que podremos indizar a través de un
entero o de una cadena con la etiqueta del grupo, y nos devolvera el grupo correspondiente.
e Dispondremos del método de instancia Match objMatch.NextMatch() que continuara buscando
coincidencias de la ER que genero el objeto match al que se le aplico.
3. Por ultimo, Una vez tenemos un objeto Group indizado...
e Dispondremos de la propiedad string objGroup.Value que me devolvera un string con la

coincidéncia encontrada.

41/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

https://docs.microsoft.com/es-es/dotnet/api/system.text.regularexpressions.match

{

Ejemplo:

Veamos su funcionamiento a través de un programa de ejemplo en el que vamos a pedir una fecha
con formato dd/mm/aaaa y ademas de ver si es correcta la entrada, vamos a mostrar los valores de
dia, més y afno introducidos.

public static void Main()

Console.Write("Introduce una fecha dd/mm/aaaa: ");
string fecha = Console.ReadlLine()!;
Regex patronFecha = new (@"~(?<Dia>\d{2})\/(?<Mes>\d{2})\/(?<Ahfo>\d{4})$");

// Busco la primera y uUnica coincidencia en la cadena de consumo fecha.

Match coincidencia = patronFecha.Match(fecha);

if (coincidencia.Success)
{
// Sabemos con 'seguridad' que en los grupos hay valores numéricos
// En este ejemplo como los grupos estaban etiquetados, puedo indexar
// utilizando el nombre de la etiqueta del grupo.
ushort dia = ushort.Parse(coincidencia.Groups["Dia"].Value);
ushort mes = ushort.Parse(coincidencia.Groups["Mes"].Value);
ushort afo = ushort.Parse(coincidencia.Groups["Afio"].Value);
Console.WriteLine($"Dia = {dia}, Mes = {mes} y Ano = {afio}");
}

else

Console.WriteLine("No ha introducido un formato de fecha vdlido.");

42/53

Programacion 1° DAM Unidad 11 IES Doctor Balmis

Buscar una ocurrencia concreta con un patrén

Vamos a modificar ligéramente el ejemplo anterior, para que a partir de la cadena "EI 11/9/2001 fueron
derribadas las torres gemelas de NY y el 20/7/1969 lleg6 el hombre a la luna™ me diga si en la
misma se encuentra la fecha de la llegada del hombre a la luna con formato dd/mm/aaaa pero esta vez
dd y mm pueden estar formados también por una solo digito y los grupos NO estaran etiquetados.

public static void Main()

{
string texto = "E1 11/9/2001 fueron derribadas las torres gemelas " +
"de NY y el 20/7/1969 1llegd el hombre a la luna";
string patron = @"(\d{1,2})\/(\d{1,2})\/(\d{4})";
Match coincidencia = Regex.Match(texto, patron);
bool fechaEncontrada = false;
// Mientras no encuentre lo que busco y
// haya coincidencias con el patrdn que busco en la cadena.
while (!fechaEncontrada && coincidencia.Success)
{
string fecha = coincidencia.Value; // Equivale a coincidencia.Groups[@].Value
// Cada paréntesis en la expresion para definir un grupo se numeraran
// de izquierda a derecha empezando por 1 ya que el indice @ es toda la expresion.
// Puede ser una opcion si tenemos pocos grupos pero no anidados,
// aunque sera menos legible que la anterior.
ushort dia = ushort.Parse(coincidencia.Groups[1].Value);
ushort mes = ushort.Parse(coincidencia.Groups[2].Value);
ushort ano = ushort.Parse(coincidencia.Groups[3].Value);
fechaEncontrada = dia == 20 && mes == 7 && ano == 1969;
// NextMatch busca la siguiente coincidéncia si la hay
// a partir de la la ultima que encontro.
coincidencia = coincidencia.NextMatch();
}
Console.WritelLine($"La fecha de la llegada a la luna {(fechaEncontrada?"no se":"se")} " +
"encuentra en el texto");
}

43/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

Buscar todas las ocurrencias de un patrén

e Usaremos el método Regex.Matches(cadena, patrén, ...) que me devolvera una coleccion
indexable y recorrible con foreach con todas las coincidencias.

