Indice

¥ indice

» Ejercicio 1. Iniciandonos con ER

Ejercicio 2. Validacion de CIF

Ejercicio 3. Analizador de logs

Ejercicio 4. Extrae contenido de HTML

Ejercicio 5. Reescritor Tiko extendido (version con expresiones regulares)

Ejercicios Unidad 11

Descargar estos ejercicios

@ Antes de empezar

Para realizar estos ejercicios, deberas descargar los recursos del enlace de
proyecto_expresiones_regulares. Como puedes ver, la solucion esta compuesta de varios
proyectos. Cada uno de ellos corresponde con un ejercicio, deberas implementar todo el
cbdigo, tanto de la Main como de los métodos que se piden en cada ejercicio. Cada proyecto
contiene el test correspondiente, que deberas pasar para comprobar que has hecho el ejercicio
correctamente.

Los ultimos ejercicios estan pensados para trabajar de forma avanzada el manejo de EERR en
C#. Se recomienda revisar los apuntes de la unidad antes de resolverlos.

Ejercicio 1. Iniciandonos con ER

En este ejercicio deberemos crear las expresiones regulares que sirvan para validar los
siguientes formatos.

o Patrén numeroTarjetaCredito que verifique si una cadena representa un numero de tarjeta
de crédito valido en formato tipico. Debe aceptar tarjetas con o sin espacios, agrupadas en
bloques de 4 digitos. El patrén debe:

o Aceptar exactamente 16 digitos
o Permitir espacios opcionales entre cada 4 digitos

1/6 Ejercicios Expresiones Regulares IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u11_poo_cadenas_y_er/ejercicios/2_ejercicios/2_ejercicios_er.pdf
file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u11_poo_cadenas_y_er/ejercicios/2_ejercicios/recursos/2_ejercicios_er_recurso.zip

o Rechazar si hay letras o si los bloques son incorrectos

Ejemplos validos:
1234 5678 9012 3456
1234567890123456

e Patron nombreUsuario que valide nombres de usuario para una web. Las reglas son:
o Deben empezar con una letra

(¢]

Pueden contener letras, numeros, guiones bajos o puntos

[e]

Longitud minima: 5 caracteres

[e]

Longitud maxima: 15 caracteres

[¢]

No pueden terminar en punto ni guion bajo
Ejemplos validos: juan_87, maria.rosa, Carlos1990

Ejemplos invalidos: 123mario, luis_, .pepe, ana-too-long-user-name

o Patron matriculaCoche para validar las matriculas de coche con el formato actual de
Espafna: 4 numeros seguidos de 3 letras. Las letras no pueden incluir vocales.

Ejemplo valido: 1234BCD
Ejemplo invalido: 12AB345, 1234AEI

o Patron codigoPostal que sirva para validar codigos postales Espaioles. Debe aceptar
unicamente codigos de 5 digitos, donde los dos primeros estén entre 01 y 52.

Ejemplo valido: 46010, 28013
Ejemplo invalido: 99000, 523456

2/6 Ejercicios Expresiones Regulares IES Doctor Balmis

Ejercicio 1: Iniciandonos con ER

=== VALIDACION DE TARJETA DE CREDITO ===
Introduce un nimero de tarjeta: 1234 45671235 2145
La '1234 45671235 2145' es vdalida

=== VALIDACION DE NOMBRE DE USUARIO ===
Introduce un nombre de usuario: Pepe_Garcia.Info
La 'Pepe_Garcia.Info' no es valida

=== VALIDACION DE MATRICULA ===
Introduce una matricula: 1234CTK
La '1234CTK' es valida

=== VALIDACION DE CODIGO POSTAL ===
Introduce un codigo postal: 51423
La '51423' es valida

Presiona Enter para salir...

Requisitos:

» Nos crearemos variables estaticas y publicas en la clase program con el nombre indicado
en cada uno de los puntos, que contendran el patrén creado.

o Crearemos un método ValidaEntrada al que le llegara el patrén y la entrada y mostrara el
mensaje de si la cadena se corresponde con el patrén o no, segun la salida propuesta.

e Desde la Main llamaremos al método con la entrada de usuario y con el patron, para cada
uno de los casos. Este codigo se da hecho.

Ejercicio 2. Validacion de CIF

Crea la expresion regular para comprobar el formato del Cédigo de Identificaciéon Fiscal
(C.LLF.).

3/6 Ejercicios Expresiones Regulares IES Doctor Balmis

Ejercicio 2: validacion de CIF

Introduce un CIF: B 1256478 A
CIF valido: B 1256478 A
Tipo de organizacién: B

Cédigo provincial: 12
Numeracion secuencial: 56478
Digito de control: A

Presiona Enter para salir...

