
Índice
Índice

Ejercicio 1. Iniciándonos con ER
Ejercicio 2. Validación de CIF
Ejercicio 3. Analizador de logs
Ejercicio 4. Extrae contenido de HTML
Ejercicio 5. Reescritor Tiko extendido (versión con expresiones regulares)

Ejercicios Unidad 11
Descargar estos ejercicios

Ejercicio 1. Iniciándonos con ER
En este ejercicio deberemos crear las expresiones regulares que sirvan para validar los
siguientes formatos.

Patrón numeroTarjetaCredito que verifique si una cadena representa un número de tarjeta
de crédito válido en formato típico. Debe aceptar tarjetas con o sin espacios, agrupadas en
bloques de 4 dígitos. El patrón debe:

Aceptar exactamente 16 dígitos
Permitir espacios opcionales entre cada 4 dígitos

Antes de empezar

Para realizar estos ejercicios, deberás descargar los recursos del enlace de
proyecto_expresiones_regulares. Como puedes ver, la solución está compuesta de varios
proyectos. Cada uno de ellos corresponde con un ejercicio, deberás implementar todo el
código, tanto de la Main como de los métodos que se piden en cada ejercicio. Cada proyecto
contiene el test correspondiente, que deberás pasar para comprobar que has hecho el ejercicio
correctamente.
Los últimos ejercicios están pensados para trabajar de forma avanzada el manejo de EERR en
C#. Se recomienda revisar los apuntes de la unidad antes de resolverlos.



1/6 Ejercicios Expresiones Regulares IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u11_poo_cadenas_y_er/ejercicios/2_ejercicios/2_ejercicios_er.pdf
file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u11_poo_cadenas_y_er/ejercicios/2_ejercicios/recursos/2_ejercicios_er_recurso.zip

Rechazar si hay letras o si los bloques son incorrectos

Ejemplos válidos:

1234 5678 9012 3456

1234567890123456

Patrón nombreUsuario que valide nombres de usuario para una web. Las reglas son:
Deben empezar con una letra
Pueden contener letras, números, guiones bajos o puntos
Longitud mínima: 5 caracteres
Longitud máxima: 15 caracteres
No pueden terminar en punto ni guion bajo

Ejemplos válidos: juan_87, maria.rosa, Carlos1990

Ejemplos inválidos: 123mario, luis_, .pepe, ana-too-long-user-name

Patrón matriculaCoche para validar las matrículas de coche con el formato actual de
España: 4 números seguidos de 3 letras. Las letras no pueden incluir vocales.

Ejemplo válido: 1234BCD

Ejemplo inválido: 12AB345, 1234AEI

Patrón codigoPostal que sirva para validar códigos postales Españoles. Debe aceptar
únicamente códigos de 5 dígitos, donde los dos primeros estén entre 01 y 52.

Ejemplo válido: 46010, 28013

Ejemplo inválido: 99000, 523456

2/6 Ejercicios Expresiones Regulares IES Doctor Balmis

Ejercicio 1: Iniciándonos con ER

=== VALIDACIÓN DE TARJETA DE CRÉDITO ===

Introduce un número de tarjeta: 1234 45671235 2145

La '1234 45671235 2145' es válida

=== VALIDACIÓN DE NOMBRE DE USUARIO ===

Introduce un nombre de usuario: Pepe_Garcia.Info

La 'Pepe_Garcia.Info' no es válida

=== VALIDACIÓN DE MATRÍCULA ===

Introduce una matrícula: 1234CTK

La '1234CTK' es válida

=== VALIDACIÓN DE CÓDIGO POSTAL ===

Introduce un código postal: 51423

La '51423' es válida

Presiona Enter para salir...

Requisitos:

Nos crearemos variables estáticas y públicas en la clase program con el nombre indicado
en cada uno de los puntos, que contendrán el patrón creado.
Crearemos un método ValidaEntrada al que le llegará el patrón y la entrada y mostrará el
mensaje de si la cadena se corresponde con el patrón o no, según la salida propuesta.
Desde la Main llamaremos al método con la entrada de usuario y con el patrón, para cada
uno de los casos. Este código se da hecho.

Ejercicio 2. Validación de CIF
Crea la expresión regular para comprobar el formato del Código de Identificación Fiscal
(C.I.F.).

3/6 Ejercicios Expresiones Regulares IES Doctor Balmis

Ejercicio 2: Validación de CIF

Introduce un CIF: B 1256478 A

CIF válido: B 1256478 A

 - Tipo de organización: B

 - Código provincial: 12

 - Numeración secuencial: 56478

 - Dígito de control: A

Presiona Enter para salir...