o Este caso sera util, si queremos obtener todas las coincidencias, y no una en concreto que puede
que la encontremos justo al principio, con lo cual esta opcion seria mas costosa.

foreach(Match coincidencia in Regex.Matches(texto, patron))

{

string fecha = coincidencia.Value; // Equivale a coincidencia.Groups[@].Value

ushort dia = ushort.Parse(coincidencia.Groups[1].Value);

ushort mes = ushort.Parse(coincidencia.Groups[2].Value);

ushort afio = ushort.Parse(coincidencia.Groups[3].Value);

Console.WritelLine($"Fecha encontrada {fecha} Dia = {dia}, Mes = {mes} y Afo = {afio}");
}

44/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

® Caso de estudio 1:

Vamos a volver a implementar el programa que extraiga un texto entre dos delimitadores de texto de
una cadena. Por ejemplo, si la cadena es "<h1>Titulo Principal</h1><p>Este es un parrafo.</p>" ,
queremos extraer el texto entre <h1> y </h1> y obtener "Titulo Principal” . Vuelve a definir el
metodo llamado ExtraerEntre para realizar esta tarea pero ahora usando expresiones regulares.

public static string ExtraerEntre(string cadena, string inicio, string fin)

{

Regex patron = new($@"{inicio}(.*?){fin}");

Match coincidencia = patron.Match(cadena);

return coincidencia.Success ? coincidencia.Groups[1].Value : "";
}

public static void Main()

{
string cadena = "<h1>Titulo Principal</hl><p>Este es un parrafo.</p>";
string inicio = "<h1>";
string fin = "</h1>";
string resultado = ExtraerEntre(cadena, inicio, fin);
Console.WritelLine($"Texto extraido: {resultado}");

}

Mostrara por consola:

Texto extraido: Titulo Principal

45/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

«” Ampliacién opcional:

Vamos a implementar el método ExtraerEntre en otros lenguajes de programacién como

JavaScript y Kotlin.

JavaScript:

function extraerEntre(cadena, inicio, fin) {
const patron = new RegExp(${inicio}(.*?)${fin});
const coincidencia = cadena.match(patron);

return coincidencia ? coincidencia[1] : 8

Kotlin:

fun extraerkEntre(cadena: String, inicio: String, fin: String): String {
val patron = Regex("$inicio(.*?)$fin")

val coincidencia = patron.find(cadena)

return coincidencia?.groups?.get(1)?.value ?:

Fijate que en otros lenaguajes como JavaScript y Kotlin también se usan las expresiones
regulares de forma similar a C# y que los patrones son los mismos. En JavaScript usamos el
constructor RegExp para crear una expresion regular, mientras que en Kotlin usamos la clase
Regex . En ambos casos, el patréon sigue siendo el mismo que definimos en C#.

46/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

® Caso de estudio 2:

Supongamos que queremos hacer un método de utilidad que nos diga si una IP de entrada es
correcta.
Ademas, usaremos ese método como apoyo a otro que lea una IP desde teclado vy filtre solo valores
validos.

Nota: Una IP esta formada por cuatro bytes separados por punto de @ a 255 por ejemplo
10.0.2.254

Una primera aproximacion, podria ser dar como validas tres secuencias de 1 a 3 digitos separadas
porun . con nada antes ~ y después $. Por tanto el patron podria quedar algo asi:
AMd{1,3}\.\d{1,3}\.\d{1,3}.\d{1,3}$.

Fijate, que hemos escapado el caracter '.' por ser un metacaracter de las clase de caracter y
queremos se interprete de forma literal.

A primera vista, se repiten tres partes en la expresién compuestas por el caracter '.' seguido de 3
digitos, por lo que podriamos simplificar la expresion asi:

Md{1,3}(\.\d{1,3}){3}$

Fijate, para indicar que lo que se repite 3 veces es eso hemos tenido que agruparlo en una sub-
expresion.

Una vez hemos decidido la expresién regular nuestro cédigo podria quedar asi.

