Unidad 10

Descargar estos apunte en pdf o html

indice

= indice
¥ Programacion Orientada a Objetos
= |ntroduccion
= Definicion de Tipo Abstracto De Datos o TAD
¥ Definicién de clase
= Elementos que definen una clase
¥ Definicion de objeto
= Composicion de un objeto
= Definicion de Campo
¥ Definicién de Método
= Enfoque de los métodos desde la teoria de POO
= Definicion de Encapsulacién
= Definicion de Constructor Y Destructor
¥ Instanciando objectos de una clase
= Representando objetos instanciados en memoria
= Concepto de inmutabilidad

111 Programacion 1° DAM Unidad 10 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u10_poo_introduccion/u10_poo_introduccion.pdf
file:///C:/Users/Juanjo/Desktop/Git/programaciondam/u10_poo_introduccion/u10_poo_introduccion.html

Programacién Orientada a Objetos

Introduccion

La POO es un paradigma de programacion que pretende mejorar aspectos de la programacion imperativa
tradicional tales como:

o Abstraccion con la que representamos el problema.
o Portabilidad del cédigo y por tanto su reusabilidad.
¢ Modularidad del cédigo y por tanto legibilidad.

Cuando programamos en lenguaje orientado a objetos, lo que se debe hacer es atacar los problemas
dividiéndolos en unidades légicas denominadas objetos, que colaboraran entre ellos para resolver el
problema.

Podemos considerar el paradigma Orientado a
Objetos como un 'superconjunto’ de la programacién

imperativa y estructurada. Esto es, nos proporciona Programacion Programacion
i . L, Orientada a Objetos Imperativa/Estructurada
mas herramientas para abordar la resolucion de los

problemas.

Definicion de Tipo Abstracto De Datos o TAD

Para definir una clase en POO (Programacion Orientada a Objetos), debemos pensar en términos de Tipo
Abstracto de Datos (TAD) y para definir un TAD, nos preguntaremos que tipos de entidades intervienen en
un problema y las operaciones que se pueden realizar entre ellas.Posteriormente, intentaremos describirlas
de forma abstracta, libres de cuestiones de implementacién y representacion.

Por tanto, a esta definicion abstracta, completa y no ambigua de una estructura de datos junto con el conjunto
de operaciones que se pueden hacer sobre ese tipo de datos la denominaremos TAD.

Deberemos tener en cuenta que un TAD puede tener una o mas implementaciones y una de estas
implementaciones se definira a través de una clase.

2/1 Programacién 1° DAM Unidad 10 IES Doctor Balmis

Definicion de clase

Puesto qui son la implementacion total o parcial de un TAD. Podemos decir que es una definicion de tipo

abstracta, que permite agrupar datos en una entidad y asociarle un comportamiento.

Una clase nos permitira definir objetos que van a tener la misma estructura y comportamiento. Ademas,

también se diferencias de los TAD en que afiade conceptos como el de encapsulamiento, paso de mensajes,

herencia y polimorfismo que no se contemplan en los TAD y que son propios de la POO.

Existen autores que las definen con 2 naturalezas:

1. Como Tipo: Implementa un TAD con sus atributos y operaciones.

Por ejemplo, en C#, la clase Array implementa el TAD
Coleccion e implementa una concreciéon que permite
almacenar una coleccion de elementos del mismo tipo
(homogénea) y realizar operaciones sobre ellas, como
acceder a un elemento por su indice, ordenar los elementos,
etc. Ademas, nos permite crear objetos de tipo Array que
representan un conjunto de elementos. Nosotros la hemos
estado utilizando en la unidad anterior sin pensar en estos
términos.

2. Como moédulo: Organizacion y encapsulacion de software.

f N

COLECCION

TIPO
ABSTRACTO
DE DATOS

ARRAY

HOMOGENEO UNIDIMENSIONAL

|

Por ejemplo, en C#, son las que hemos estado creando hasta ahora y que solo contenian métodos

estaticos (modulos). Un ejemplo puede ser la clase Math de las BCL y que solo contiene funciones de

utilidad matematica. A esta organizaciéon también se las conoce con el estereotipo <<utility>> en POO.

2

Una clase es. un tipo definido por el

usuario . que encapsula

comportamiento.