Requisitos

o Tendra el siguiente formato: T<sep>PPNNNNN<sep>C donde <sep> podra ser'’,'-' o
nada.
o T: Letra de tipo de Organizacién, una de las siguientes: A, B,C, D, E,F, G, H ,K, L, M,
N,P,QS,U VyW.
o PP: Cddigo provincial numérico.
o NNNNN: Numeracion secuencial dentro de la provincia.
o C: Digito de control, un numero 6 letra: A61, B62, C63, D64, E65, F66, Go7, H68, 169,
Jé0.
e Deberemos crear grupos con nombre para cada una de las partes (tipo, provincia,
secuencial y control).
o La expresion regular la crearemos en la clase Program publica y estatica.
o Tendremos el método CompruebaCif al que le llegara la cadena, validara si el formato es
correcto y en ese caso se extraera la informacion de los grupos para mostrar la salida como
en el ejemplo.

Ejercicio 3. Analizador de logs
Dado un conjunto de lineas de log con marcas de tiempo tipo [2025-07-28 12:34:56] , extrae:

e Todos los errores (ERROR:)
» Todos los eventos unicos por tipo (INFO, WARN, etc.)
e El primer y ultimo mensaje

4/6 Ejercicios Expresiones Regulares IES Doctor Balmis

Ejercicio 3. Analizador de Togs

AnalizarLogs([
"[2025-07-28 12:34:56] INFO: Inicio",
"[2025-07-28 12:35:00] ERROR: Fallo de conexién",
"[2025-07-28 12:36:00] WARN: Memoria baja",
"[2025-07-28 12:37:00] INFO: Fin"

D

Errores encontrados:

Fallo de conexion

Tipos de eventos Unicos:

INFO, ERROR, WARN

Primer mensaje: Inicio

Ultimo mensaje: Fin

Requisitos:

Utiliza expresiones regulares para extraer los tipos de eventos y mensajes.

Usa MatchCollection matches = regex.Matches(texto) para extraer todas las ocurrencias
del texto. Donde regex es un objeto de tipo Regex .

Debe identificar el primer y ultimo mensaje del log.

Presenta los resultados en listas separadas.

Ejercicio 4. Extrae contenido de HTML

Implementa un método ExtraeEtiquetas al que le llega una cadena y extrae el contenido entre
etiquetas HTML de todas las coincidencias de la cadena de entrada. Usa expresiones regulares
para capturar todos los bloques <etiquetas...</etiqueta> validos.

Ejercicio 4: Extraccion de contenido de etiquetas HTML

Introduce la Tinea HTML: <p>Hola mundo</p><p>;Qué tal estas?</p>

ET contenido de 1a 1inea es: ["Hola mundo", ";Qué tal estds?"]

Presiona Enter para salir...

Requisitos:

o Utiliza expresiones regulares con grupos de captura y extraccion multiple.

e Debe funcionar con etiquetas sin anidar y diferentes tipos de etiquetas.

» Debe coincidir la etiqueta de inicio con la de fin de cerrado. Usa referencia inversa para
ello.

5/6 Ejercicios Expresiones Regulares IES Doctor Balmis

¢ No utilices métodos manuales para buscar los delimitadores.

Ejercicio 5. Reescritor Tiko extendido (versién con
expresiones regulares)

En esta segunda parte vas a mejorar el traductor al lenguaje Tiko permitiendo el uso de
expresiones regulares (Regex) para hacer el procesamiento mas potente, limpio y flexible.

A partir de una frase introducida por el usuario, realiza las siguientes transformaciones, ahora

utilizando Regex en los puntos sehalados:

1. &4 Traduccion de digitos a texto

2. [4 [Avanzado] Eliminacion de duplicados de letras consecutivas
3. 4 Sustitucion de onomatopeyas por emojis

4. (4 Transformaciones de los x q por por qué

Ejercicio 5. Reescritor Tiko extendido ER

Introduce una frase: jajajaja tengo 2 perros y holaaa x g no vienes?
Tiko extendido: @ tengo dos perros y hola por qué no vienes?

Requisitos:

o Deberas usar referencia inversa para controlar que el caracter esta repetido.

o Fijate con la repeticion de jajaja o jeje, etc puede ser mas de dos veces.

o Usa Regex.Replace() con la sustitucidon de la primera referencia capturada, para conseguir
la eliminacion de duplicados. Deberas controlar primero que las r y | se pueden repetir dos
veces y despues el resto de letras.

¢ No uses métodos manuales (foreach , if , for) para las transformaciones que pueden

resolverse con expresiones regulares.

6/6 Ejercicios Expresiones Regulares IES Doctor Balmis

https://learn.microsoft.com/es-es/dotnet/api/system.text.regularexpressions.regex.replace?view=net-8.0