47/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

{

48/53

static class Programa

static bool IPCorrecta(string entrada)

{
const string patronIP = @"~\d{1,3}(\.\d{1,3}){3}%";
return Regex.IsMatch(entrada, patronIP);

static string LeeIP(string mensaje)
{
bool valida;
string ip;
do
{
Console.Write($"{mensaje}: ");
ip = Console.ReadlLine();
vdlida = IPCorrecta(ip);
if (!valida)
Console.WritelLine($"IP {ip} no es valida.");
} while (!valida);

return ip;

static void Main()

{
string ip = LeeIP("Introduce la IP");
Console.WriteLine($"La IP introducida es {ip}");

Pero... ¢ Es posible controlar que los bytes estén entre 0 y 255 en la propia expresion?
En este caso tendremos que indicar algun tipo de alternancia de posibilidades para incluir rangos
excluyentes en la expresion...

. Podemos asegurar que cualquier byte de 1 o 2 digitos es valido 0 a 99, pero de 3 digitos no es

cualquiera validos ya que los numeros mayores a 255 no lo son. Luego \d{1,2} seria valida
para byte pero nos dejamos fuera del rango de 100 a 255.

. Si empieza por 1 el byte, después cualesquier combinacién de 2 digitos son validos, esto es: de

100 a 199. Luego 1\d{2} anadiria el rango de 100 a 199 dejando fuera de 200 a 255.

. Si empieza por 2 el byte el siguiente digito va de 0 a 4 el tercer digito podrairde0a9 — \d,

ya que si es 5 el tercer digito solo podra ir de 0 a 5. Luego 2[e-4]\d afiadiria el rango de 200 a
249 dejando fuera de 250 a 255.

. Ya nos queda anadir el ultimo rango de valores validos de 250 a 255 a través de la expresion

25[0-5]
Podemos concluir que la expresion final para un byte valido sera

Programacioén 1° DAM Unidad 11 IES Doctor Balmis

(\d{1,2}|1\d{2}|2[@-4]\d|25[@-5]) con lo cual la expresion final sera...
~A(\d{1,2}|1\d{2}|2[@-4]\d|25[@-5]) (\.(\d{1,2}|1\d{2}|2[@-4]\d|25[0-5])){3}$

Nos queda una ER muy larga y ofuscada de leer, con partes repetidas y donde cometer un error
es bastante sencillo. Una posible solucion sera definir los sub-grupos en variables separadas y asi
auto-documentar y simplificar quedando la funcién de arriba asi.

static bool IPCorrecta(string entrada)

{
string patronByteIP = @"(\d{1,2}|1\d{2}|2[0-4]\d|25[0-5])";
string patronIP = "~"
+ patronByteIP + @"(\."
+ patronByteIP + "){3}$";
return Regex.IsMatch(entrada, patronIP);
}

Pero... ¢ Seria posible obtener los bytes de la IP?

Supongamos que los vamos a devolver en un array de bytes subordinado a si es correcta o no. Por
tanto nuestro interfaz quedaria asi:

static bool IPCorrecta(string entrada, out byte[]? bytes)

y si quisiéramos ver si la IP es correcta sin obtener los bytes, podriamos llamar a la funcién de
siguiente manera:

bool correcta = IPCorrecta(entrada, out _);

Fijate que el caracter _ significa descarte como en las expresiones switch.

En este caso seria mas simple hacer un Split de la cadena correcta por el caracter de separacién de
los bytes, que recurrir a definir grupos en la expresion. Una propuesta podria ser el codigo
siguiente...

49/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

static bool IPCorrecta(string entrada, out byte[]? bytes)
{
string patronByteIP = @"(\d{1,2}|1\d{2}|2[@0-4]\d|25[0-5])";
string patronIP = "A"
patronByteIP + @"(\."
patronByteIP + "){3}$";
Regex.IsMatch(entrada, patronIP);

I

o

bool ipCorrecta

if (ipCorrecta)

{
bytes = new byte[4];
int i = 0;
foreach(string textoByte in entrada.Split('.'))
bytes[i++] = byte.Parse(textoByte);
}
else

bytes = null;

return ipCorrecta;

static byte[]? LeeIP(string mensaje)

{
byte[]? bytes;
bool valida;
do
{
Console.Write($"{mensaje}: ");
string ip = Console.ReadlLine() ?? "0.0.0.0";
vdlida = IPCorrecta(ip, out bytes);
if (!valida)
Console.WriteLine($"IP {ip} no es valida.");
} while (!valida);
return bytes;
¥
static void Main()
{
byte[]? ip = LeeIP("Introduce la IP");
Console.WriteLine(ip != null
? $"La IP introducida es {string.Join('."', ip)}"
"IP incorrecta.");
}

50/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

Pero... ¢ Seria posible hacerlo definido grupos en la expresién?

