
Índice
Índice

Ejercicio 1. Nivel de seguridad de contraseña
Ejercicio 2. Palíndromos
Ejercicio 3. Normalizador con reglas personalizadas
Ejercicio 4. Reescritor en código Tiko extendido
Ejercicio 5. Juego del ahorcado modular

Ejercicios Unidad 11
Descargar estos ejercicios

Ejercicio 1. Nivel de seguridad de contraseña
Escribe una función que devuelva el nivel de una contraseña teniendo en cuenta que:

Muy débil: solo números o < 8 caracteres.
Débil: solo letras y ≥ 8.
Fuerte: letras y números y ≥ 8.
Muy fuerte: letras/números + especiales y ≥ 8.

Salida por consola:

Antes de empezar

Estos ejercicios están pensados para trabajar de forma avanzada el manejo de cadenas y
objetos mutables como StringBuilder en C#. Se recomienda revisar los apuntes de la unidad
antes de resolverlos. Para realizar estos ejercicios, deberás descargar los recursos del enlace
de proyecto_cadenas. Como puedes ver, la solución está compuesta de varios proyectos.
Cada uno de ellos corresponde con un ejercicio, deberás implementar todo el código, tanto de
la Main como de los métodos que se piden en cada ejercicio. Cada proyecto contiene el test
correspondiente, que deberás pasar para comprobar que has hecho el ejercicio correctamente.



1/6 Ejercicios Cadenas IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u11_poo_cadenas_y_er/ejercicios/1_ejercicios/1_ejercicios_cadenas.pdf
file:///G:/TRABAJO/MODULOS/PROG/PROGRAMACIONDAM/u11_poo_cadenas_y_er/ejercicios/1_ejercicios/recursos/1_ejercicios_cadenas_recurso.zip

Introduce una contraseña: 123456

Nivel de seguridad: Muy débil

Introduce una contraseña: abcdabcd

Nivel de seguridad: Débil

Introduce una contraseña: abc12345

Nivel de seguridad: Fuerte

Introduce una contraseña: abc12345!

Nivel de seguridad: Muy fuerte

Requisitos:

Usar métodos de la clase string y/o StringBuilder .
Crear los métodos SoloNumeros y otro SoloLetras que retorne un bool según se cumplan
las condiciones.
Crear los método ContieneLetras, ContieneNumeros y ContieneEspeciales que retorne un
bool según se cumplan las condiciones.
Crear un método NivelSeguridad que reciba la contraseña y retorne "Muy débil" , "Débil",
"Fuerte" o "Muy fuerte" según el caso. Haz uso de los métodos anteriores para determinar
el nivel.
El programa debe funcionar correctamente con cadenas vacías o nulas.

Ejercicio 2. Palíndromos
Crea una función que determine si una frase es palíndroma, ignorando espacios, signos de
puntuación y mayúsculas. No puedes utilizar el método Reverse para invertir la frase.

Salida por consola:

Introduce una frase: Anita lava la tina

Es palíndroma

Introduce una frase: Hola mundo

No es palíndroma

Requisitos:

Ignorar espacios, signos de puntuación y mayúsculas.
No usar el método Reverse .

2/6 Ejercicios Cadenas IES Doctor Balmis

Usar bucles y métodos de la clase string .
Crea un método EsPalindroma que reciba la cadena y devuelva bool según el caso.

Ejercicio 3. Normalizador con reglas personalizadas
Implementa una función que reciba una cadena y la normalice aplicando las siguientes reglas:

Sustituir acentos y diéresis por su vocal base.
Eliminar cualquier carácter no alfabético.
Pasar todo a minúsculas.

Salida por consola:

Introduce una cadena: ¡Árboles y pingüinos!

Normalizada: arbolesypinguinos

Requisitos:

Crear método Normaliza que reciba la cadena y la retorne modificada.
Usar StringBuilder para construir la cadena.
Sustituir acentos y diéresis por su vocal base.
Eliminar caracteres no alfabéticos.
Convertir todo a minúsculas.

Ejercicio 4. Reescritor en código Tiko extendido
Desarrolla una primera versión de un "traductor al lenguaje Tiko extendido" que transforme una
frase de entrada aplicando una serie de reglas básicas. En esta fase solo podrás utilizar clases y
métodos de manipulación de cadenas (string y StringBuilder), no se permite el uso de
expresiones regulares.

El programa debe realizar las siguientes transformaciones:

1. Sustitución de números por texto.Sustituye cada dígito numérico (del 0 al 9) por su nombre
equivalente en texto (por ejemplo, "2" se convierte en "dos").

2. Eliminación de letras repetidas consecutivas. Si una misma letra aparece repetida varias
veces seguidas, deja solo una. Por ejemplo: "holaaaaaa" se convierte en "hola". Hasta que

3/6 Ejercicios Cadenas IES Doctor Balmis

se pueda hacer una mejora, esto tendrá el problema de que eliminará letras repetidas
correctas (Por ejemplo, perro lo convertirá en pero). En futuras ampliaciones esto quedará
corregido.