- Bjarne Stroustrup (Crador del lenguaje C++)

3/M Programacién 1° DAM Unidad 10 IES Doctor Balmis

datos y

»

Elementos que definen una clase

1. Un Nombre: Que describe a la clase.

2. Atributos o Campos: Son datos necesarios para describir los objetos creados a partir de la clase.
La combinacion de sus valores determina el estado de un objeto.

3. Operaciones, Métodos o Servicios
Describe la operaciones posibles sobré un objeto de esa clase ya descritas en el TAD.
Deberia se el unico modo de acceder a los atributos.

4. Roles: Relaciones que una clase establece con otras clases.

Por ejemplo, en este dibujo que representa una clase en UML.:

Cuenta

+ Saldo : double
+ Titular : string

+ Reintegro() : double
+ Ingreso(in cantidad : double) : void

1. Nombre: cCuenta
2. Campos:
e Saldo : Representa el saldo de la cuenta y por tanto su estado.
e Titular : Representa el titular de la cuenta y no deberia cambiar a lo largo de la vida de la cuenta, esto
es, es inmutable.
3. Operaciones:
e 1Ingreso(in cantidad: double): void : Permite ingresar una cantidad de dinero en la cuenta y cambia el
Saldo Y por tanto su estado.
e Reintegro(): double : Permite retirar una cantidad de dinero de la cuenta y cambia el saldo y por
tanto su estado.
4. Roles: No tiene relaciones con otras clases en este ejemplo.

4/11 Programacién 1° DAM Unidad 10 IES Doctor Balmis

Definiciéon de objeto

La creacion o instancia en memoria de un elemento de la
clase.

De las anteriores definiciones se infiere que: "Un objeto es un
conjunto de atributos y métodos que permiten manipular y/o
modificar dichos atributos, cambiando asi el estado del mismo.

Nota: Para la mayoria de lenguajes actuales como C#,
todo son objetos. De hecho los tipos basicos que hemos
visto hasta ahora también son, para él, 'objetos’.

Composicion de un objeto

nombre
/ saldo
Jai

1. Estado: Vendra dado por el valor de sus campos y su rol durante la ejecucion.
2. Comportamiento: Que sera el modo en que las operaciones cambian a su estado.

3. Una Identidad: que me permitira distinguirlo de otros.
e Dos objetos son iguales si tienen el mismo estado.
* No es lo mismo identidad que igualdad.

cuental : Cuenta cuenta?2 : Cuenta cuentad : Cuenta cuental=cuental
Saldo = 30000 Saldo = 30000 Saldo = 15000 cuental=cuenta2
Titular = "Xusa" Titular = "Xusa" Titular = "Juanjo" cuental#cuenta3

2

Un objeto es una entidad con estado,

comportamiento e identidad.

- From the Book Object-OrientOriented Modeling and Design.

5/11 Programacién 1° DAM Unidad 10 IES Doctor Balmis

9

Definicion de Campo

También conocido segun el contexto como Atributo o Propiedades. Nos describira los objetos de una clase y
sus valores indicaran el estado de un objeto.

¢Qué tipos hay?

1. De Instancia o también (de objeto)
o Seran diferentes en cada objeto.
» Necesitaré de un objeto instanciado (creado) en memoria para acceder a ellos.
2. De clase o también estaticos
e Tendran el mismo valor en todos los objetos de la clase, por tanto almacenan caracteristicas
comunes a todos ellos.
* No necesito un objeto instanciado para acceder a ellos.
e Son visibles desde cualquier método de la clase (ya sea de instancia o no).

Definicion de Método

Definen el Comportamiento y las Operaciones que se pueden realizar con los objetos. Ademas, permiten

interactuar y relacionarse a los objetos.
¢Qué tipos hay?

1. De instancia o también (de objeto)
» Necesitaré de un objeto instanciado (creado) en memoria para acceder a ellos.
o Pueden acceder a campos de instancia como de clase.
* Pueden modificar el estado de un objeto concreto en memoria si este es mutable.
2. De clase o también estaticos
¢ No necesito tener un objeto instanciado en memoria para acceder a ellos.
* Solo pueden acceder a los campos de clase y no a los de instancia.
3. De acceso y actualizaciéon
o También se les conoce como Accesores - Mutadores en general, Propiedades (C#, Kotlin, Swift,
etc.), Getters - Setters (Java, C++, efc.).