Requisitos

Tendrá el siguiente formato: T<sep>PPNNNNN<sep>C donde <sep> podrá ser ' ', '-' o
nada.

T: Letra de tipo de Organización, una de las siguientes: A, B, C, D, E, F, G, H ,K, L, M,
N, P, Q, S, U, V y W.
PP: Código provincial numérico.
NNNNN: Numeración secuencial dentro de la provincia.
C: Dígito de control, un número ó letra: Aó1, Bó2, Có3, Dó4, Eó5, Fó6, Gó7, Hó8, Ió9,
Jó0.

Deberemos crear grupos con nombre para cada una de las partes (tipo, provincia,
secuencial y control).
La expresión regular la crearemos en la clase Program pública y estática.
Tendremos el método CompruebaCif al que le llegará la cadena, validará si el formato es
correcto y en ese caso se extraerá la información de los grupos para mostrar la salida como
en el ejemplo.

Ejercicio 3. Analizador de logs
Dado un conjunto de líneas de log con marcas de tiempo tipo [2025-07-28 12:34:56] , extrae:

Todos los errores (ERROR:)
Todos los eventos únicos por tipo (INFO, WARN, etc.)
El primer y último mensaje

4/6 Ejercicios Expresiones Regulares IES Doctor Balmis

Ejercicio 3. Analizador de logs

AnalizarLogs([

 "[2025-07-28 12:34:56] INFO: Inicio",

 "[2025-07-28 12:35:00] ERROR: Fallo de conexión",

 "[2025-07-28 12:36:00] WARN: Memoria baja",

 "[2025-07-28 12:37:00] INFO: Fin"

])

Errores encontrados:

Fallo de conexión

Tipos de eventos únicos:

INFO, ERROR, WARN

Primer mensaje: Inicio

Último mensaje: Fin

Requisitos:

Utiliza expresiones regulares para extraer los tipos de eventos y mensajes.
Usa MatchCollection matches = regex.Matches(texto) para extraer todas las ocurrencias
del texto. Donde regex es un objeto de tipo Regex .
Debe identificar el primer y último mensaje del log.
Presenta los resultados en listas separadas.

Ejercicio 4. Extrae contenido de HTML
Implementa un método ExtraeEtiquetas al que le llega una cadena y extrae el contenido entre
etiquetas HTML de todas las coincidencias de la cadena de entrada. Usa expresiones regulares
para capturar todos los bloques <etiqueta>...</etiqueta> válidos.

 Ejercicio 4: Extracción de contenido de etiquetas HTML

 Introduce la línea HTML: <p>Hola mundo</p><p>¿Qué tal estás?</p>

 El contenido de la línea es: ["Hola mundo", "¿Qué tal estás?"]

Presiona Enter para salir...

Requisitos:

Utiliza expresiones regulares con grupos de captura y extracción múltiple.
Debe funcionar con etiquetas sin anidar y diferentes tipos de etiquetas.
Debe coincidir la etiqueta de inicio con la de fin de cerrado. Usa referencia inversa para
ello.

5/6 Ejercicios Expresiones Regulares IES Doctor Balmis

No utilices métodos manuales para buscar los delimitadores.

Ejercicio 5. Reescritor Tiko extendido (versión con
expresiones regulares)
En esta segunda parte vas a mejorar el traductor al lenguaje Tiko permitiendo el uso de
expresiones regulares (Regex) para hacer el procesamiento más potente, limpio y flexible.

A partir de una frase introducida por el usuario, realiza las siguientes transformaciones, ahora
utilizando Regex en los puntos señalados:

1. ✅ Traducción de dígitos a texto
2. ✅ [Avanzado] Eliminación de duplicados de letras consecutivas
3. ✅ Sustitución de onomatopeyas por emojis
4. ✅ Transformaciones de los x q por por qué

Ejercicio 5. Reescritor Tiko extendido ER

Introduce una frase: jajajaja tengo 2 perros y holaaa x q no vienes?

Tiko extendido: 😂 tengo dos perros y hola por qué no vienes?

Requisitos:

Deberás usar referencia inversa para controlar que el carácter está repetido.
Fíjate con la repetición de jajaja o jeje, etc puede ser más de dos veces.
Usa Regex.Replace() con la sustitución de la primera referencia capturada, para conseguir
la eliminación de duplicados. Deberás controlar primero que las r y l se pueden repetir dos
veces y después el resto de letras.
No uses métodos manuales (foreach , if , for) para las transformaciones que pueden
resolverse con expresiones regulares.

6/6 Ejercicios Expresiones Regulares IES Doctor Balmis

https://learn.microsoft.com/es-es/dotnet/api/system.text.regularexpressions.regex.replace?view=net-8.0