3. Traducción básica de onomatopeyas. Cambia algunas combinaciones típicas de risa como
"jaja", "jeje", "jiji" o "jojo" por emojis sencillos como 😂, 😄, 😆 o 🤣. La sustitución se hará
solo si coinciden exactamente esas combinaciones, sin variaciones.Sustituye cada grupo de
onomatopeya por un emoji, por ejemplo jaja -> 😂😂

Salida por consola:

Introduce una frase: jaja holaaaa 123

Tiko extendido: 😂 hola uno dos tres

Requisitos:

Crear método ConvierteATiko que reciba la cadena y la retorne modificada.
El método ConvierteATiko debe hacer uso de los métodos auxiliares SustituyeNumeros,
EliminaLetras y TraduceOnomatopeyas.
Usar solo métodos de string y StringBuilder .
No usar expresiones regulares.
Implementar las tres reglas indicadas.

Ejercicio 5. Juego del ahorcado modular
Desarrolla una versión modular del juego del ahorcado. El programa pedirá al usuario la palabra
secreta y el máximo de fallos permitidos. El usuario irá introduciendo letras hasta que acierte la
palabra o supere el número de fallos. En cada turno se mostrarán los huecos/aciertos de la
palabra y las letras falladas.

Salida por consola:

4/6 Ejercicios Cadenas IES Doctor Balmis

Introduce la palabra a adivinar: BUCLE

Introduce el número máximo de fallos: 3

Palabra: _ _ _ _ _

Fallos:

Introduce una letra: M

Palabra: _ _ _ _ _

Fallos: M

Introduce una letra: O

Palabra: _ _ _ _ _

Fallos: M O

Introduce una letra: L

Palabra: _ _ _ L _

Fallos: M O

Introduce una letra: T

Palabra: _ _ _ L _

Fallos: M O T

Lo siento has llegado al máximo de fallos permitido.

La palabra a adivinar era: BUCLE.

Palabra: _ _ _ _ _

Fallos:

Introduce una letra: U

Palabra: _ U _ _ _

Fallos:

Introduce una letra: C

Palabra: _ U C _ _

Fallos:

Introduce una letra: B

Palabra: B U C _ _

Fallos:

Introduce una letra: L

Palabra: B U C L _

Fallos:

Introduce una letra: E

Palabra: B U C L E

Fallos:

ENHORABUENA LO HAS CONSEGUIDO

Requisitos:

Utiliza StringBuilder para la palabra parcialmente adivinada y las letras falladas.
Todas las letras se tratarán en mayúsculas.
la rama del DEM que se encarga de pedir letra no repetida, solamente estará recogiendo
carácteres al usuario hasta que introduzca uno no repetido. Ese carácter no lo guardará en
ningún sitio. Los métodos que se encargan de añadir la letra a los StringBuilders

5/6 Ejercicios Cadenas IES Doctor Balmis

correspondientes son AñadeLetraALetrasPalabraAMostrar o AñadeLetraALetrasFalladas
(aunque se tenga que volver a recorrer las cadenas).
No se permite usar LINQ ni colecciones dinámicas, solo cadenas y StringBuilder .
Modulariza siguiendo los siguientes métodos para mayor claridad y robustez, sigue el
siguiente DEM a la hora de diseñar tus módulos o funciones. Se pasan las interfaces de los
módulos para facilitar la codificación.

 public static string PidePalabraAAdivinar()

 public static int PideMaximoFallos()

 public static bool EstaLetraEnLetras(char letra, string letras)

 static char PideLetra(

 string palabraParcialmenteAdivinada,

 string letrasFalladas)

 public static void MuestraEstadoJuego(

 string palabraParcialmenteAdivinada,

 string letrasFalladas)

 public static void AñadeLetraALetrasPalabraAMostrar(

 string palabraAAdivinar,

 in char letra,

 StringBuilder palabraParcialmenteAdivinada)

 public static bool FinDeJuego(

 int numFallos, int maxFallos,

 string palabraAAdivinar, string palabraParcialmenteAdivinada,

 out string mensajeSiFin)

 public static void Jugar(string palabraAAdivinar, int maximoFallos)

Principal

Pedir palabra
a adivinar

Pedir número
máximo de fallos Jugar

Muestra estado
del juego

1... veces

Pide letra
no repetida

1... veces

Añade letra a
letras de la

palabra a mostrar

1... veces

Añade letra a
letras falladas

1... veces

Comprueba si fin
de juego

1... veces

Está la letra en
letras introducidas

1... veces

Ha acertado
ya la palabra

Ha llegado
al máximo
de fallos

Está la letra en
letras acertadas

Está la letra en
letras falladas.

Está letra
en letras

6/6 Ejercicios Cadenas IES Doctor Balmis