2

Certainly not every good program is object-
oriented, and not every object-oriented
program'is good.

9

- Bjarne Stroustrup (C++ creator)

6/11 Programacién 1° DAM Unidad 10 IES Doctor Balmis

Enfoque de los métodos desde la teoria de POO

En la teoria tradicional de la POO, los objetos se comunican entre ellos a través de un mecanismo de paso de
mensajes. (Alan Kay, Bertrand Meyer) Esto significa que, en el fondo, cuando desde un método de un
objeto de instancia llamamos o invocamos a un método de otro objetos, estaremos haciendo este paso de
mensajes y por tanto comunicando ambos objetos. Aunque existen mas formas de pasar estos mensajes, pero
la mas basica es esta.

Vamos a verlo a través de un ejemplo 'simplificado’ de codigo para entender el concepto 'abstracto’ de

mensaje y comunicacion entre objetos:

class Persona

{

public void MetodoDeInstancia()

{
Phone tl1f = new ("iPhone 17");

tlf.Enciende();

t1f.L1ama(676345266);

maria : Persona Mensaje1: Enciende() > tif : Phone

M je2: LI
Nombre = "Maria" ensaje ama() > Modelo = "iPhone 17"

Definicion de Encapsulacién

En POO, se denomina encapsulacion al la ocultacién del estado, es decir, de los atributos, de un objeto. De tal
manera que, solo se puede cambiar mediante las operaciones definidas para ese objeto o sus accesores -
mutadores. De esta forma el usuario de la clase solo interacciona con los objetos abstrayéndose de como estan
implementados (no sabe nada de la implementacion). Con esto, se evita que el usuario pueda cambiar su
estado de maneras imprevistas e incontroladas.

7M1 Programacién 1° DAM Unidad 10 IES Doctor Balmis

https://en.wikipedia.org/wiki/Alan_Kay
https://en.wikipedia.org/wiki/Bertrand_Meyer

Definicion de Constructor Y Destructor
Constructor:

Método o métodos especiales que me serviran para instanciar e inicializar el estado de un objeto en memoria.
Toda clase debe tener al menos un constructor.

Destructor:

Un unico método especial encargado de eliminar una instancia en memoria de un objeto.

En la gram mayoria de lenguajes OO modernos no hace falta definirlos y llamarlos, ya que de esta labor de
eliminacién de instancias de objetos en memoria, se encarga el denominado ‘recolector de basura' (GC),
cuando un objeto ya no es referenciado por nadie.

Instanciando objectos de una clase

Para crear o instanciar objetos de una determinada clase se utiliza el operador new
new <NombreTipo>(<parametros>)

Este operador crea un nuevo objeto del tipo cuyo nombre se le indica. Para ello llama al constructor del objeto
mas apropiado segun los valores que se le pasen <parametros> , y devuelve una referencia a la direccion de
memoria dindamica donde se ha creado el objeto.

Cuenta cuental = new Cuenta();

Cuenta cuental = new ();

Para acceder a los campos y a los métodos de un objeto usaremos el operador . que es el operador de
acceso a miembros.

<objeto>.<campo>

<objeto>.<método>(<parametros>)

Por ejemplo, para acceder a los campos y métodos de la clase cuenta que hemos definido anteriormente, lo
hariamos de la siguiente manera:

cuental.Saldo = 30000;

Console.Writeline(cuental.Titular;

8/1 Programacién 1° DAM Unidad 10 IES Doctor Balmis

Representando objetos instanciados en memoria

Los objetos definidos por nosotros suelen ser tipos referencia, significa que el identificador cuental sera una
referencia en el Stack a una instancia en memoria de un objeto de tipo cuenta en el Heap. Puedes ver los
conceptos de Stack (Pila) y Heap (Memoria Montén) descritos en el Anexo | de la Unidad 3.

HEAP

Cima

Pila cuental : Cuenta

cuenta (ref) - Saldo = 30000

Titular = "Xusa"

Nosotros para simplificar en estos apuntes, este tipo de referencias las vamos a representar a partir de ahora de
la siguiente forma equivalente al esquema que hemos dibujado arriba. De tal manera que si hacemos ...