Tendriamos que etiquetar cada grupo y con la expresion actual donde agrupamos los 3 ultimos
grupos no seria posible. Por lo tanto deberiamos desagrupar la ER y el cddigo podria quedar

static bool IPCorrecta(string entrada, out byte[]? bytes)
{
string[] grupos = new string[]{"b1l", "b2", "b3", "b4"};
string patronByteIP = @"\d{1,2}|1\d{2}|2[@-4]\d|25[0-5]";
string patronIP = "~"
$"(?<{grupos[@]}>{patronByteIP})" + @"\."
$"(?<{grupos[1]}>{patronByteIP})" + @"\."
$"(?<{grupos[2]}>{patronByteIP})" + @"\."
+ $"(?<{grupos[3]}>{patronByteIP})" + "$";
Match m = Regex.Match(entrada, patronIP);

4+

4+

4

if (m.Success)
{
bytes = new byte[4];
for (int i = @; i < grupos.Length; i++)
bytes[i] = byte.Parse(m.Groups[grupos[i]].Value);
}

else

bytes = null;

return m.Success;

51/53 Programacion 1° DAM Unidad 11 IES Doctor Balmis

Pero... ya que vamos a sacar grupos, la comprobacion de que el byte esta entre 0 y 255 la
podriamos hacer al extraer el byte, y asi simplificar bastante la ER haciéndola mas legible.

El codigo quedaria mas legible, pues no tendriamos que pensar tanto la ER. Una posible propuesta
podria ser la siguiente:

static bool IPCorrecta(string entrada, out byte[]? bytes)
{
string[] grupos = new string[]{"b1l", "b2", "b3", "b4"};
string patronByteIP = @"\d{1,3}";
string patronIP = "~"
+ $"(?<{grupos[@]}>{patronByteIP})" + @"\."
+ $"(?<{grupos[1]}>{patronByteIP})" + @"\."
+ $"(?<{grupos[2]}>{patronByteIP})" + @"\."
+ $"(?<{grupos[3]}>{patronByteIP})" + "$";
Match m = Regex.Match(entrada, patronIP);
bool ipCorrecta = m.Success;
if (ipCorrecta)
{
bytes = new byte[4];
for (int i = @; i < grupos.Length; i++)
{
bytes[i] = byte.Parse(m.Groups[grupos[i]].Value);
ipCorrecta = bytes[i] >= © && bytes[i] <= 255;
if (!ipCorrecta)
{
bytes = null;

break;

}

else

bytes = null;

return ipCorrecta;

52/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

¢ Podriamos llevar este ultimo planteamiento a la expresién anterior con el Split?
Por supuesto y el cédigo también quedaria simple y legible.

static bool IPCorrecta(string entrada, out byte[]? bytes)

{
string patronIP = @"~\d{1,3}(\.(\d{1,3})){3}%$";
bool ipCorrecta = Regex.IsMatch(entrada, patronIP);
if (ipCorrecta)
{
string[] textoBytes = entrada.Split('.');
bytes = new byte[4];
for (int 1 = 0; i < textoBytes.Length; i++)
{
bytes[i] = byte.Parse(textoBytes[i]);
ipCorrecta = bytes[i] >= © && bytes[i] <= 255;
if (!ipCorrecta)
{
bytes = null;
break;
}
}
}
else
bytes = null;
return ipCorrecta;
}

Através, de este caso de estudio, hemos visto variar formas de abordar el problema. Siempre
tratando de refactorizar y mantera el cédigo lo mas legible y simple posible. Con ello ganaremos
mantenibilidad y evitaremos errores.

¢ Qué version crees que es la mejor?

53/53 Programacioén 1° DAM Unidad 11 IES Doctor Balmis