Cuenta cuental = new();

cuental : Cuenta

cuental.Saldo = 30000; Saldo = 30000
Titular = "Xusa"

cuental.Titular = "Xusa";

y si asignaramos la referencia de cuenta1l a otra variable, por ejemplo cuenta2 , l0 representaremos de la

siguiente manera:

Cuenta cuenta2 = cuental;

// Mostrara "Iguales: True"

bool iguales = cuenta2 == cuental;
cuental, cuenta2 : Cuenta

Console.WritelLine($"Iguales: {iguales}");
Saldo = 30000
Titular = "Xusa"

// Mostrard "Idénticos: True"
bool identicos = ReferenceEquals(cuenta2, cuental);

Console.WriteLine($"Idénticos: {identicos)}");

Recuerda que ambas referencias 'apuntaran' al mismo objeto en la memoria montén y por tanto el método
ReferenceEquals nos devolvera True indicandonos que ambas variables apuntas al mismo objeto en la
memoria (HEAP).

9/11 Programacion 1° DAM Unidad 10 IES Doctor Balmis

Pero, ;qué pasa si hacemos una copia del objeto?...

Cuenta cuenta2 = new Cuenta();
cuenta2.Saldo = cuental.Saldo;
cuenta2.Titular = cuental.Titular;

bool iguales = cuenta2 == cuental;
Console.WritelLine($"Iguales: {iguales}");

bool identicos = ReferenceEquals(cuenta2, cuental);

Console.WriteLine($"Idénticos: {identicos}");

cuental : Cuenta cuenta2 : Cuenta
Saldo = 30000 Saldo = 30000
Titular = "Xusa" Titular = "Xusa"

Cuidado

Aunque cuenta2 Y cuental referencian a diferentes objetos en memoria y por tanto
ReferenceEquals(cuenta2, cuental) se evaluara a False siempre, podriamos pensar que

cuenta2 == cuental se evaluaria a True ya que tienen el mismo contenido, pero esto no es asi. Ya que
no le hemos indicado a C# como comparar dos objetos de tipo cuenta Yy por tanto, C# compara las

referencias de ambos objetos y no su contenido. Por tanto, cuenta2 == cuental se evaluara a False en
este momento.

10/11 Programacién 1° DAM Unidad 10 IES Doctor Balmis

Concepto de inmutabilidad

Son objetos inmutables aquellos que una vez creados no pueden ser modificados. Es decir, no se puede

cambiar el valor de sus campos o atributos.

Esto supone que cualquier operacion que se realice sobre un objeto inmutable, devolvera un nuevo objeto con

el resultado de la operacion, pero el objeto original permanecera sin cambios.
Aportan una serie de ventajas de las que podemos destacar ahora que:

o Permiten evitar efectos secundarios no deseados en el codigo, ya que al no poder modificarse, se
garantiza que su estado no cambiara una vez creado.

e Son ideales para obtener instantaneas de datos, ya que una consulta de datos no deberia tener ningun
tipo de operacion que la modifique.

o Facilitan la concurrencia y el paralelismo, ya que al no poder modificarse, no hay riesgo de que varios
hilos de ejecucion modifiquen el mismo objeto al mismo tiempo.

o Permiten una mejor optimizacién por parte del compilador y el recolector de basura, ya que al no poder
modificarse, se pueden reutilizar objetos inmutables en lugar de crear nuevos objetos cada vez.

o Facilitan la comparacién de objetos, ya que al no poder modificarse, se puede comparar el estado de un
objeto inmutable con otro objeto inmutable sin preocuparse por cambios posteriores.

Nota

Mas adelante veremos cémo definir nuestras propias clases o tipos de datos, ademas de muchos
otros conceptos relacionados con el disefio orientado a objetos. Pero antes, a lo largo de las proximas
unidades, vamos a ver una serie de clases que podremos encontrar ya definidas en la mayoria de
lenguajes actuales, y que me permitiran instanciar objetos de una serie de objetos de uso comun
para manejo de cadenas, expresiones regulares, etc...

11/11 Programacién 1° DAM Unidad 10 IES Doctor Balmis

